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Chapter 1

Systems of linear equations

1.1 Linear equations and solutions

Definition 1 A1 linear equation in the unknowns 1 2   is an equation of the form

11 + 22 +  =  (1.1)

where  ∈ R and ∀ ∈ {1  }   ∈ R . The real number  is called the coefficient of  and  is
called the constant of the equation.  for  ∈ {1  } and  are also called parameters of system

(11).

Definition 2 A solution to the linear equation (11) is an ordered n-tuple (1  ) := ()


=1

such2 that the following statement (obtained by substituting  in the place of  for any  ) is true:

11 + 22 +  = 

The set of all such solutions is called the solution set or the general solution or, simply, the solution

of equation (11).

The following fact is well known.

Proposition 3 Let the linear equation

 =  (1.2)

in the unknown (variable)  ∈ R and parameters   ∈ R be given. Then,
1. if  6= 0, then  = 


is the unique solution to (12);

2. if  = 0 and  6= 0, then (12) has no solutions;
3. if  = 0 and  = 0, then any real number is a solution to (12).

Definition 4 A linear equation (11) is said to be degenerate if ∀ ∈ {1  },  = 0, i.e., it has
the form

01 + 02 + 0 =  (1.3)

Clearly,

1. if  6= 0, then equation (13) has no solution,
2. if  = 0 any n-tuple ()



=1
is a solution to (13).

Definition 5 Let a nondegenerate equation of the form (11) be given. The leading unknown of the

linear equation (11) is the first unknown with a nonzero coefficient, i.e.,  is the leading unknown

if

∀ ∈ {1  − 1}   = 0 and  6= 0
For any  ∈ {1  } \ {}   is called a free variable - consistently with the following obvious

result.

1 In this part, I often follow Lipschutz (1991).
2 “:=” means “equal by definition”.
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Proposition 6 Consider a nondegenerate linear equation 11 + 22 +  =  with leading

unknown . Then the set of solutions to that equation is(
()


=1 : ∀ ∈ {1  } \ {}   ∈ R and  =

−P∈{1}\{} 


)

1.2 Systems of linear equations, equivalent systems and el-

ementary operations

Definition 7 A system of  linear equations in the  unknowns 1 2   is a system of the

form ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
111 + + 1 + + 1 = 1


11 + +  + +  = 


1 + +  + +  = 

(1.4)

where ∀ ∈ {1 } and ∀ ∈ {1  },  ∈ R and ∀ ∈ {1 },  ∈ R. We call  the
−  linear equation of system (14).

A solution to the above system is an ordered n-tuple ()


=1
which is a solution of each equation

of the system. The set of all such solutions is called the solution set of the system.

Definition 8 Systems of linear equations are equivalent if their solutions set is the same.

The following fact is obvious.

Proposition 9 Assume that a system of linear equations contains the degenerate equation

 : 01 + 02 + 0 = 

1. If  = 0, then  may be deleted from the system without changing the solution set;

2. if  6= 0, then the system has no solutions.

A way to solve a system of linear equations is to transform it in an equivalent system whose

solution set is “easy” to be found. In what follows we make precise the above sentence.

Definition 10 An elementary operation on a system of linear equations (14) is one of the following

operations:

[1] Interchange  with , an operation denoted by  ↔  (which we can read “put  in the

place of  and  in the place of ”);

[2] Multiply  by  ∈ R\ {0}, denoted by  →   6= 0 (which we can read “put  in the

place of , with  6= 0”);
[3] Replace  by (  times  plus  ), denoted by ( + ) →  (which we can read “put

 +  in the place of ”).

Sometimes we apply [2] and [3] in one step, i.e., we perform the following operation

[] Replace  by ( 
0 times  and  ∈ R\ {0} times  ), denoted by (0 + )→   6= 0.

Elementary operations are important because of the following obvious result.

Proposition 11 If 1 is a system of linear equations obtained from a system 2 of linear equations

using a finite number of elementary operations, then system 1 and 2 are equivalent.

In what follows, first we define two types of “simple” systems (triangular and echelon form

systems), and we see why those systems are in fact “easy” to solve. Then, we show how to transform

any system in one of those “simple” systems.
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1.3 Systems in triangular and echelon form

Definition 12 A linear system (14) is in triangular form if the number  of equations is equal to

the number  of unknowns and ∀ ∈ {1  },  is the leading unknown of equation , i.e., the

system has the following form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
111 +122 + +1−1−1 +1 = 1

222 + +2−1−1 +2 = 2


−1−1−1 +−1 = −1
 = 

(1.5)

where ∀ ∈ {1  },  6= 0.

Proposition 13 System (15) has a unique solution.

Proof. We can compute the solution of system (15) using the following procedure, known as

back-substitution.

First, since by assumption  6= 0, we solve the last equation with respect to the last unknown,
i.e., we get

 =





Second, we substitute that value of  in the next-to-the-last equation and solve it for the next-to-

the-last unknown, i.e.,

−1 =
−1 − −1 · 



−1−1

and so on. The process ends when we have determined the first unknown, 1.

Observe that the above procedure shows that the solution to a system in triangular form is

unique since, at each step of the algorithm, the value of each  is uniquely determined, as a

consequence of Proposition 3, conclusion 1.

Definition 14 A linear system (14) is said to be in echelon form if

1. no equation is degenerate, and

2. the leading unknown in each equation is to the right of the leading unknown of the preceding

equation.

In other words, the system is of the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
111 + +122 + +1 =1

222 + +233 + +2 =2

333 + +3 =3



 ++1+ + =

(1.6)

with 1 := 1  2     and 11 22    6= 0. Observe that the above system has 

equations and  variables and that  ≥ . The leading unknown in equation  ∈ {1  } is  .

Remark 15 Systems with no degenerate equations are the “interesting” ones. If an equation is

degenerate and the right hand side term is zero, then you can erase it; if the right hand side term

is not zero, then the system has no solutions.

Definition 16 An unknown  in system (16) is called a free variable if  is not the leading

unknown in any equation, i.e., ∀ ∈ {1  }   6=  .

In system (16), there are  leading unknowns,  equations and −  ≥ 0 free variables.

Proposition 17 Let a system in echelon form with  equations and  variables be given. Then,

the following results hold true.
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1. If  = , i.e., the number of unknowns is equal to the number of equations, then the system

has a unique solution;

2. if   , i.e., the number of unknowns is greater than the number of equations, then we can

arbitrarily assign values to the −   0 free variables and obtain solutions of the system.

Proof. We prove the theorem by induction on the number  of equations of the system.

Step 1.  = 1.

In this case, we have a single, nondegenerate linear equation, to which Proposition 6 applies if

   = 1, and Proposition 3 applies if  =  = 1.

Step 2.

Assume that   1 and the desired conclusion is true for a system with −1 equations. Consider
the given system in the form (16) and erase the first equation, so obtaining the following system:⎧⎪⎪⎨⎪⎪⎩

222 + +233 + = 2
333 +

 

 ++1 + = 

(1.7)

in the unknowns 2   . First of all observe that the above system is in echelon form and has

 − 1 equation; therefore we can apply the induction argument distinguishing the two case   

and  = 

If   , then we can assign arbitrary values to the free variables, whose number is (the “old”

number minus the erased ones)

−  − (2 − 1 − 1) = −  − 2 + 2

and obtain a solution of system (17). Consider the first equation of the original system

111 +122 + +12−12−1 +122 + = 1  (1.8)

We immediately see that the above found values together with arbitrary values for the additional

2 − 2

free variable of equation (18) yield a solution of that equation, as desired. Observe also that the

values given to the variables 1  2−1 from the first equation do satisfy the other equations simply

because their coefficients are zero there.

If  = , the system in echelon form, in fact, becomes a system in triangular form and then the

solution exists and it is unique.

Remark 18 From the proof of the previous Proposition, if the echelon system (16) contains more

unknowns than equations, i.e.,   , then the system has an infinite number of solutions since each

of the −  ≥ 1 free variables may be assigned an arbitrary real number.

1.4 Reduction algorithm

The following algorithm (sometimes called row reduction) reduces system (14) of  equation and

 unknowns to either echelon form, or triangular form, or shows that the system has no solution.

The algorithm then gives a proof of the following result.

Proposition 19 Any system of linear equations has either

1. infinite solutions, or

2. a unique solution, or

3. no solutions.
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Reduction algorithm.

Consider a system of the form (14) such that

∀ ∈ {1  }  ∃ ∈ {1 } such that  6= 0 (1.9)

i.e., a system in which each variable has a nonzero coefficient in at least one equation. If that is

not the case, the remaining variables can renamed in order to have (19) satisfied.

Step 1. Interchange equations so that the first unknown, 1, appears with a nonzero coefficient in

the first equation; i.e., rearrange the equations in the system in order to have 11 6= 0.

Step 2. Use 11 as a “pivot” to eliminate 1 from all equations but the first equation. That is, for

each   1, apply the elementary operation

[3] : −
µ
1

11

¶
1 +  → 

or

[] : −11 + 11 → 

Step 3. Examine each new equation  :

1. If  has the form

01 + 02 + + 0 = 0

or if  is a multiple of another equation, then delete  from the system.3

2. If  has the form

01 + 02 + + 0 = 

with  6= 0, then exit the algorithm. The system has no solutions.

Step 4. Repeat Steps 1, 2 and 3 with the subsystem formed by all the equations, excluding the

first equation.

Step 5. Continue the above process until the system is in echelon form or a degenerate equation

is obtained in Step 3.2.

Summarizing, our method for solving system (14) consists of two steps:

Step A. Use the above reduction algorithm to reduce system (14) to an equivalent simpler

system (in triangular form, system (15) or echelon form (16)).

Step B. If the system is in triangular form, use back-substitution to find the solution; if the

system is in echelon form, bring the free variables on the right hand side of each equation, give

them arbitrary values (say, the name of the free variable with an upper bar), and then use back-

substitution.

Example 20 ⎧⎨⎩ 1 + 22 + (−3)3 = −1
31 + (−1)2 + 23 = 7

51 + 32 + (−4)3 = 2

Step A.

Step 1. Nothing to do.

3The justification of Step 3 is Propositon 9 and the fact that if  = 0 for some other equation 0 in the system,
then the operation −0+→  replace  by 01+02+ +0 = 0 which again may be deleted by Propositon

9.
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Step 2. Apply the operations

−31 + 2 → 2

and

−51 + 3 → 3

to get ⎧⎨⎩ 1 + 22 + (−3)3 = −1
(−7)2 + 113 = 10

(−7)2 + 113 = 7

Step 3. Examine each new equations 2 and 3:

1. 2 and 3 do not have the form

01 + 02 + + 0 = 0;

2 is not a multiple 3;

2. 2 and 3 do not have the form

01 + 02 + + 0 = 

Step 4.

Step 1.1 Nothing to do.

Step 2.1 Apply the operation

−2 + 3 → 3

to get ⎧⎨⎩ 1 + 22 + (−3)3 = −1
(−7)2 + 113 = 10

01 + 02 + 03 = −3

Step 3.1 3 has the form

01 + 02 + + 0 = 

1. with  = −3 6= 0, then exit the algorithm. The system has no solutions.

1.5 Matrices

Definition 21 Given  ∈ N, a matrix (of real numbers) of order × is a table of real numbers
with  rows and  columns as displayed below.⎡⎢⎢⎢⎢⎢⎢⎣

11 12  1  1
21 22  2  2


1 2    


1 2    

⎤⎥⎥⎥⎥⎥⎥⎦
For any  ∈ {1 } and any  ∈ {1  } the real numbers  are called entries of the matrix;

the first subscript  denotes the row the entries belongs to, the second subscript  denotes the column

the entries belongs to. We will usually denote matrices with capital letters and we will write ×
to denote a matrix of order  × . Sometimes it is useful to denote a matrix by its “typical”

element and we write[ ] ∈{1}
∈{1}

, or simply [ ] if no ambiguity arises about the number of rows

and columns. For  ∈ {1 }, £
1 2    

¤
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is called the −  row of  and it denoted by  (). For  ∈ {1  },⎡⎢⎢⎢⎢⎢⎢⎣
1
2







⎤⎥⎥⎥⎥⎥⎥⎦
is called the  −  column of  and it denoted by  ().

We denote the set of ×  matrices byM, and we write, in an equivalent manner, ×
or  ∈M.

Definition 22 The matrix

×1 =

⎡⎣ 1




⎤⎦
is called column vector and the matrix

1× =
£
1  

¤
is called row vector. We usually denote row or column vectors by small Latin letters.

Definition 23 The first nonzero entry in a row  of a matrix × is called the leading nonzero
entry of . If  has no leading nonzero entries, i.e., if every entry in  is zero, then  is called a

zero row. If all the rows of  are zero, i.e., each entry of  is zero, then  is called a zero matrix,

denoted by 0× or simply 0, if no confusion arises.

In the previous sections, we defined triangular and echelon systems of linear equations. Below,

we define triangular, echelon matrices and a special kind of echelon matrices. In Section (16), we

will see that there is a simple relationship between systems and matrices.

Definition 24 A matrix × is square if  = . A square matrix  belonging toM is called

square matrix of order .

Definition 25 Given  = [ ] ∈ M, the main diagonal of  is made up by the entries 
with  ∈ {1 }.

Definition 26 A square matrix  = [ ] ∈ M is an upper triangular matrix or simply a

triangular matrix if all entries below the main diagonal are equal to zero, i.e., ∀  ∈ {1 }  if
   then  = 0

Definition 27  ∈M is called diagonal matrix of order  if any element outside the principal

diagonal is equal to zero, i.e., ∀  ∈ {1 } such that  6= ,  = 0.

Definition 28 A matrix  ∈M is called an echelon (form) matrix, or it is said to be in echelon

form, if the following two conditions hold:

1. All zero rows, if any, are on the bottom of the matrix.

2. The leading nonzero entry of each row is to the right of the leading nonzero entry in the

preceding row.

Definition 29 If a matrix  is in echelon form, then its leading nonzero entries are called pivot

entries, or simply, pivots

Remark 30 If a matrix  ∈ M is in echelon form and  is the number of its pivot entries,

then  ≤ min {}. In fact,  ≤ , because the matrix may have zero rows and  ≤ , because the

leading nonzero entries of the first row maybe not in the first column, and the other leading nonzero

entries may be “strictly to the right” of previous leading nonzero entry.
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Definition 31 A matrix  ∈M is called in row canonical form if

1. it is in echelon form,

2. each pivot is 1, and

3. each pivot is the only nonzero entry in its column.

Example 32 1. All the matrices below are echelon matrices; only the fourth one is in row canonical

form.⎡⎢⎢⎣
0 7 0 0 1 2

0 0 0 1 −3 3

0 0 0 0 0 7

0 0 0 0 0 0

⎤⎥⎥⎦ 
⎡⎢⎢⎣
2 3 2 0 1 2 4

0 0 1 1 −3 3 0

0 0 0 0 0 7 1

0 0 0 0 0 0 0

⎤⎥⎥⎦ 
⎡⎣ 1 2 3

0 0 1

0 0 0

⎤⎦ 
⎡⎣ 0 1 3 0 0 4

0 0 0 1 0 −3
0 0 0 0 1 2

⎤⎦ 
2. Any zero matrix is in row canonical form.

Remark 33 Let a matrix × in row canonical form be given. As a consequence of the definition,
we have what follows.

1. If some rows from  are erased, the resulting matrix is still in row canonical form.

2. If some columns of zeros are added, the resulting matrix is still in row canonical form.

Definition 34 Denote by  the −  row of a matrix . An elementary row operation is one of

the following operations on the rows of :

[1] (Row interchange) Interchange 
 with , an operation denoted by  ↔  (which we can

read “put  in the place of  and  in the place of ”);;

[2] (Row scaling) Multiply  by  ∈ R\ {0}, denoted by  →   6= 0 (which we can read

“put  in the place of , with  6= 0”);
[3] (Row addition) Replace 

 by (  times  plus  ), denoted by
¡
 + 

¢→  (which we

can read “put  +  in the place of ”).

Sometimes we apply [2] and [3] in one step, i.e., we perform the following operation

[] Replace  by ( 0 times  and  ∈ R\ {0} times  ), denoted by
¡
0 + 

¢→   6= 0.

Definition 35 A matrix  ∈M is said to be row equivalent to a matrix  ∈M if  can

be obtained from  by a finite number of elementary row operations.

It is hard not to recognize the similarity of the above operations and those used in solving

systems of linear equations.

We use the expression “row reduce” as having the meaning of “transform a given matrix into

another matrix using row operations”. The following algorithm “row reduces” a matrix  into a

matrix in echelon form.

Row reduction algorithm to echelon form.

Consider a matrix  = [ ] ∈M

Step 1. Find the first column with a nonzero entry. Suppose it is column 1.

Step 2. Interchange the rows so that a nonzero entry appears in the first row of column 1, i.e., so

that 11 6= 0.
Step 3. Use 11 as a “pivot” to obtain zeros below 11 , i.e., for each   1, apply the row operation

[3] : −
µ
1
11

¶
1 + → 

or

[] : −11 + 11
 → 
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Step 4. Repeat Steps 1, 2 and 3 with the submatrix formed by all the rows, excluding the first

row.

Step 5. Continue the above process until the matrix is in echelon form.

Example 36 Let’s apply the above algorithm to the following matrix⎡⎣ 1 2 −3 −1
3 −1 2 7

5 3 −4 2

⎤⎦
Step 1. Find the first column with a nonzero entry: that is 1, and therefore 1 = 1.

Step 2. Interchange the rows so that a nonzero entry appears in the first row of column 1, i.e., so

that 11 6= 0: 11 = 11 = 1 6= 0.
Step 3. Use 11 as a “pivot” to obtain zeros below 11. Apply the row operations

−31 +2 → 2

and

−51 +3 → 3

to get ⎡⎣ 1 2 −3 −1
0 −7 11 10

0 −7 11 7

⎤⎦
Step 4. Apply the operation

−2 +3 → 3

to get ⎡⎣ 1 2 −3 −1
0 −7 11 10

0 0 0 −3

⎤⎦
which is is in echelon form.

Row reduction algorithm from echelon form to row canonical form.

Consider a matrix  = [ ] ∈M in echelon form, say with pivots

11  22    

Step 1. Multiply the last nonzero row  by 1


so that the leading nonzero entry of that row

becomes 1.

Step 2. Use  as a “pivot” to obtain zeros above the pivot, i.e., for each  ∈ { − 1  − 2  1},
apply the row operation

[3] : − + → 

Step 3. Repeat Steps 1 and 2 for rows −1 −2  2.

Step 4. Multiply 1 by 1
11

.

Example 37 Consider the matrix ⎡⎣ 1 2 −3 −1
0 −7 11 10

0 0 0 −3

⎤⎦
in echelon form, with leading nonzero entries

11 = 1 22 = −7 34 = −3
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Step 1. Multiply the last nonzero row 3 by 1
−3 so that the leading nonzero entry becomes 1:⎡⎣ 1 2 −3 −1

0 −7 11 10

0 0 0 1

⎤⎦
Step 2. Use  = 34 as a “pivot” to obtain zeros above the pivot, i.e., for each  ∈ { − 1  − 2  1} =

{2 1}, apply the row operation
[3] : − + → 

which in our case are

−243 +2 → 2 i.e., − 103 +2 → 2

−143 +1 → 1 i.e., 3 +1 → 1

Then, we get ⎡⎣ 1 2 −3 0

0 −7 11 0

0 0 0 1

⎤⎦
Step 3. Multiply 2 by 1

−7 , and get ⎡⎣ 1 2 −3 0

0 1 − 11
7

0

0 0 0 1

⎤⎦
Use 23 as a “pivot” to obtain zeros above the pivot, applying the operation:

−22 +1 → 1,

to get ⎡⎣ 1 0 1
7

0

0 1 − 11
7

0

0 0 0 1

⎤⎦
which is in row reduced form.

Proposition 38 Any matrix  ∈M is row equivalent to a matrix in row canonical form.

Proof. The two above algorithms show that any matrix is row equivalent to at least one matrix

in row canonical form.

Remark 39 In fact, in Proposition 159, we will show that: Any matrix  ∈M is row equivalent

to a unique matrix in row canonical form.

1.6 Systems of linear equations and matrices

Definition 40 Given system (14), i.e., a system of linear equation in the  unknowns 1 2  ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
111 + + 1 + + 1 = 1


11 + +  + +  = 


1 + +  + +  = 

the matrix ⎡⎢⎢⎢⎢⎣
11  1  1 1


1     


1     

⎤⎥⎥⎥⎥⎦
is called the augmented matrix  of system (14).
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Each row of  corresponds to an equation of the system, and each column of  corresponds

to the coefficients of an unknown, except the last column which corresponds to the constant of the

system.

In an obvious way, given an arbitrary matrix  , we can find a unique system whose associated

matrix is  ; moreover, given a system of linear equations, there is only one matrix  associated

with it. We can therefore identify system of linear equations with (augmented) matrices.

The coefficient matrix of the system is

 =

⎡⎢⎢⎢⎢⎣
11  1  1


1    


1    

⎤⎥⎥⎥⎥⎦
One way to solve a system of linear equations is as follows:

1. Reduce its augmented matrix to echelon form, which tells if the system has solution; if

has a row of the form (0 0  0 ) with  6= 0, then the system has no solution and you can stop.

If the system admits solutions go to the step below.

2. Reduce the matrix in echelon form obtained in the above step to its row canonical form.

Write the corresponding system. In each equation, bring the free variables on the right hand side,

obtaining a triangular system. Solve by back-substitution.

The simple justification of this process comes from the following facts:

1. Any elementary row operation of the augmented matrix  of the system is equivalent to

applying the corresponding operation on the system itself.

2. The system has a solution if and only if the echelon form of the augmented matrix  does

not have a row of the form (0 0  0 ) with  6= 0 - simply because that row corresponds to
a degenerate equation.

3. In the row canonical form of the augmented matrix  (excluding zero rows) the coefficient of

each non-free variable is a leading nonzero entry which is equal to one and is the only nonzero

entry in its respective column; hence the free variable form of the solution is obtained by

simply transferring the free variable terms to the other side of each equation.

Example 41 Consider the system presented in Example 20:⎧⎨⎩ 1 + 22 + (−3)3 = −1
31 + (−1)2 + 23 = 7

51 + 32 + (−4)3 = 2

The associated augmented matrix is:⎡⎣ 1 2 −3 −1
3 −1 2 7

5 3 −4 2

⎤⎦
In example 36, we have see that the echelon form of the above matrix is⎡⎣ 1 2 −3 −1

0 −7 11 10

0 0 0 −3

⎤⎦
which has its last row of the form (0 0  0 ) with  = −3 6= 0, and therefore the system has no

solution.

1.7 Exercises

Chapter 1 in Lipschutz:

1,2,3,4,6,7,8,10, 11,12,14,15,16.
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Chapter 2

The Euclidean Space R

2.1 Sum and scalar multiplication

It is well known that the real line is a representation of the set R of real numbers. Similarly, a

ordered pair ( ) of real numbers can be used to represent a point in the plane and a triple (  )

or (1 2 3) a point in the space. In general, if  ∈ N := {1 2  }, we can define (1 2  )
or ()


=1 as a point in the − 

Definition 42 R := R××R .

In other words, R is the Cartesian product of R multiplied  times by itself.

Definition 43 The elements of R are ordered n-tuple of real numbers and are denoted by

 = (1 2  ) or  = ()

=1

 is called −  component of  ∈ R.

Definition 44  = ()

=1 ∈ R and  = ()=1 are equal if

∀ ∈ {1  }   = 

In that case we write  = .

Let us introduce two operations on R and analyze some properties they satisfy.

Definition 45 Given  ∈ R  ∈ R, we call addition or sum of  and  the element denoted by

+  ∈ R obtained as follows
+  := ( + )


=1

Definition 46 An element  ∈ R is called scalar.

Definition 47 Given  ∈ R and  ∈ R, we call scalar multiplication of  by  the element

 ∈ R obtained as follows
 := ()


=1

Geometrical interpretation of the two operations in the case  = 2

21
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From the well known properties of the sum and product of real numbers it is possible to verify

that the following properties of the above operations do hold true.

Properties of addition.

A1. (Associative) ∀  ∈ R (+ ) +  = + ( + );

A2. (existence of null element) there exists an element  in R such that for any  ∈ R,
+  = ; in fact such element is unique and it is denoted by 0;

A3. (existence of inverse element) ∀ ∈ R ∃ ∈ R such that +  = 0; in fact, that element

is unique and denoted by −;
A4. (Commutative) ∀  ∈ R, +  =  + .

Properties of multiplication.

M1. (distributive) ∀ ∈ R  ∈ R  ∈ R (+ ) = + ;

M2. (distributive) ∀ ∈ R  ∈ R  ∈ R, (+ ) = + 

M3. ∀ ∈ R  ∈ R  ∈ R, () = ();

M4. ∀ ∈ R, 1 = .

2.2 Scalar product

Definition 48 Given  = ()

=1  = ()


=1 ∈ R, we call dot, scalar or inner product of  and

, denoted by  or  · , the scalar
X
=1

 ·  ∈ R

Remark 49 The scalar product of elements of R satisfies the following properties.
1. ∀  ∈ R  ·  =  · ;
2. ∀  ∈ R∀   ∈ R (+ ) ·  = ( · ) + ( · );
3. ∀ ∈ R  ·  ≥ 0;
4. ∀ ∈ R   ·  = 0 ⇐⇒  = 0.

Definition 50 The set R with above described three operations (addition, scalar multiplication
and dot product) is usually called Euclidean space of dimension .

Definition 51 Given  = ()

=1 ∈ R, we denote the (Euclidean) norm or length of  by

kk := ( · ) 12 =
vuut X

=1

()
2


Geometrical Interpretation of scalar products in R2.
Given  = (1 2) ∈ R2\ {0}, from elementary trigonometry we know that

 = (kk cos kk sin) (2.1)

where  is the measure of the angle between the positive part of the horizontal axes and  itself.
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Using the above observation we can verify that given  = (1 2) and  = (1 2) in R2\ {0},

 = kk · kk · cos ()
where  is an1 angle between  and .

scan and insert picture (Marcellini-Sbordone page 179)

From the picture and (21), we have

 = (kk cos (1)  kk sin (1))
and

 = (kk cos (2)  kk sin (2)) 

Then2

 = kk kk (cos (1) · cos (2) + sin (1) · sin (2)) = kk kk cos (2 − 1) 

Taken  and  not belonging to the same line, define ∗ := (angle between  and  with minimum
measure) From the above equality, it follows that

∗ = 
2
⇔  ·  = 0

∗  
2
⇔  ·   0

∗  
2
⇔  ·   0

Definition 52   ∈ R\ {0} are orthogonal if  = 0.

2.3 Norms and Distances

Proposition 53 (Properties of the norm). Let  ∈ R and   ∈ R
1. kk ≥ 0, and kk = 0⇔  = 0,

2. kk = || · kk,
3. k+ k ≤ kk+ kk (Triangle inequality),
4. || ≤ kk · kk (Cauchy-Schwarz inequality ).

Proof. 1. By definition kk =
qP

=1 ()
2 ≥ 0 Moreover, kk = 0 ⇔ kk2 = 0 ⇔P

=1 ()
2
= 0⇔  = 0.

2. kk =
qP

=1 
2 ()

2
= ||

qP
=1 ()

2
= || · kk.

4. (3 is proved using 4)

We want to show that || ≤ kk · kk or ||2 ≤ kk2 · kk2, i.e.,Ã
X
=1



!2
≤
Ã

X
=1

2

!
·
Ã

X
=1

2

!

Defined  :=
P

=1 
2
   :=

P
=1 

2
 and  :=

P
=1 , we have to prove that

2 ≤  (2.2)

1Recall that ∀ ∈ R, cos = cos (−) = cos (2 − ).

2Recall that for any 1 2 ∈ R
cos (1 ± 2) = cos (1) · cos (2)∓ sin (1) · sin (2) 

and

cos (1) = cos (−1)



24 CHAPTER 2. THE EUCLIDEAN SPACE R

Observe that

∀ ∈ R 1
P

=1 ( + )
2 ≥ 0 and

2
P

=1 ( + )
2
= 0 ⇔ ∀ ∈ {1  }   +  = 0

Moreover,

X
=1

( + )
2
= 2

X
=1

2 + 2

X
=1

 +

X
=1

2 = 2 + 2 +  ≥ 0 (2.3)

If   0, we can take  = − 

, and from (23), we get

0 ≤ 2

2
 − 2

2


+ 

or

2 ≤ 

as desired.

If  = 0, then  = 0 and  = 0, and (22) is true simply because 0 ≤ 0.
3. It suffices to show that k+ k2 ≤ (kk+ kk)2.

k+ k2 =
X
=1

( + )
2
=

X
=1

³
()

2
+ 2 ·  + ()2

´
=

= kk2 + 2 + kk2 ≤ kk2 + 2 ||+ kk2
(4 above)

≤ kk2 + 2 kk · kk+ kk2 = (kk+ kk)2 

Proposition 54 For any   ∈ R and any   ∈ R, we have
1. |kk− kk| ≤ k− k, and
2. k+ k2 = 2kk2 + 2 ·  + 2kk2.
Proof. 1. Recall that ∀  ∈ R

− ≤  ≤ ⇔ || ≤ 

From Proposition 53.3,identifying  with −  and  with , we get k−  + k ≤ k− k+ kk,
i.e.,

kk− kk ≤ k− k
From Proposition 53.3, identifying  with −  and  with , we get k − + k ≤ k − k+ kk,
i.e.,

kk− kk ≤ k − k = k− k
and

− k− k ≤ kk− kk 
as desired.

2.

k+ k2 =P
=1 ( + )

2
=
P

=1

³
2 ()

2
+ 2 () () + 2 ()

2
´
=

= 2
P

=1 ()
2
+ 2

P
=1 () () + 2

P
=1 ()

2
= 2kk2 + 2 ·  + 2kk2

Definition 55 For any  ∈ N\ {0} and for any  ∈ {1  }   :=
¡


¢
=1
∈ R with

 =

⎧⎨⎩ 0   6= 

1   = 

In other words,  is an element of R
 whose components are all zero, but the −  component

which is equal to 1. The vector  is called the −  canonical vector in R.
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Remark 56 ∀ ∈ R,
kk ≤

X
=1

|| 

as verified below.

kk =
°°°°°

X
=1




°°°°° (1)≤
X
=1

°°°° (2)= X
=1

|| ·
°°°° = X

=1

|| 

where (1) follows from the triangle inequality, i.e., Proposition 53.3, and (2) from Proposition

53.2.

Definition 57 Given   ∈ Rwe denote the (Euclidean) distance between  and  by

 ( ) := k− k

Proposition 58 (Properties of the distance). Let    ∈ R
1.  ( ) ≥ 0, and  ( ) = 0⇔  = ,

2.  ( ) =  ( ),

3.  ( ) ≤  ( ) +  ( ) (Triangle inequality).

Proof. 1. It follows from property 1 of the norm.

2. It follows from the definition of the distance as a norm.

3. Identifying  with −  and  with  −  in property 3 of the norm, we get

k(− ) + ( − )k ≤ k− k+ k − k, i.e., the desired result.

2.4 Exercises

From Lipschutz (1991), starting from page 53: 2.1 → 2.4, 2.12 → 2.19, 2.26, 2.27.
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Chapter 3

Matrices

We presented the concept of matrix in Definition 21. In this chapter, we study further properties

of matrices.

Definition 59 The transpose of a matrix  ∈M, denoted by 
 belongs to M and it is the

matrix obtained by writing the rows of , in order, as columns:

 =

⎡⎢⎢⎢⎢⎣
11  1  1


1    


1    

⎤⎥⎥⎥⎥⎦


=

⎡⎢⎢⎢⎢⎣
11  1  1


1    



1    

⎤⎥⎥⎥⎥⎦ 

In other words, row 1 of the matrix  becomes column 1 of   row 2 of  becomes column 2 of

 , and so on, up to row  which becomes column  of  . Same results is obtained proceeding

as follows: column 1of  becomes row 1 of   column 2 of  becomes row 2 of  , and so on, up

to column  which becomes row  of  . More formally, given  = [ ]∈{1}
∈{1}

∈M , then

 = []∈{1}
∈{1}

∈M

Definition 60 A matrix  ∈M is said to be symmetric if  =  , i.e., ∀  ∈ {1  },
 = .

Remark 61 We can write a matrix × = [ ] as

 =

⎡⎢⎢⎢⎢⎣
1 ()



 ()



 ()

⎤⎥⎥⎥⎥⎦ = £1 ()    ()    ()
¤

where

 () = [1    ] :=
£
1 ()    ()   ()

¤ ∈ R for  ∈ {1 } and

 () =

⎡⎢⎢⎢⎢⎣
1





⎤⎥⎥⎥⎥⎦ :=
⎡⎢⎢⎢⎢⎣

1 ()

 ()

 ()

⎤⎥⎥⎥⎥⎦ ∈ R for  ∈ {1  } 

In other words,  () denotes row  of the matrix  and  () denotes column 

of matrix .

27
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3.1 Matrix operations

Definition 62 Two matrices × := [ ] and × := [ ] are equal if for  ∈ {1 },
 ∈ {1  }

∀ ∈ {1 }   ∈ {1  }   =  

Definition 63 Given the matrices × := [ ] and × := [ ], the sum of  and , denoted

by + is the matrix × = [ ] such that

∀ ∈ {1 }   ∈ {1  }   =  + 

Definition 64 Given the matrices × := [ ] and the scalar , the product of the matrix  by

the scalar , denoted by  · or , is the matrix obtained by multiplying each entry  by  :

 := [ ]

Remark 65 It is easy to verify that the set of matrices M with the above defined sum and

scalar multiplication satisfies all the properties listed for elements of R in Section 2.1.

Definition 66 Given  = [ ] ∈ M,  = [] ∈ M, the product  ·  is a matrix

 = [] ∈M such that

∀ ∈ {1 } ∀ ∈ {1  }   :=

X
=1

 =  () ·  ()

i.e., since

 =

⎡⎢⎢⎢⎢⎣
1 ()



 ()



 ()

⎤⎥⎥⎥⎥⎦   =
£
1 ()    ()    ()

¤
(3.1)

 =

⎡⎢⎢⎢⎢⎣
1 () · 1 ()  1 () ·  ()  1 () ·  ()



 () · 1 ()   () ·  ()   () ·  ()



 () · 1 ()   () ·  ()   () ·  ()

⎤⎥⎥⎥⎥⎦ (3.2)

Remark 67 If  ∈ M1,  ∈ M1, the above definition coincides with the definition of scalar

product between elements of R. In what follows, we often identify an element of R with a row or
a column vectors ( - see Definition 22) consistently with we what write. In other words × = 

means that  and  are column vector with  entries, and × =  means that  and  are row

vectors with  entries.

Definition 68 If two matrices are such that a given operation between them is well defined, we say

that they are conformable with respect to that operation.

Remark 69 If  ∈M, they are conformable with respect to matrix addition. If  ∈M

and  ∈M, they are conformable with respect to multiplying  on the left of . We often say the

two matrices are conformable and let the context define precisely the sense in which conformability

is to be understood.

Remark 70 (For future use) ∀ ∈ {1  },

 ·  () =

⎡⎢⎢⎢⎢⎣
1 ()



 ()



 ()

⎤⎥⎥⎥⎥⎦ ·  () =

⎡⎢⎢⎢⎢⎣
1 () ·  ()



 () ·  ()



 () ·  ()

⎤⎥⎥⎥⎥⎦ (3.3)
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Then, just comparing (32) and (33), we get

 =
£
 · 1 ()   ·  ()   ·  ()

¤
 (3.4)

i.e.,

 () =  ·  () 

Similarly, ∀ ∈ {1 },

 () · =  () · £ 1 ()   ()   ()
¤
=

=
£
 () · 1 ()   () ·  ()   () ·  ()

¤


(3.5)

Then, just comparing (32) and (35), we get

 =

⎡⎢⎢⎢⎢⎣
1 ()



 ()



 ()

⎤⎥⎥⎥⎥⎦  (3.6)

i.e.,

 () =  () ·

Definition 71 A submatrix of a matrix  ∈M is a matrix obtained from  erasing some rows

and columns.

Definition 72 A matrix  ∈M is partitioned in blocks if it is written as submatrices using a

system of horizontal and vertical lines.

Example 73 The matrix ⎡⎢⎢⎣
1 2 3 4 5

6 7 8 9 0

1 2 3 4 5

6 7 8 9 0

⎤⎥⎥⎦
can be partitioned in block submatrices in several ways. For example as follows⎡⎢⎢⎢⎢⎣

1 2 | 3 4 5

6 7 | 8 9 0

− − | − − −
1 2 | 3 4 5

6 7 | 8 9 0

⎤⎥⎥⎥⎥⎦ 
whose blocks are ∙

1 2

6 7

¸


∙
3 4 5

8 9 0

¸


∙
1 2

6 7

¸


∙
3 4 5

8 9 0

¸


The reason of the partition into blocks is that the result of operations on block matrices can

obtained by carrying out the computation with blocks, just as if they were actual scalar entries of

the matrices, as described below.

Remark 74 We verify below that for matrix multiplication, we do not commit an error if, upon

conformably partitioning two matrices, we proceed to regard the partitioned blocks as real numbers

and apply the usual rules.

1. Take  := ()
1
=1 ∈ R1   := ()2=1 ∈ R2   := ()1=1 ∈ R1   := ()2=1 ∈ R2 

£
 | 

¤
1×(1+2)

⎡⎣ 

−


⎤⎦
(1+2)×1

=

1X
=1

 +

2X
=1

 =  · +  ·  (3.7)

2.
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Take  ∈M1   ∈M2   ∈M1 ∈M2, with

 =

⎡⎣ 1 ()



 ()

⎤⎦   =

⎡⎣ 1 ()



 ()

⎤⎦ 
 =

£
1 ()    ()

¤


 =
£
1 ()    ()

¤
Then,

£
 

¤
×(1+2)

∙




¸
(1+2)×

=

⎡⎣ 1 ()



 ()

1 ()



 ()

⎤⎦∙ 1 ()    ()

1 ()    ()

¸
=

=

⎡⎣ 1 () · 1 () +1 () · 1 ()  1 () ·+1 () ·  ()



 () · 1 () + () · 1 ()  () ·  () + () ·  ()

⎤⎦ =
=

⎡⎣ 1 () · 1 ()  1 () ·  ()



 () · 1 ()  () ·  ()

⎤⎦+
⎡⎣ 1 () · 1 ()  1 () ·  ()



 () · 1 ()  () ·  ()

⎤⎦ =
=  +

Definition 75 Let the matrices  ∈M ( ) for  ∈ {1 }, then the matrix

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

. . .



. . .



⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈M

Ã
X
=1



X
=1



!

is called block diagonal matrix.

Very often having information on the matrices  gives information on .

Remark 76 It is easy, but cumbersome, to verify the following properties.

1. (associative) ∀ ∈M, ∀ ∈M, ∀ ∈M, () = ();

2. (distributive) ∀ ∈M, ∀ ∈M, ∀ ∈M, (+) =  +.

3. ∀  ∈ R and ∀  ∈ R

 (+ ) =  () + () = + 

It is false that:

1. (commutative) ∀ ∈M, ∀ ∈M,  = ;

2. ∀ ∈M, ∀ ∈M h 6= 0  = i =⇒ h = i;
3. ∀ ∈M, ∀ ∈M, h 6= 0  = 0i =⇒ h = 0i.
Let’s show why the above statements are false.

1.

 =

∙
1 2 1

−1 1 3

¸
 =

⎡⎣ 1 0

2 1

0 1

⎤⎦

 =

∙
1 2 1

−1 1 3

¸⎡⎣ 1 0

2 1

0 1

⎤⎦ = ∙ 5 3

1 4

¸
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 =

⎡⎣ 1 0

2 1

0 1

⎤⎦∙ 1 2 1

−1 1 3

¸
=

⎡⎣ 1 2 1

1 5 5

−1 1 3

⎤⎦
 =

∙
1 2

−1 1

¸
 =

∙
1 0

3 2

¸

 =

∙
1 2

−1 1

¸ ∙
1 0

3 2

¸
=

∙
7 4

2 2

¸

 =

∙
1 0

3 2

¸ ∙
1 2

−1 1

¸
=

∙
1 2

1 8

¸
Observe that since the commutative property does not hold true, we have to distinguish between

“left factor out” and “right factor out” and also between “left multiplication or pre-multiplication”

and “right multiplication or post-multiplication”:

 + =  ( + )

 + = ( +)

 +  6=  ( + )

 +  6= ( + )

2.

Given

 =

∙
3 1

6 2

¸
 =

∙
4 1

−5 6

¸
 =

∙
1 2

4 3

¸


we have

 =

∙
3 1

6 2

¸ ∙
4 1

−5 6

¸
=

∙
7 9

14 18

¸
 =

∙
3 1

6 2

¸ ∙
1 2

4 3

¸
=

∙
7 9

14 18

¸
3.

Observe that 3⇒ 2 and therefore ¬2⇒ ¬3 Otherwise, you can simply observe that 3 follows
from 2, choosing  in 3 equal to  in 2, and  in 3 equal to  −  in 2:

 ( − ) =

∙
3 1

6 2

¸
·
µ∙

4 1

−5 6

¸
−
∙
1 2

4 3

¸¶
=

∙
3 1

6 2

¸
·
∙
3 −1
−9 3

¸
=

∙
0 0

0 0

¸
Since the associative property of the product between matrices does hold true we can give the

following definition.

Definition 77 Given  ∈M,

 := 
1
··
2
 · 

 


Observe that if  ∈M and   ∈ N\ {0}, then

 · = +

Remark 78 Properties of transpose matrices.

For any   ∈ N,

1. ∀ ∈M ( ) = 

2. ∀ ∈M (+) =  +

3. ∀ ∈ R, ∀ ∈M () = 

4. ∀ ∈M, ∀ ∈M () = 

Matrices and linear systems.
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In Section 1.6, we have seen that a system of linear equation in the  unknowns 1 2   and

parameters  , for  ∈ {1 },  ∈ {1  }, ()=1 ∈ R is displayed below:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
111 + + 1 + + 1 = 1


11 + +  + +  = 


1 + +  + +  = 

(3.8)

Moreover, the matrix ⎡⎢⎢⎢⎢⎣
11  1  1 1


1     


1     

⎤⎥⎥⎥⎥⎦
is called the augmented matrix  of system (14). The coefficient matrix  of the system is

 =

⎡⎢⎢⎢⎢⎣
11  1  1


1    


1    

⎤⎥⎥⎥⎥⎦
Using the notations we described in the present section, we can rewrite linear equations and

systems of linear equations in a convenient and short manner, as described below.

The linear equation in the unknowns 1   and parameters 1      ∈ R

11 + +  + +  = 

can be rewritten as
X
=1

 = 

or

 ·  = 

where  = [1  ] and  =

⎡⎣ 1




⎤⎦.
The linear system (38) can be rewritten as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

P
=1

1 = 1


P
=1

 = 

or ⎧⎨⎩ 1 () = 1


 () = 

or

 = 

where  = [ ].

Definition 79 The trace of  ∈M, written tr , is the sum of the diagonal entries, i.e.,

tr  =

X
=1
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Definition 80 The identity matrix  is a diagonal matrix of order  with each element on the

principal diagonal equal to 1. If no confusion arises, we simply write  in the place of .

Remark 81 1. ∀ ∈ N\ {0}  () = ;

2. ∀ ∈M  =  = 

Proposition 82 Let  ∈M () and  ∈ R. Then
1. tr (+) = tr + tr ;

2. tr  =  · tr ;
3. tr  = tr .

Proof. Exercise.

3.2 Inverse matrices

Definition 83 Given a matrix ×, , a matrix × is called an inverse of  if

 =  = 

We then say that  is invertible, or that  admits an inverse.

Proposition 84 If  admits an inverse, then the inverse is unique.

Proof. Let the inverse matrices  and  of  be given. Then

 =  =  (3.9)

and

 =  =  (3.10)

Left multiplying the first two terms in the equality (39) by , we get

() =  ()

and from (310) and (39) we get  = , as desired.

Thanks to the above Proposition, we can present the following definition.

Definition 85 If the inverse of  does exist, then it is denoted by −1.

Example 86 Assume that for  ∈ {1  }   6= 0The diagonal matrix⎡⎢⎣ 1
. . .



⎤⎥⎦
is invertible and its inverse is ⎡⎢⎣

1
1

. . .
1


⎤⎥⎦ 
Remark 87 If a row or a column of  is zero, then  is not invertible, as verified below.

Without loss of generality, assume the first row of  is equal to zero. Assume that  is the

inverse of . But then, since  = , we wold have 1 = 1 () · 1 () = 0, a contradiction.

Proposition 88 If  ∈M and  ∈M are invertible matrices, then  is invertible and

()
−1
= −1−1
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Proof.

()−1−1 = 
¡
−1

¢
−1 = −1 = −1 = 

−1−1 () = −1
¡
−1

¢
 = −1 = −1 = 

Remark 89 The existence of the inverse matrix gives an obvious way of solving systems of linear

equations with the same number of equations and unknowns.

Given the system

× = 

if −1 exists, then
 = −1

Proposition 90 (Some other properties of the inverse matrix)

Let the invertible matrix  be given.

1. −1 in invertible and
¡
−1

¢−1
= ;

2.  is invertible and
¡

¢−1

=
¡
−1

¢
;

Proof. 1. We want to verify that the inverse of −1 is , i.e.,

−1 =  and −1 = 

which is obvious.

2. Observe that

 · ¡−1¢ = ¡−1 ·¢ =  = 

and ¡
−1

¢ · =
¡
 ·−1¢ = 

3.3 Elementary matrices

Below, we recall the definition of elementary row operations on a matrix  ∈M× presented in
Definition 34.

Definition 91 An elementary row operation on a matrix  ∈M×is one of the following opera-
tions on the rows of :

[E1] (Row interchange) Interchange  with , denoted by  ↔ ;

[E2] (Row scaling) Multiply  by  ∈ R\ {0}, denoted by  →   6= 0;
[E3] (Row addition) Replace  by (  times  plus  ), denoted by

¡
 + 

¢→ .

Sometimes we apply [E2] and [E3] in one step, i.e., we perform the following operation

[E 0] Replace  by ( 0 times  and  ∈ R\ {0} times  ), denoted by
¡
0 + 

¢→   6= 0.

Definition 92 Let E be the set of functions E :M →M which associate with any matrix

 ∈M a matrix E () obtained from  via an elementary row operation presented in Definition

91. For  ∈ {1 2 3}, let E ⊆ E be the set of elementary row operation functions of type  presented
in Definition 91.

Definition 93 For any E ∈ E, define

E = E () ∈M

E is called the elementary matrix corresponding to the elementary row operation function E.
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With some abuse of terminology, we call any E ∈ E an elementary row operation (omitting the
word “function”), and we sometimes omit the subscript E .

Proposition 94 Each elementary row operations E1 E2 and E3 has an inverse, and that inverse is
of the same type, i.e., for  ∈ {1 2 3}, E ∈ E ⇔ E−1 ∈ E.

Proof. 1. The inverse of  ↔  is  ↔ 

2. The inverse of  →   6= 0 is −1 → 

3. The inverse of
¡
 + 

¢→  is
¡− +

¢→ 

Remark 95 Given the row, canonical1 vectors , for  ∈ {1 },

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1










⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The following Proposition shows that the result of applying an elementary row operation E to

a matrix  can be obtained by premultiplying  by the corresponding elementary matrix E .

Proposition 96 For any  ∈M and for any E ∈ E,

E () = E () · := E (3.11)

Proof. Recall that

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ()



 ()



 ()



 ()

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
We have to prove that (311) does hold true ∀E ∈ {E1 E2 E3}.
1. E ∈ E1
First of all observe that

E () =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1










⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and E () =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ()



 ()



 ()



 ()

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦


From (36),

E () · =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ·


 ·


 ·


 ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ()



 ()



 ()



 ()

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦


as desired.

2. E ∈ E2
1 See Definition 55.
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Observe that

E () =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1


 · 







⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and E () =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ()



 · ()



 ()



 ()

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦


E () · =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ·


 ·  ·


 ·


 ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ()



 · ()



 ()



 ()

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦


as desired.

3. E ∈ E3
Observe that

E () =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1


 +  · 







⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and E () =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ()



 () +  · ()



 ()



 ()

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦


E () · =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1


 +  · 







⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ·
¡

 +  · 
¢ ·



 ·


 ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ()



 () +  · ()



 ()



 ()

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦


as desired.

Corollary 97 If  is row equivalent to , then there exist  ∈ N and elementary matrices 1  

such that

 = 1 ·2 ·  · ·
Proof. It follows from the definition of row equivalence and Proposition 96.

Proposition 98 Every elementary matrix E is invertible and (E)
−1
is an elementary matrix.

In fact, (E)
−1
= E−1 

Proof. Given an elementary matrix , from Definition 93, ∃E ∈ E such that

 = E () (3.12)

Define

0 = E−1 () 
Then


def. inv. func.

= E−1 (E ()) (312)= E−1 () Prop. (96).= E−1 () · def. 0
= 0

and


def. inv.
= E ¡E−1 ()¢ def. 0

= E (0) Prop. (96).= E () ·0 (312)= 0
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Corollary 99 If 1   are elementary matrices, then

 := 1 ·2 ·  ·

is an invertible matrix.

Proof. It follows from Proposition 88 and Proposition 98. In fact,
¡
−1 · −12 ·−11

¢
is the

inverse of 

Proposition 100 Let  ∈M× be given. Then, there exist a matrix  ∈M× in row canonical
form,  ∈ N and elementary matrices 1   such that

 = 1 ·2 ·  · ·

Proof. From Proposition 38, there exist  ∈ N elementary operations E1  E such that¡E1 ◦ E2 ◦  ◦ E¢ () = 

From Proposition 96, ∀ ∈ {1  } 

E () = E () · :=  ·

Then,¡E1 ◦ E2 ◦  ◦ E¢ () = ¡E1 ◦ E2 ◦  ◦ E−1¢ ¡E ()¢ = ¡E1 ◦ E2 ◦  ◦ E−1¢ ( ·) =

=
¡E1 ◦ E2 ◦  ◦ E−2¢ ◦ E−1 ( ·) =

¡E1 ◦ E2 ◦  ◦ E−2¢ (−1 · ·) =

=
¡E1 ◦ E2 ◦ E−3¢ ◦ E−2 (−1 · ·) =

¡E1 ◦ E2 ◦ E−3¢ (−2 ·−1 · ·) =

 = 1 ·2 ·  · ·

as desired.

Remark 101 In fact, in Proposition 159, we will show that the matrix  of the above Corollary

is unique.

Proposition 102 To be row equivalent is an equivalence relation.

Proof. Obvious.

Proposition 103 ∀ ∈ N\ {0} , × is in row canonical form and it is invertible ⇔  = .

Proof. [⇐]Obvious.
[⇒]
We proceed by induction on 

Case 1.  = 1.

The case  = 1 is obvious. To try to better understand the logic of the proof, take  = 2, i.e.,

suppose that

 =

∙
11 12
21 22

¸
is in row canonical form and invertible. Observe that  6= 0.
1. 11 = 1. Suppose 11 = 0. Then, from 1. in the definition of matrix in echelon form

- see Definition 28 - 12 6= 0 (otherwise, you would have a zero row not on the bottom of the

matrix). Then, from 2. in that definition, we must have 21 = 0. But then the first column is zero,

contradicting the fact that  is invertible - see Remark 87. Since 11 6= 0, then from 2. in the

Definition of row canonical form matrix - see Definition 31 - we get 11 = 1.

2. 21 = 0. It follows from the fact that 11 = 1 and 3. in Definition 31.

3. 22 = 1 Suppose 22 = 0, but then the last row would be zero, contradicting the fact that 

is invertible and 22 is the leading nonzero entry of the second row, i.e., 22 6= 0. Then from 2. in

the Definition of row canonical form matrix, we get 22 = 1.
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4. 12 = 0. It follows from the fact that 22 = 1 and 3. in Definition 31.

Case 2. Assume that statement is true for − 1.
Suppose that

 =

⎡⎢⎢⎢⎢⎢⎢⎣
11 12  1  1
21 22  2  2


1 2    


1 2    

⎤⎥⎥⎥⎥⎥⎥⎦
is in row canonical form and invertible.

1. 11 = 1. Suppose 11 = 0. Then, from 1. in the definition of matrix in echelon form - see

Definition 28 -

(12  1) 6= 0
Then, from 2. in that definition, we must have⎡⎢⎢⎢⎢⎣

21


1


1

⎤⎥⎥⎥⎥⎦ = 0
But then the first column is zero, contradicting the fact that  is invertible - see Remark 87. Since

11 6= 0, then from 2. in the Definition of row canonical form matrix - see Definition 31 - we get

11 = 1.

2. Therefore, we can rewrite the matrix as follows

 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 12  1  1
0 22  2  2


0 2    


0 2    

⎤⎥⎥⎥⎥⎥⎥⎦ =
∙
1 

0 22

¸
(3.13)

with obvious definitions of  and 22. Since, by assumption,  is invertible, there exists 

which we can partition in the same we partitioned , i.e.,

 =

∙
11 

 22

¸


and such that  is invertible. Then,

 =  =

∙
11 

 22

¸ ∙
1 

0 22

¸
=

∙
11 11 + 22
 +2222

¸
=

∙
1 0

0 −1

¸
;

then  = 0 and 2222 = −1
Moreover,

 =  =

∙
1 

0 22

¸ ∙
11 

 22

¸
=

∙
11 +  + 22
 2222

¸
=

∙
1 0

0 −1

¸
 (3.14)

Therefore, 22 is invertible. From 3.13, 22can be obtained from  erasing the first row and

then erasing a column of zero, from Remark 33, 22 is a row reduced form matrix. Then, we can

apply the assumption of the induction argument to conclude that 22 = −1. Then, from 3.13,

 =

∙
1 

0 

¸


Since, by assumption, × is in row canonical form, from 3. in Definition 31,  = 0, and, as

desired  = .
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Proposition 104 Let  belong to M. Then the following statements are equivalent.

1.  is invertible;

2.  is row equivalent to ;

3.  is the product of elementary matrices.

Proof. 1⇒ 2

From Proposition 100, there exist a matrix  ∈M× in row canonical form,  ∈ N and

elementary matrices 1   such that

 = 1 ·2 ·  · ·

Since  is invertible and, from Corollary 99, 1 ·2 ·  · is invertible as well, from Proposition

88,  is invertible as well. Then, from Proposition 103,  = .

2⇒ 3

By assumption and from Corollary 97, there exist  ∈ N and elementary matrices 1  

such that

 = 1 ·2 ·  · · 
Since ∀ ∈ {1  },  is an elementary matrix, the desired result follows.

3⇒ 1

By assumption, there exist  ∈ N and elementary matrices 1   such that

 = 1 ·2 ·  ·

Since, from Proposition 98, ∀ ∈ {1  },  is invertible,  is invertible as well, from Propo-

sition 88.

Proposition 105 Let × be given.
1. × is row equivalent to × ⇔ there exists an invertible × such that  = .

2. × is an invertible matrix ⇒  is row equivalent to 

Proof. 1.

[⇒] From Corollaries 99 and 97,  = 1 ·  · · with (1 ·  ·) invertible matrix. Then,

it suffices to take  = 1 ·  ·.

[⇐] From Proposition 104,  is row equivalent to , i.e., there exist 1   such that  =

1 ·  · · . Then by assumption  = 1 ·  · ·  ·, i.e.,  is row equivalent to .

2.

From Proposition 104,  is the product of elementary matrices. Then, the desired result follows

from Proposition 96.

Proposition 106 If  is row equivalent to a matrix with a zero row, then  is not invertible.

Proof. Suppose otherwise, i.e.,  is row equivalent to a matrix  with a zero row and 

is invertible. From Proposition 105, there exists an invertible  such that  =  and then

−1 = . Since  and −1are invertible, then, from Proposition 88, −1 is invertible, while

, from Remark 87,  is not invertible, a contradiction.

Remark 107 From Proposition 104, we know that if × is invertible, then there exist 1  

such that

 = 1 ·  · · (3.15)

or

−1 = 1 ·  · ·  (3.16)

Then, from (315)and (316), if  is invertible then −1 is equal to the finite product of those
elementary matrices which “transform”  in , or, equivalently, can be obtained applying a finite

number of corresponding elementary operations to the identity matrix . That observation leads to

the following (Gaussian elimination) algorithm, which either show that an arbitrary matrix ×
is not invertible or finds the inverse of .



40 CHAPTER 3. MATRICES

An algorithm to find the inverse of a matrix × or to show the matrix is not

invertible.

Step 1. Construct the following matrix ×(2):£
 

¤
Step 2. Row reduce  to echelon form. If the process generates a zero row in the part of

 corresponding to , then stop:  is not invertible :  is row equivalent to a matrix

with a zero row and therefore, from Proposition 106 is not invertible. Otherwise, the part of

 corresponding to  is a triangular matrix.

Step 3. Row reduce  to the row canonical form£
 

¤
Then, from Remark 107, −1 = .

Example 108 We find the inverse of

 =

⎡⎣ 1 0 2

2 −1 3

4 1 8

⎤⎦ 
applying the above algorithm.

Step 1.

 =

⎡⎣ 1 0 2 1 0 0

2 −1 3 0 1 0

4 1 8 0 0 1

⎤⎦ 
Step 2. ⎡⎣ 1 0 2 | 1 0 0

0 −1 −1 | −2 1 0

0 1 0 | −4 0 1

⎤⎦ 
⎡⎣ 1 0 2 | 1 0 0

0 −1 −1 | −2 1 0

0 0 −1 | −6 1 1

⎤⎦
The matrix is invertible.

Step 3. ⎡⎣ 1 0 2 | 1 0 0

0 −1 −1 | −2 1 0

0 0 −1 | −6 1 1

⎤⎦ 
⎡⎣ 1 0 2 | 1 0 0

0 −1 −1 | −2 1 0

0 0 1 | 6 −1 −1

⎤⎦ 
⎡⎣ 1 0 0 | −11 2 2

0 −1 0 | 4 0 −1
0 0 1 | 6 −1 −1

⎤⎦ 
⎡⎣ 1 0 0 | −11 2 2

0 1 0 | −4 0 1

0 0 1 | 6 −1 −1

⎤⎦
Then

−1 =

⎡⎣ −11 2 2

−4 0 1

6 −1 −1

⎤⎦ 
Example 109 ∙

1 3 | 1 0

4 2 | 0 1

¸
∙
1 3 | 1 0

0 −10 | −4 1

¸
∙
1 3 | 1 0

0 1 | 4
10
− 1
10

¸
∙
1 0 | − 2

10
0
3

0 1 | 4
10

− 1
10

¸
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3.4 Elementary column operations

This section repeats some of the discussion of the previous section using column instead of rows of

a matrix.

Definition 110 An elementary column operation is one of the following operations on the columns

of ×:

[F1] (Column interchange) Interchange  with , denoted by  ↔ ;

[F2] (Column scaling) Multiply  by  ∈ R\ {0}, denoted by  →   6= 0;
[F3] (Column addition) Replace  by (  times  plus  ), denoted by ( + )→ ..

Each of the above column operation has an inverse operation of the same type just like the

corresponding row operations.

Definition 111 Let F be an elementary column operation on a matrix ×. We denote the
resulting matrix by F (). We define also

F = F () ∈M

F is then called an elementary matrix corresponding to the elementary column operation F . We
sometimes omit the subscript F .
Definition 112 Given an elementary row operation E, define FE , if it exists2 , as the column oper-
ation obtained by E substituting the word row with the word column. Similarly, given an elementary
column operation F define EF , if it exists, as the row operation obtained by F substituting the word

column with the word row.

In what follows, F and E are such that F = FE and EF = E .
Proposition 113 Let a matrix × be given. Then

F () = £E ¡
¢¤



Proof. The above fact is equivalent to E ¡
¢
= (F ()) and it is a consequence of the fact

that the columns of  are the rows of  and vice versa. As an exercise, carefully do the proof in

the case of each of the three elementary operation types.

Remark 114 The above Proposition says that applying the column operation F to a matrix  gives
the same result as applying the corresponding row operation EF to  and then taking the transpose.

Proposition 115 Let a matrix × be given. Then
1.

F () =  · (E ()) =  · F () 
or, since  := E () and  := F (),

F () =  · =  ·  (3.17)

2.  =  and  is invertible.

Proof. 1.

F ()  113
= =

£E ¡
¢¤  96

= =
¡E () ·

¢
=  · (E ())  113

=  · F () 
2. From (317), we then get

 := F () =  · =  

From Proposition 90 and Proposition 98, it follows that  is invertible.

2Of course, if you exchange the first and the third row, and the matrix has only two columns, you cannot exchange

the first and the third column.
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Remark 116 The above Proposition says that says that the result of applying an elementary column

operation F on a matrix  can be obtained by postmultiplying  by the corresponding elementary

matrix  .

Definition 117 A matrix × is said column equivalent to a matrix × if  can be obtained

from  using a finite number of elementary column operations.

Remark 118 By definition of row equivalent, column equivalent and transpose of a matrix, we

have that

 and  are row equivalent ⇔  and  are column equivalent,

and

 and  are column equivalent ⇔  and  are row equivalent.

Proposition 119 1. × is column equivalent to × ⇔ there exists an invertible × such
that × = ××.
2. × in invertible matrix ⇒  is column equivalent to .

Proof. It is very similar to the proof of Proposition 105.

Definition 120 A matrix × is said equivalent to a matrix × if  can be obtained from 

using a finite number of elementary row and column operations.

Proposition 121 A matrix × is equivalent to a matrix × ⇔ there exist invertible matrices

× and × such that × = ×××.

Proof. [⇒]
By assumption  = 1 ·  · · · 1 ·  · .
[⇐]
Similar to the proof of Proposition 105.

Proposition 122 For any matrix × there exists a number  ∈ {0 1 min {}} such that
 is equivalent to the block matrix of the form∙

 0

0 0

¸
 (3.18)

Proof. The proof is constructive in the form of an algorithm.

Step 1. Row reduce  to row canonical form, with leading nonzero entries 11 22  .

Step 2. Interchange 2 and 2 , 
3 and 3 and so on up to  and  You then get a matrix

of the form ∙
 

0 0

¸


Step 3. Use column operations to replace entries in  with zeros.

Remark 123 From Proposition 159 the matrix in Step 2 is unique and therefore the resulting

matrix in Step 3, i.e., matrix (318) is unique.

Proposition 124 For any  ∈M, there exists invertible matrices  ∈M and  ∈M and

 ∈ {0 1 min {}} such that
 =

∙
 0

0 0

¸
Proof. It follows immediately from Propositions 122 and 121.

Remark 125 From Proposition 159 the number  in the statement of the previous Proposition is

unique.
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Example 126 Take

 =

⎡⎣ 1 2 3

4 5 6

5 7 9

⎤⎦
Then ⎡⎣ 1 2 3

4 5 6

5 7 9

⎤⎦ 3−(1+2)→3

−→
⎡⎣ 1 2 3

4 5 6

0 0 0

⎤⎦ −→
2−41→2

−→
⎡⎣ 1 2 3

0 −3 −6
0 0 0

⎤⎦ −1
3
2→2

−→
⎡⎣ 1 2 3

0 1 2

0 0 0

⎤⎦ −→
2−21→2

−→
⎡⎣ 1 0 3

0 1 2

0 0 0

⎤⎦ 3−31→3

−→
⎡⎣ 1 0 0

0 1 2

0 0 0

⎤⎦ 3−22→3

−→
⎡⎣ 1 0 0

0 1 0

0 0 0

⎤⎦
We can find matrices  and  as follows.⎡⎣ 1 0 0

0 1 0

−1 −1 1

⎤⎦⎡⎣ 1 2 3

4 5 6

5 7 9

⎤⎦ =
⎡⎣ 1 2 3

4 5 6

0 0 0

⎤⎦
⎡⎣ 1 0 0

−4 1 0

0 0 1

⎤⎦⎡⎣ 1 2 3

4 5 6

0 0 0

⎤⎦ =
⎡⎣ 1 2 3

0 −3 −6
0 0 0

⎤⎦
⎡⎣ 1 0 0

0 −1
3

0

0 0 1

⎤⎦⎡⎣ 1 2 3

0 −3 −6
0 0 0

⎤⎦ =
⎡⎣ 1 2 3

0 1 2

0 0 0

⎤⎦
Then

 =

⎡⎣ 1 0 0

0 −1
3

0

0 0 1

⎤⎦⎡⎣ 1 0 0

−4 1 0

0 0 1

⎤⎦⎡⎣ 1 0 0

0 1 0

−1 −1 1

⎤⎦ =
⎡⎣ 1 0 0

4
3
−1
3

0

−1 −1 1

⎤⎦ ;
indeed ⎡⎣ 1 0 0

4
3
−1
3

0

−1 −1 1

⎤⎦⎡⎣ 1 2 3

4 5 6

5 7 9

⎤⎦ =
⎡⎣ 1 2 3

0 1 2

0 0 0

⎤⎦ 
⎡⎣ 1 2 3

0 1 2

0 0 0

⎤⎦⎡⎣ 1 −2 0

0 1 0

0 0 1

⎤⎦ =
⎡⎣ 1 0 3

0 1 2

0 0 0

⎤⎦
⎡⎣ 1 0 3

0 1 2

0 0 0

⎤⎦⎡⎣ 1 0 −3
0 1 0

0 0 1

⎤⎦ =
⎡⎣ 1 0 0

0 1 2

0 0 0

⎤⎦


Then

 =

⎡⎣ 1 −2 0

0 1 0

0 0 1

⎤⎦⎡⎣ 1 0 −3
0 1 0

0 0 1

⎤⎦⎡⎣ 1 0 0

0 1 −2
0 0 1

⎤⎦ =
⎡⎣ 1 −2 1

0 1 −2
0 0 1

⎤⎦ ;
indeed, ⎡⎣ 1 2 3

0 1 2

0 0 0

⎤⎦⎡⎣ 1 −2 1

0 1 −2
0 0 1

⎤⎦ =
⎡⎣ 1 0 0

0 1 0

0 0 0

⎤⎦ 
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Summarizing

 =

⎡⎣ 1 0 0
4
3
−1
3

0

−1 −1 1

⎤⎦⎡⎣ 1 2 3

4 5 6

5 7 9

⎤⎦⎡⎣ 1 −2 1

0 1 −2
0 0 1

⎤⎦ =
⎡⎣ 1 0 0

0 1 0

0 0 0

⎤⎦
Proposition 127 If ×× = , then  =  and therefore  is invertible and −1 = .

Proof. Suppose  is not invertible, the from Proposition 104 is not row equivalent to  and

from Proposition 122,  is equivalent to a block matrix of the form displayed in (318) with   .

Then, from Proposition 121, there exist invertible matrices × and × such that

 =

∙
 0

0 0

¸


and from  = , we get

 = −1

and ∙
 0

0 0

¸ ¡
−1

¢
= 

Therefore,  has some zero rows and columns, contradicting that  is invertible.

Remark 128 The previous Proposition says that to verify that  in invertible it is enough to check

that  = .

Remark 129 We will come back to the analysis of further properties of the inverse and on another

way of computing it in Section 5.3.

3.5 Exercises

From Lipschutz (1991),

starting from page 81: 3.1 - 3.11, 3.14 - 3.16;

starting from page 111: 4.1, 4.4, 4.5, 4.7, 4.8.



Chapter 4

Vector spaces

4.1 Definition

Definition 130 Let a nonempty set  with the operations of

addition which assigns to any   ∈  an element denoted by ⊕  ∈  and

multiplication which assigns to any   ∈  an element denoted by ¯  ∈ 

be given. (⊕¯) is called a field, if the following properties hold true.
1. (Commutative) ∀  ∈  , ⊕  =  ⊕  and ¯  =  ¯ ;

2. (Associative) ∀   ∈  (⊕ )⊕  = ⊕ ( ⊕ ) and (¯ )¯  = ¯ ( ¯ );

3. (Distributive) ∀   ∈  ¯ ( ⊕ ) = (¯ )⊕ (¯ );

4. (Existence of null elements) ∃0 1 ∈  such that ∀ ∈  , 0 ⊕  =  and 1 ¯  = ;

5. (Existence of a negative element) ∀ ∈  ∃ ∈  such that ⊕  = 0;

From the above properties, it follows that 0 and 1are unique.
1 We denote 0 and 1 by 0

and 1, respectively.

6. (Existence of an inverse element) ∀ ∈ \ {0}, ∃ ∈  such that ¯  = 1.

Elements of a field are called scalars.

Example 131 The set R of real numbers with the standard addition and multiplication is a field.
From the above properties all the rules of “elementary” algebra can be deduced.2 The set C of

complex numbers is a field .

The sets N := {1 2  3   } and Z of positive integers and integers, respectively, with the
standard addition and multiplication are not fields.

Definition 132 Let (⊕¯) be a field and  be a nonempty set with the operations of

addition which assigns to any   ∈  an element denoted by +  ∈  and

scalar multiplication which assigns to any  ∈  and any  ∈  an element  ·  ∈  .

Then (+ ·) is called a vector space on the field (⊕¯) and its elements are called vectors if
the following properties are satisfied.

A1. (Associative) ∀   ∈  (+ ) +  = + ( + );

A2. (existence of zero element) there exists an element 0 in  such that ∀ ∈  , + 0 = ;

A3. (existence of inverse element) ∀ ∈  ∃ ∈  such that +  = 0;

A4. (Commutative) ∀  ∈  , +  =  + ;

M1. (distributive) ∀ ∈  and ∀  ∈   · (+ ) =  · +  · ;
M2. (distributive) ∀  ∈  and ∀ ∈  (⊕ ) ·  =  · +  · ;
M3. ∀  ∈  and ∀ ∈  (¯ ) ·  =  · ( · );
M4. ∀ ∈  1 ·  = .

Elements of a vector space are called vectors.

1The proof of that result is very similar to the proof of Proposition 134.1 and 2.
2 See, for example, Apostol (1967), Section 13.2, page 17.

45
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Remark 133 In the remainder of these notes, if no confusion arises, for ease of notation, we will

denote a field simply by  and a vector space by  . Moreover, we will write + in the place of ⊕,
and we will omit ¯ and ·, i.e., we will write  instead of ¯  and  instead of  · .

Proposition 134 If  is a vector space, then (as a consequence of the first four properties)

1. The zero vector is unique and it is denoted by 0.

2. ∀ ∈  , the inverse element of  is unique and it is denoted by −.
3. (cancellation law) ∀  ∈ 

+  =  + ⇒  = 

Proof. 1. Assume that there exist 01 02 ∈  which are zero vectors. Then by definition of zero

vector - see (2) - we have that

01 + 02 = 01 and 02 + 01 = 02

From (4) 

01 + 02 = 02 + 01

and therefore 01 = 02.

2. Given  ∈  , assume there exist 1 2 ∈  such that

+ 1 = 0 and + 2 = 0

Then

2 = 2 + 0 = 2 +
¡
+ 1

¢
=
¡
2 + 

¢
+ 1 =

¡
+ 2

¢
+ 1 = 0 + 1 = 1

3.

+  =  + 
(1)⇒ +  + (−) =  +  + (−) (2)⇒ + 0 =  + 0

(3)⇒  = 

where (1) follows from the definition of operation, (2) from the definition of − and (3) from

the definition of 0.

Remark 135 From A2. in Definition 132, we have that for any vector space  , 0 ∈ 

Proposition 136 If  is a vector space over a field  , then

1. For 0 ∈  and ∀ ∈  , 0 = 0

2. For 0 ∈  and ∀ ∈  , 0 = 0

3. If  ∈  ,  ∈  and  = 0, then either  = 0 or  = 0 or both.

4. ∀ ∈  and ∀ ∈  , (−) =  (−) = − () := −.

Proof. 1. From (1),

0+ 0 = (0 + 0) = 0

Then, adding − (0) to both sides,

0+ 0+ (− (0)) = 0+ (− (0))

and, using (3),

0+ 0 = 0

and, using (2), we get the desired result.

2. From (2),

0 + 0 = 0;

then multiplying both sides by  and using (1),

0 =  (0 + 0) = 0 + 0;
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and, using (3),

0 + (− (0)) = 0 + 0 + (− (0))
and, using (2), we get the desired result.

3. Assume that  = 0 and  6= 0. Then

 = 1 =
¡
−1 · ¢ = −1 () = −1 · 0 = 0

Taking the contropositive of the above result, we get h 6= 0i ⇒ h 6= 0 ∨  = 0i. Therefore
h 6= 0 ∧  = 0i⇒ h = 0i.
4. From  + (−) = 0, we get  (+ (−)) = 0, and then  +  (−) = 0, and therefore

− () =  (−).
From  + (−) = 0, we get (+ (−)) = 0, and then  + (−) = 0, and therefore

− () = (−).

Remark 137 From Proposition 136.4, and (4)in Definition 132, we have

(−1) = 1 (−) = − (1) = −

We also define subtraction as follows:

 −  :=  + (−)

4.2 Examples

Euclidean spaces.3

The Euclidean space R with sum and scalar product defined in Chapter 2 is a vector space

over the field R with the standard addition and multiplication
Matrices on R.
For any  ∈ N, the set M of matrices with elements belonging to the field R with the

operation of addition and scalar multiplication, as defined in Section 2.3 is a vector space on the

field R and it is denoted by
M () 

Matrices on a field 

For any  ∈ N, we can also consider the set of matrices whose entries are elements belonging
to an arbitrary field  . It is easy to check that set is a vector space on the field  with the operation

of addition and scalar multiplication inherited by  is a vector space and it is denoted by

M () 

We do set

MR () =M () 

Polynomials

The set of all polynomials

0 + 1+ 2
2 + + 



with  ∈ N ∪ {0} and 0 1 2   ∈ R is a vector space on R with respect to the standard
sum between polynomials and scalar multiplication.

Function space F ().
Given a nonempty set , the set of all functions  :  → R with obvious sum and scalar

multiplication is a a vector space on R. More generally we can consider the vector space of functions
 :  →  , where  is a nonempty set and  is an arbitrary field, on the same field  .

Sets which are not vector spaces.

(0+∞) and [0+∞) are not a vector spaces in R.
For any  ∈ N, the set of all polynomials of degree  is not a vector space on R.
On the role of the field: put Exercise 5.29 from Lipschutz 2nd edition.

3A detailed proof of some of the statements below is contained, for example, in Hoffman and Kunze (1971),

starting from page 28.
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4.3 Vector subspaces

In what follows, if no ambiguity may arise, we will say “vector space” instead of “vector space on

a field”.

Definition 138 Let  be a subset of a vector space  .  is called a vector subspace of  if  is

a vector space with respect to the operation of vector addition and scalar multiplication defined on

 restricted to  . In other words, given a vector space (+ ·) on a field (⊕¯) and a subset
 of  , we say that  is a vector subspace of  if, defined

+ : × → (1 2) 7→ 1 + 2

and

· :  × → (2) 7→  · 2
then (+  · ) is a vector space on the field (⊕¯).
Proposition 139 Let  be a subset of a vector space  . The following three statements are

equivalent.

1.  is a vector subspace of 

2. a.  6= ∅;
b. ∀  ∈ +  ∈ ;

c. ∀ ∈ ∈   ∈ .

3. a.  6= ∅;
b. ∀  ∈ ∀  ∈  +  ∈ .

Proof. 2⇒ 3

From 2c.,  ∈ and  ∈ . Then, from 2b., +  ∈ , as desired.

2⇐ 3

From 3b., identifying     with 1  1 , we get +  ∈ , i.e., 2b.

From 3b., identifying     with 1
2
  1

2
 , we get

1

2
+

1

2
 ∈ (4.1)

Moreover, since  ⊆  , then  ∈  and from the distributive property (1) for  , we get

1

2
+

1

2
 =

µ
1

2
+

1

2


¶
 =  (4.2)

and from (41) and (42) the desired result follows.

1⇒ 2

All properties follow immediately from the definition of vector space.

1⇐ 2

2a., 2b. and 2c. insure that the “preliminary properties” of a vector space are satisfied:  6= ∅
and the operations are well defined.

Properties 1 4123 and4 are satisfied because ⊆  . Let’s check the remaining

two properties.

(2): We want to show that there exists 0 ∈ such that ∀ ∈ , we have  + 0 = .

Since  6= ∅, we can take  ∈ . Since  ⊆  , then  ∈  and from Proposition 136.1,

0 = 0  (4.3)

Moreover, from 2c., .identifying   with 0  , we get 0 ∈ . Then ∀ ∈ ⊆  , + 0 = ,

i.e.,

0 = 0 := 0 (4.4)

(3): We want to show that ∀ ∈ ∃0 ∈ such that  + 0 = 0.
From 2.c, we have (−1) ∈ and 1 ∈ . Then

(−1) + 
(4)
= (−1) + 1 (1)

= (−1 + 1) = 0 (??)
= 0

Taking 0 = (−1), we have shown the desired result.
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Remark 140 An often successful way to show that a set  is a vector space is the following one:

1. find a vector space  such that  ⊆  ; in Section 4.2 above, we provide a list of “commonly

used” vector spaces;

2. use Proposition 139.

Example 141 1. Given an arbitrary vector space  , {0} and  are vector subspaces of  .

2. Given R3,
 :=

©
(1 2 3) ∈ R3 : 3 = 0

ª
is a vector subspace of R3.
3. Given the space  of polynomials, the set  of all polynomials of degree ≤  is a vector

subspace of 

4. The set of all bounded or continuous or differentiable or integrable functions  :  → R is a
vector subspace of F ().
5. If  and  are vector spaces, then  ∩ is a vector subspace of  and  .

6. [0+∞) is not a vector subspace of R.
7. Let  = {0} ×R ⊆ R2 and  = R× {0}⊆ R2. Then  ∪ is not a vector subspace of R2.

4.4 Linear combinations

Notation convention. Unless otherwise stated, a greek (or Latin) letter with a subscript denotes

a scalar; a Latin letter with a superscript denotes a vector.

Before introducing the main concept of the section, we need to introduce the definition of

sequence. Intuitively, a sequence is an “enumerated collection of objects” in which repetitions are

allowed and order is important.

Like a set, it contains members (also called elements, or terms). The number of elements

(possibly infinite) is sometimes called the length of the sequence.

Unlike a set, order matters, and exactly the same elements can appear multiple times at different

positions in the sequence. Formally, we have what follows

Definition 142 A sequence is a function whose domain is either the set N of the natural numbers
(for infinite sequences) or the set of the first  natural numbers (for a sequence of finite length ).

The position of an element in a sequence is its index: it is the integer the element is the image of.

Remark 143 In other words, given a nonempty set  , an infinite sequence in  is a function

 : N→ , and a finite sequence of lenght  ∈ N is a function  : {1  }→ 

Usually, in the case of infinite sequences, for any  ∈ N, the value  () is denoted by which

is called the -th term of the sequence; the sequence is denoted by ()∈N. Similarly, for finite
sequences of lenght  ∈ N, for any  ∈ {1  }, the value  () is denoted by ; the sequence is

denoted by ()∈{1} or (1  ).

Definition 144 Let  be a vector space on a field  ,  ∈ N and 1 2   ∈  be given. The

linear combination of the ordered list, or order m-tuple or finite sequence of vectors 1 2  

via scalars 1 2   ∈  is the vector

X
=1




The set of all such combinations(
 ∈  : ∃ ()=1 ∈  such that  =

X
=1




)

is called span of
¡
1 2  

¢
and it is denoted by

span
¡
1 2  

¢


add examples
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Definition 145 Let  be a vector space and  a subset of  . span () is the set of all linear

combinations of a finite sequence of vectors in  , i.e.,

span () =

(
 ∈  : ∃ ∈ N ∃1 2   ∈  ∃ ()=1 ∈  such that  =

X
=1




)


span (∅) := {0}.

Proposition 146 Let  be a vector space and  6= ∅  ⊆  . Then, “span () is the smallest

vector space containing ”, i.e.,

1. a.  ⊆ span () and b. span () is a vector subspace of  .
2. If  is a subspace of  and  ⊆ , then span () ⊆ .

Proof. 1a. Given  ∈ , 1 =  ∈ span ()  1b. Since  6= ∅, then span () 6= ∅. Given
  ∈  and  ∈  Then ∃1   ∈  , 1   ∈  and 1   ∈  , 1   ∈ 

such that  =
P

=1 
 and  =

P
=1 

 . Then

 +  =

X
=1

() 
 +

X
=1

¡


¢
 ∈ span

2. Take  ∈ span . Then ∃1   ∈  , 1   ∈  ⊆  such that  =
P

=1 
 ∈  ,

as desired.

Definition 147 Let  be a vector space and 1 2   ∈  . If  = span
¡
1 2  

¢
, we say

that  is the vector space generated or spanned by the vectors 1 2  .

Example 148 1. R3 = span ({(1 0 0)  (0 1 0)  (0 0 1)});
2. span ({(1 1)}) = span ({(1 1)  (2 2)}) = ©( ) ∈ R2 :  = 

ª
;

3. span ({(1 1)  (0 1)}) = R2.
2. span

¡{}∈N¢ is equal to the vector space of all polynomials.
Exercise 149 1. If  ⊆ , then span () ⊆ span ();
2. if  is a vector subspace of  , then span ( ) =

4.5 Row and column space of a matrix

Definition 150 Given  ∈M (),

row span := span
¡
1 ()    ()    ()

¢
is called the row space of  or row span of .

The column space of  or col span is

col span := span
¡
1 ()    ()    ()

¢


Remark 151 Given  ∈M ()

col span = row span 

Remark 152 Linear combinations of columns and rows of a matrix.

Let  ∈M ()   ∈ R and  ∈ R . Then, ∀ ∈ {1  }   () ∈ R and ∀ ∈ {1 },
 () ∈ R. Then,

Remark 153

 =

X
=1

 ·  () 
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as verified below.

 =

⎡⎢⎢⎢⎢⎢⎢⎣
11 12  1  1
21 22  2  2


1 2    


1 2    

⎤⎥⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎣

1
2







⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

P
=1 1P
=1 2
P

=1 
P

=1 

⎤⎥⎥⎥⎥⎥⎥⎦ ;

X
=1

 ·  () =

X
=1

 ·

⎡⎢⎢⎢⎢⎢⎢⎣
1
2





⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

P
=1 1P
=1 2P
=1 P
=1 

⎤⎥⎥⎥⎥⎥⎥⎦ 

Therefore,

 is a linear combination of the columns of  via the components of the vector .

Moreover,

 =

X
=1

 · () 

as verified below.

 = [1    ]

⎡⎢⎢⎢⎢⎢⎢⎣
11 12  1  1
21 22  2  2


1 2    


1 2    

⎤⎥⎥⎥⎥⎥⎥⎦ =

=
£ P

=1  · 1
P

=1  · 2 
P

=1  ·  
P

=1  · 
¤
;

P
=1  · () =

P
=1  ·

£
1 2    

¤
=

=
£ P

=1  · 1
P

=1  · 2 
P

=1  ·  
P

=1  · 
¤


Therefore,

 is a linear combination of the rows of  via the components of the vector .

As a consequence of the above observation, we have what follow.

1.

row span  = { ∈ R : ∃  ∈ R such that  = } 

2.

col span  = { ∈ R : ∃  ∈ R such that  = } ;

Proposition 154 Given  ∈M (),

1. if  is row equivalent to , then row span = row span;

2. if  is column equivalent to , then col span = col span.
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Proof. 1.  is obtained by  via elementary row operations. Therefore, ∀ ∈ {1 }, either
i.  () =  (), or

ii.  () is a linear combination of rows of .

Therefore, row span ⊆ row span. Since  is obtained by  via elementary row operations,

row span ⊇ row span.
2. if  is column equivalent to , then  is row equivalent to  and therefore, from i. above,

row span = row span . Then the result follows from Remark 151.

Remark 155 Let  ∈M () be given and assume that

 := ()


=1
=

X
=1

 · () 

i.e.,  is a linear combination of the rows of . Then,

∀ ∈ {1  }   =

X
=1

 · () 

where ∀ ∈ {1 } and ∀ ∈ {1 }   () is the −  component of the −  row  ()

of .

Lemma 156 Assume that  ∈M () are in echelon form with pivots

11       

and

11       

respectively, and4   ≤ min {}. Then
hrow span = row spani⇒ h =  and for  ∈ {1  }   = i 

Proof. Preliminary remark 1. If  = 0, then  =  and  =  = 0

Preliminary remark 2. Assume that  6= 0 and then   ≥ 1. We want to verify that

1 = 1. Suppose 1  1. Then, by definition of echelon matrix, 1 () = 0, otherwise you

would contradict Property 2 of the Definition 28 of echelon matrix. Then, from the assumption

that row span = row spanwe have that 1 () is a linear combination of the rows of , via

some coefficients 1  , and from Remark 155 and the fact that 1 () = 0, we have that

11 = 1 · 0 +  · 0 = 0, contradicting the fact that 11 is a pivot for . Therefore, 1 ≥ 1. A

perfectly symmetric argument shows that 1 ≤ 1.

We can now prove the result by induction on the number  of rows.

Step 1.  = 1.

It is basically the proof of Preliminary Remark 2.

Step 2.

Given  ∈ M (), define 0 0 ∈ M (− 1 ) as the matrices obtained erasing the first
row in matrix  and  respectively. From Remark 33, 0 and 0 are still in echelon form. If
we show that row span0 = row span0, from the induction assumption, and using Preliminary

Remark 2, we get the desired result.

Let  = (1  ) be any row of 
0. Since  ∈ row span, ∃ ()=1 such that

 =

X
=1


 () 

Since  is in echelon form and we erased its first row, we have that if  ≤ 1 = 1, then  = 0,

otherwise you would contradict the definition of 1. Since  is in echelon form, each entry in its

1 −  column are zero, but 11 which is different from zero. Then,

11 = 0 =

X
=1

 · 1 = 1 · 1 

and therefore 1 = 0, i.e.,  =
P

=2 
 (), or  ∈ row span0, as desired. Symmetric

argument shows the other inclusion.

4See Remark 30.
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Remark 157 Given

 =

∙
1 1

2 1

¸
and  =

∙
2 2

6 3

¸


clearly  6=  and row span = row span.

Proposition 158 Assume that  ∈M () are in row canonical form. Then,

hrow span = row spani⇔ h = i 

Proof. [⇐] Obvious.
[⇒] From Lemma 156, the number of pivots in  and  is the same. Therefore,  and  have

the same number  of nonzero rows, which in fact are the first  rows. Take  ∈ {1  }. Since
row span = row span, there exists ()


=1 such that

 () =

X
=1

 · ()  (4.5)

We want then to show that  = 1 and ∀ ∈ {1  } \ {},  = 0.
Let be the pivot of 

 () , i.e.,  is the nonzero −  component of  (). Then, from

Remark 155,

 =

X
=1

 · () =

X
=1

 ·   (4.6)

From Lemma 156, for  ∈ {1  }   = , and therefore  is a pivot entry for , and since

 is in row reduced form,  is the only nonzero element in the  column of . Therefore, from

(46),

 =

X
=1

 · () =  ·  

Since  and  are in row canonical form  =  = 1 and therefore

 = 1

Now take  ∈ {1  } \ {} and consider the pivot element  in  (). From (45) and

Remark 155,

 =

X
=1

 ·  =  (4.7)

where the last equalities follow from the fact that  is in row reduced form and therefore  is

the only nonzero element in the  −  column of , in fact,  = 1. From Lemma 156, since 
is a pivot element for ,  is a pivot element for . Since  is in row reduced form,  is the

only nonzero element in column  of . Therefore, since  6= ,  = 0, and from (47), the desired

result,

∀ ∈ {1  } \ {}   = 0

does follow.

Proposition 159 For every  ∈ M (), there exists a unique  ∈ M () which is in row

canonical form and row equivalent to .

Proof. The existence of at least one matrix with the desired properties is the content of

Proposition 38. Suppose that there exists 1 and 2 with those properties. Then from Proposition

154, we get

row span = row span1 = row span2

From Proposition 158,

1 = 2
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Corollary 160 1. For any matrix  ∈ M () there exists a unique number  ∈ {0 1 min {}}
such that  is equivalent to the block matrix of the form∙

 0

0 0

¸


2. For any  ∈M (), there exist invertible matrices  ∈M () and  ∈M ( ) and a
unique number  ∈ {0 1 min {}} such that

 =

∙
 0

0 0

¸
Proof. 1.

From Step 1 in the proof of Proposition 122 and from Proposition 159, there exists a unique

matrix ∗ which is row equivalent to  and it is in row canonical form.

From Step 2 and 3 in the proof of Proposition 122 and from Proposition 159, there exist a unique

matrix ∙
 0

0 0

¸
which is row equivalent to ∗ and it is in row canonical form. Therefore the desired result follows.
2.

From Proposition 105.2,  is row equivalent to ; from Proposition 119.2,  is column

equivalent to . Therefore,  is equivalent to From Proposition 124 ,∙
0 0

0 0

¸
is equivalent to . From part 1 of the present Proposition, the desired result then follows.

Example 161 Let  =

∙
2 2

1 1

¸
be given. Then,

∙
2 2

1 1

¸
1
2
1→1

−→
∙
1 1

1 1

¸
2−1→2

−→
∙
1 1

0 0

¸
2−1→1

−→
∙
1 0

0 0

¸


Indeed, ∙
1 0

−1 1

¸ ∙
1
2

0

0 1

¸ ∙
2 2

1 1

¸ ∙
1 1

0 −1
¸
=

∙
1 0

0 0

¸


and

 =

∙
1 0

−1 1

¸ ∙
1
2

0

0 1

¸
=

∙
1
2

0

−1
2

1

¸


 =

∙
1 1

0 −1
¸


4.6 Linear dependence and independence

Definition 162 Let a vector space  on a field  , a number ∈ N and vectors 1 2   ∈  be

given. The finite sequence of vectors
¡
1 2  

¢
is linearly dependent, or the vectors 1 2  

are linearly dependent, if

either  = 1 and 1 = 0,

or   1 and ∃  ∈ {1 } and there exist ( − 1) ≥ 1 coefficients  ∈  with  ∈
{1 } \ {} such that

 =
X

∈{1}\{}




or, shortly,

 =
X
 6=




i.e., there exists a vector equal to a linear combination of the other vectors.
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Geometrical interpretaton of linear (in)dependence in R2

Proposition 163 Let a vector space  on a field  and vectors 1 2   ∈  be given. The

vectors 1 2   ∈  are linearly dependent vectors if and only if

∃ (1    ) ∈ \ {0} such that
X
=1

 ·  = 0 (4.8)

i.e., there exists a linear combination of the vectors equal to the null vector and with some

nonzero coefficient.

Proof. [⇒]
If  = 1, any  ∈ R\ {0} is such that  · 0 = 0. Assume then that   1. Take

 =

½
 if  6= 

−1 if  = 

[⇐]
If  = 1∃ ∈ R\ {0} is such that  · 1 = 0then from Proposition 58.3 1 = 0. Assume then

that   1. Without loss of generality take 1 6= 0. Then,

1
1 +

X
6=1


 = 0

and

1 =
X
6=1


1



Proposition 164 Let  ≥ 2 and ¡1  ¢ be a finite sequence of nonzero linearly dependent
vectors. Then, one of the vectors is a linear combination of the preceding vectors, i.e., ∃   1 and¡

¢−1
=1

such that  =
P−1

=1 
.

Proof. Since
¡
1  

¢
is linearly dependent, ∃ ()=1 ∈ R\ {0} such that

P
=1 

 = 0.

Let  be the largest  such that  6= 0, i.e.,

 ∈ {1 } is such that  6= 0 and ∀ ∈ { + 1 }   = 0 (4.9)

Consider the case  = 1. Then we would have 1 6= 0 and ∀  1,  = 0 and therefore

0 =
P

=1 
 = 1

1, and 1 = 0, contradicting the assumption that 1   are nonzero

vectors. Then, we must have   1, and from (49) , we have

0 =

X
=1


 =

X
=1




and


 =

−1X
=1




or, as desired,

 =

−1X
=1

−




It is then enough to choose  =
−


for any  ∈ {1   − 1}.

Example 165 Take the vectors 1 = (1 2) 2 = (−1−2) and 3 = (0 4). 1 2 3 are linearly

dependent vectors: 1 = −1 · 2 + 0 · 3. Observe that there are no 1  2 ∈ R such that 3 =

1 · 1 + 2 · 2.
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Definition 166 The finite sequence of vectors
¡
1 2  

¢
is linearly independent, or the vectors

1 2   are linearly independent vectors if they are not linearly dependent.

Remark 167 The finite sequence of vectors
¡
1 2  

¢
is linearly independent if h ¬ (48)i

holds true, i.e., if

∀ (1    ) ∈ \ {0} it is the case that P
=1  ·  6= 0,

or

(1    ) ∈ \ {0} ⇒
X
=1

 ·  6= 0

or
X
=1

 ·  = 0 ⇒ (1    ) = 0

or the only linear combination of the vectors which is equal to the null vector has each coefficient

equal to zero.

Example 168 The vectors (1 2)  (1 5) are linearly independent. The vectors (1 5)  (1 2) are

linearly independent.

Remark 169 Let 1 be a finite sequence (or an ordered list) of vectors and 2 a finite sequence

obtained from 1 changing the order of the vectors. Then, since sum is commutative, 1 is linearly

independent if and only if 2 is linearly independent, and therefore, 1 is linearly dependent if and

only if 2 is linearly dependent.

Remark 170 From Remark 152, we have what follows:

h = 0⇒  = 0i⇔ hthe column vectors of  are linearly independenti (4.10)

h = 0⇒  = 0i⇔ hthe row vectors of  are linearly independenti (4.11)

Remark 171 We also need to speak of linearly dependent and independent sets. As already said,

the difference between an ordered list or a finite sequence on one side, and a set on the other

side is that in the latter concept (the concept of set) both order and repetitions “do not count”. We

distinguish sets from finite sequence using curly brackets, i.e., we use {} for sets and round brackets,
i.e., () or no brackets at all, for finite sequences. Then

{ } = {  } = {  }  (4.12)

5 and

(  ) 6= (  ) 
(  ) 6= (   ) 

Observe also that the cardinality of each set in (412) is 3: in computing the cardinality of sets,

“repetitions and order do not count”.

In the definition of linearly dependent and linearly independent sets we require to consider dis-

tinct vectors.

Definition 172 Let a vector space  on a field  and a set  (of arbitrary cardinality) contained

in  be given.

 is linearly dependent if there exists a finite sequence of distinct vectors in  which is linearly

dependent.

 is linearly independent if any finite sequence of distinct vectors in  is linearly independent.

5Recall that given two sets  and , we have that  =  if and only if

1.  ∈ ⇒  ∈  and 2.  ∈  ⇒  ∈ .

Recall that a function is a triple: domain, codomain and “rule”. Two functions are equal if the corresponding

triples are equal.
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Proposition 173 Let  ∈ N and a set  = ©1 ª be given.
1. any finite sequence of all distinct elements of  is linearly independent. ⇔ a finite sequence

of all distinct elements of  is linearly independent.

2. any finite sequence of all distinct elements of  is linearly dependent. ⇔ a finite sequence of

all distinct elements of  is linearly dependent.

Proof. Without loss of generality, let
¡
1 2 

¢
with  ≤  be a finite sequence of all the

distinct elements of . Observe that there are many (indeed, ! :=  · (− 1) · 3 ·2) different finite
sequences of all distinct elements of . For example, given  =

©
1 2 1

ª
with 1 6= 2then both¡

1 2
¢
and

¡
2 1

¢
are finite sequences of all distinct elements of  

1. [⇒] Obvious.
[⇐] It follows from Remark 169.

2. The proof is similar to the one in point 1. above.

Proposition 174 Let  ∈ N and a set  = ©1 ª be given.
1.  is linearly independent ⇔ a finite sequence of all distinct elements of  is linearly inde-

pendent.

2.  is linearly dependent ⇔ a finite sequence of all distinct elements of  is linearly dependent.

Proof. 1.

[⇒]
Obvious.

[⇐]
Without loss of generality, let

¡
1 2 

¢
with  ≤  be a finite sequence of all the dis-

tinct elements of . Assume our claim is false and, without loss of generality, ∃   such that©
1  

ª
$
©
1   +1  

ª
and ∃ ∈ R \ {0} such that P

=1 
 = 0. Then, chosen

+1 =  =  = 0, we have that there exists  ∈ R \ {0} such that P
=1 

 = 0, i.e., the

finite sequence
¡
1   +1  

¢
is linearly dependent, contradicting the assumption.

2.

It is enough to take the contropositive of each implication in statemen 1. above. In other words,

the desired result follows from the fact that ⇔  is logically equivalent to (¬)⇔ (¬).
[⇐]
From 1. above, we have

 is linearly independent ⇒ a finite sequence of all distinct elements of  is linearly independent,

and therefore

any finite sequence of all distinct elements of  is linearly dependent ⇒  is linearly dependent.

(4.13)

From Proposition 173,

a finite sequence of all distinct elements of  is linearly dependent

⇔
any finite sequence of all distinct elements of  is linearly dependent.

(4.14)

From (414)and (413), the desired result follows.

[⇒]
Similar argument applies.

Remark 175 ∅ is a set of linearly independent vectors.

Remark 176 (Recipe for analyzing linear(in)dependence).

Summarizing, we can say what follow to deal with the problem of determining linear (in)dependence.

1. If you have a finite sequence of vectors, try to show all of them are linearly (in)dependent,

using Definition 162 or Proposition 163, or Remark 167;

2. If you a finite cardinality set, then eliminate the repetitions (i..e, consider a finite ordered list

of all pairwise distinct vectors belonging to the set) and then use 1. above (recall that from Remark

169, the order of the chosen list is irrelevant with respect to linear (in)dependence). Sometimes it

can hard to eliminate repetetions; if you are able to show that the finite sequence you are dealing

with is linearly independent, then the set is linearly independent as well.

3. If you have an infinite cardinality set, then apply Definition 172.
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Remark 177 To greatly simplify the exposition, when we consider a finite set  =©
1  

ª
in a vector space  , unless otherwise clearly specified, we assume that the

cardinality of  is , i.e., all elements in  are pairwise distinct.

Example 178 Consider the vectors 1 = (1 0 0 0) ∈ R4 and 2 = (0 1 0 0) . Observe that

1
1 + 2

2 = 0 means (1 2 0 0) = (0 0 0 0).

Exercise 179 Say if the following set is a set of linearly dependent or independent vectors:

 =
©
1 2 3

ª
with 1 = (3 2 1) 2 = (4 1 3) 3 = (3−3 6).

Exercise 180 Let a vector space  and   ∈  such that  6=  be given. Show that if { } is
linearly independent, then {+  } is linearly independent.
First of all, observe that, by assumption,

∀1 2 ∈  such that 1 + 2 = 0, we have 1 = 2 = 0 (4.15)

We now want to apply the “Recipe” described in Remark 176.

Observe that + 6= : suppose otherwise, then we would have + =  and  = 0, contradicting

the fact that { } is linearly independent. Then, following the Recipe, we want to show that

∀1 2 ∈  such that 1 (+ ) + 2 = 0, we have 1 = 2 = 0

Indeed, 0 = 1 (+ ) + 2 = 1+ (1 + 2) , and from (415), we have 1 = 1 + 2 = 0,

which easily implies the desired result.

Example 181 Let  be the vector space of all functions  : R → R.    defined below are

linearly independent:

 () =   () = 2  () = 

Suppose there exists (1 2 3) ∈ R3 such that

1 ·  + 2 ·  + 3 ·  = 0 

which means that

∀ ∈ R 1 · () + 2 · () + 3 · () = 0
We want to show that (1 2 3) = (0 0 0) The trick is to find appropriate values of  to get the

desired value of (1 2 3). Choose  to take values 0 1−1. We obtain the following system of

equations ⎧⎨⎩ 1 = 0

 · 1 + 2 + 3 = 0

−11 + 2 + (−1)3 = 0

It then follows that (1 2 3) = (0 0 0), as desired.

Remark 182 The following statements are easy consequences of Definition 172.

1. Any set which contains a linearly dependent set is linearly dependent.

2. Any subset of a linearly independent set is linearly independent.

Remark 183 Consider vectors in R.

1. Adding components to linearly dependent vectors gives raise to linearly dependent or indepen-

dent vectors;

2. Eliminating components from linearly independent vectors gives raise to linearly dependent or

independent vectors;

3. Adding components to linearly independent vectors gives raise to linearly independent vectors;

4. Eliminating components from linearly dependent vectors gives raise to linearly dependent vec-

tors.
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To verify 1. and 2. above consider the following two vectors:⎡⎣ 1

1

0

⎤⎦ 
⎡⎣ 2

2

1

⎤⎦
To verify 4., if you have a set of linearly dependent vectors, it is possible to express one vector

as a linear combination of the others and then eliminate components leaving the equality still true.

The proof of 3 is contained in the following Proposition.

Proposition 184 If  =
©
1  

ª ⊆ R is a set of linearly independent vectors and  =©
1  

ª ⊆ R is a set of vectors, then  =
©¡
1 1

¢
  (  )

ª ⊆ R+ is a set of linearly
independent vectors.

Proof. By assumption

X
=1

 ·  = 0 ⇒ (1    ) = 0

 is a set of linearly independent vectors if

X
=1

 ·
¡
 

¢
= 0 ⇒ (1    ) = 0

Since
X
=1

 ·
¡
 

¢
= 0 ⇔

X
=1

 ·  = 0 and
X
=1

 ·  = 0

the desired result follows.

Corollary 185 If  =
©
1  

ª ⊆ R is a set of linearly independent vectors and  =©
1  

ª ⊆ R and  = ©1  ª ⊆ Rare sets of vectors, then
 =

©¡
1 

1 1
¢
  ( 

 )
ª ⊆ R++

is a set of linearly independent vectors.

Example 186 1. The set of vectors
©
1  

ª
is a linearly dependent set if ∃ ∈ {1 } such

that  = 0:

 +
X
6=

0 ·  = 0

2. The set of vectors
©
1  

ª
is a linearly dependent set if ∃ 0 ∈ {1 } and  ∈ R\ {1}

such that 
0
= :


0 −  +

X
6=0

0 ·  = 0

Remark 187 In many textbook, the expression¡
1 

¢
is a finite sequence of linearly (in)dependent vectors,

is written as

1  are linearly (in)dependent vectors.

Remark 188 When we talk of linear (in)dependence of rows or columns of a matrix we refer to the

ordered list or finite sequence of rows or columns, not to the set of rows or columns. Indeed,

while the rows of the matrix ∙
1 1

1 1

¸
are linearly dependent, the set {(1 1)  (1 1)} = {(1 1)} is linearly independent.
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Proposition 189 The nonzero rows of a matrix  in echelon form are linearly independent.

Proof. We will show that each row of  starting from the first one is not a linear combination

of the subsequent rows. Then, as a consequence of Proposition 164, the desired result will follow.

Since  is in echelon form, the first row has a pivot below which all the elements are zero. Then

that row cannot be a linear combination of the following rows. Similar argument applies to the

other rows.

Remark 190 (Herstein (1975), page 178) “We point out that linear dependence is a function not

only of the vectors but also of the field. For instance, the field of complex numbers is a vector space

over the field of real numbers and it is also a vector space over the field of complex numbers. The

elements 1 = 1 2 = in it are linearly independent over the reals but linearly dependent over the

complexes, since 1 + (−1) 2 = 0.”

4.7 Basis and dimension

Definition 191 A set  (of arbitrary cardinality) in a vector space  on a field  is a basis of 

if

1.  is a linearly independent set;

2. span () =  .

Lemma 192 Suppose that given a vector space  , span
¡©
1  

ª¢
=  .

1. If  ∈  and  ∈ ©1  ª, then a. © 1  ª is linearly dependent and
b. span

¡©
 1  

ª¢
=  ;

2. If  is a linear combination of
©

ª−1
=1
, then span

¡©
1  −1 +1  

ª¢
=  .

Proof. 1.a.

Since, by assumption,  ∈ ©1  ª, then all elements in the set © 1  ª are distinct;
then, from the Recipe in Remark 176, it is enough to show that

¡
 1  

¢
is linearly dependent.

Since  ∈ 
Assu.
= span

¡©
1  

ª¢
, then by definition of span, there exist 1   ∈  such

that  =
P

=1 
, as desired.

b.

By assumption, there exist 1   ∈  such that  =
P

=1 
. We want to show that

span
¡©
1  

ª¢
= span

¡©
 1  

ª¢
[⊆] We want to show that  =P

=1 
 implies that there exist 0 1   ∈  such that

 = 0 +
P

=1 
; it is enough to take 0 = 0 and for  ∈ {1 },  = .

[⊇]We want to show that  = 0+
P

=1 
 implies that there exist 1   ∈  such that

 =
P

=1 
.

Since, by assumption  ∈  = span
¡©
1  

ª¢
, then there exist 1   ∈  such that

 =

X
=1


  = 0 +

X
=1


 =  = 0

X
=1


 +

X
=1


 =

X
=1

(0 + ) 


as desired.

2.

By assumption, there exists
©
 ∈  :  ∈ {1 } \ {}ª such that  =P 6= 

 . We want

to show that span
¡©
1  −1 +1  

ª¢
= span

¡©
1  

ª¢
. Then, the proof is very similar

to the proof of 1b. above.

Lemma 193 (Replacement Lemma) Let a vector space  and sets of vectors
©
1  

ª
and©

1  
ª
contained in  be given. If

1. span
¡©
1  

ª¢
=  ,
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2.
©
1  

ª
is linearly independent,

then

1.  ≥ ,

2. a. If  = , then span
¡©

1  
ª¢
=  .

b. if   , there exists
©
1   −

ª ⊆ ©1  ª such that
span

¡©
1   1   −

ª¢
= 

Proof. Observe preliminary that since
©
1  

ª
is linearly independent, for any  ∈

{1 },  6= 0.
We now distinguish 2 cases: Case 1. For any  ∈ {1  },  6= 0, and Case 2. There exists

 ∈ {1  } such that  = 0.
Case 1.

Now consider the case  = 1.
©
1  

ª ⊆  implies that there exists ()


=1
∈ R such

that ∀  6= 0 and  = 1 then it has to be  = 1 (and conclusion 1 holds) and since

1 = 11, span
¡
1
¢
=  (and conclusion 2 holds).

Consider now the case  ≥ 2.
If 1 ∈ ©1  ª, we immediately obtain that there exists 1 ∈ {1  } such that

span
¡©
1
ª ∪ © :  ∈ {1  } \ {1}ª¢ = 

If 1 ∈ ©1  ª, from Lemma 192.1,
©
1 1  

ª
is linearly dependent and

span
¡©
1 1  

ª¢
= 

Since elements in
©
1 1  

ª
are pairwise distinct, from the Recipe in Remark 176, we have

that
©
1 1  

ª
is linearly dependent iff

¡
1 1  

¢
is linearly dependent and from Lemma

164, there exists 1 ∈ {1  } such that  is a linear combination of the preceding vectors. Then
from Lemma 192.2, we have

span
¡©
1
ª ∪ © :  ∈ {1  } \ {1}ª¢ = 

If 2 ∈ © :  ∈ {1  } \ {1}ª, we immediately obtain that there exists 2 ∈ {1  } \ {1}
such that

span
¡©
1 2

ª ∪ © :  ∈ {1  } \ {1 2}ª¢ = 

If 2 ∈ © :  ∈ {1  } \ {1}ª, then from Lemma 192.1, ©1 2ª∪© :  ∈ {1  } \ {1}ª
is linearly dependent and

span
¡©
1 2

ª ∪ © :  ∈ {1  } \ {1}ª¢ = 

Then, as above, by Lemma 164, there exists 2 ∈ {2  } \ {1} such that 2 or 2 is a
linear combination of the preceding vectors. 2 cannot be a linear combination of 1 because of

assumption 2. Therefore, from Lemma 192.2, we have

span
¡©
1 2

ª ∪ © :  ∈ {1  } \ {1 2}ª¢ = 

We can now distinguish three cases:     =  and   .

Now if    after  steps of the above procedure we get

span
¡©
1  

ª ∪ ©ª :  ∈ {1  } \ {1 2  }¢ = 

which shows 2.a. If  = we have

span
¡©
1  

ª¢
= 

which shows 2.b.
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Let’s now show that it cannot be   . Suppose that is the case. Then, after  of the above

steps, we get span
¡
1  

¢
=  and therefore +1 is a linear combination of

¡
1  

¢
,

contradicting assumption 2.

Case 2.

In the present case, we assume that there exists a set 0 such that 0 6= ∅ and 0 ⊆ {1  }.
Define also 1 = {1  } \0 and 1 = #1. Clearly,

span
¡©
 :  ∈ 1

ª¢
= span

¡©
1  

ª¢
= 

and 1  . Then, repeating the “replacement” argument described in Case 1 applied to
©
 :  ∈ 1

ª
and

©
1  

ª
, we get

(i)   1 ≥ , i.e., Conclusion 1 holds and Conclusion 2a does not hold true, and

(ii) there exists ©
1   #1−

ª ⊆ © :  ∈ 1
ª ⊆ ©1  ª

such that

span
¡©
1   1   #1−

ª¢
= 

and therefore Conclusion 2b does hold true.

Proposition 194 Assume that  =
©
1 2  

ª
and  =

©
1 2  

ª
are bases of  . Then

 = .

Proof. By definition of basis we have that

span
¡©
1 2  

ª¢
=  and

©
1 2  

ª
are linearly independent.

Then from Lemma 193,  ≤ . Similarly,

span
¡©
1 2  

ª¢
=  and

©
1 2  

ª
are linearly independent,

and from Lemma 193,  ≤ .

The above Proposition allows to give the following Definition.

Definition 195 A vector space  has dimension  ∈ N if there exists a basis of  whose cardinality

is . In that case, we say that  has finite dimension (equal to ) and we write dim = . If a

vector space does not have finite dimension, it is said to be of infinite dimension.

Definition 196 The vector space {0} has dimension 0.

Example 197 1. A basis of R is
©
1    

ª
, where  is defined in Definition 55. That

basis is called canonical basis. Then dimR = .

2. Consider the vector space P () of polynomials of degree ≤ . The set
©
0 1 

ª
of

polynomials is a basis of P () and therefore dimP () = + 1.

Example 198 Put the example of infinite dimensional space from Hoffman and Kunze,

page 43.

Proposition 199 Let  be a vector space of dimension .

1.    vectors in  are linearly dependent;

2. If  =
©
1  

ª ⊆  is a linearly independent set, then it is a basis of  ;

3. If span
¡
1  

¢
=  , then

©
1  

ª
is a basis of 

Proof. Let
©
1  

ª
be a basis of  .

1. We want to show that
©
1  

ª
arbitrary vectors in  are linearly dependent. Suppose

otherwise, then by Lemma 193, we would have  ≤ , a contradiction.

2. It is the content of Lemma 193.2.a.
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3. We have to show that
©
1  

ª
are linearly independent. Suppose otherwise. Then there

exists  ∈ {1  } such that span
³n¡


¢
6=

o´
=  , but since

©
1  

ª
is linearly inde-

pendent, from Proposition 193 (the Replacement Lemma), we have  ≤ −1, a contradiction.

Remark 200 The above Proposition 199 shows that in the case of finite dimensional vector spaces,

one of the two conditions defining a basis is sufficient to obtain a basis.

Proposition 201 (Completion Lemma) Let  be a vector space of dimension  and
©
1  

ª ⊆
 be a linearly independent set, with6  ≤ . If   , then, there exists a set

©
1  −

ª
such that ©

1   1  −
ª

is a basis of  .

Proof. Take a basis
©
1  

ª
of  . Then from Conclusion 2.b in Lemma 193,

span
¡
1   1   −

¢
= 

Then from Proposition 199.3, we get the desired result.

Proposition 202 Let  be a subspace of an −dimensional vector space  . Then

1. dim ≤ ;

2. If dim = , then  =  .

Proof. 1. From Proposition 199.1,    vectors in  are linearly dependent. Since a basis of

 is a set of linearly independent vectors then dim ≤ .

2. If
©
1  

ª
is a basis of  , then span

¡
1  

¢
=  . Moreover, those vectors are 

linearly independent vectors in  . Therefore from Proposition 199.2., span
¡
1  

¢
=  .

Remark 203 As a trivial consequence of Proposition 201,  = span
©
1  

ª⇒ dim ≤ .

Example 204 Let  be a subspace of R3, whose dimension is 3. Then from the previous Propo-

sition, dim ∈ {0 1 2 3}. In fact,
1. If dim = 0, then  = {0}, i.e., a point,
2. if dim = 1, then  is a straight line trough the origin,

3. if dim = 2, then  is a plane trough the origin,

4. if dim = 3, then  = R3.

4.8 Coordinates

Definition 205 If  is a finite-dimensional vector space, an ordered basis for  is a finite sequence

of vectors which is linearly independent and spans  .

Remark 206 If the finite sequence 1   is an ordered basis for  , then the vectors in
©
1  

ª
have to be pairwise distinct, otherwise the finite sequence

¡
1  

¢
would be linearly dependent.We

will make some abuse of notation saying that the set©
1  

ª
is an ordered basis for  , i..e, a basis of  is a linearly independent “ordered set” which spans

 .

Proposition 207  =
©
1 2  

ª ⊆  is an ordered basis of  on a field  if and only if

∀ ∈  there exists a unique ()

=1 ∈  such that  =

P
=1 

.

6The inequality  ≤  follows from Proposition 199.1.
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Proof. [⇒] Suppose there exist ()=1  ()=1 ∈ R such that  =
P

=1 
 =

P
=1 

.

Then

0 =

X
=1


 −

X
=1


 =

X
=1

( − )


Since
©
1 2  

ª
are linearly independent,

∀ ∈ {1  }   −  = 0

as desired.

[⇐]
Clearly  = span (); we are left with showing that

©
1 2  

ª
are linearly independent.

Consider
P

=1 
 = 0. Moreover,

P
=1 0 ·  = 0. But since there exists a unique ()=1 ∈ R

such that  =
P

=1 
, it must be the case that ∀ ∈ {1  }   = 0.

The above proposition allows to give the following definition.

Definition 208 Given a vector space  on a field  with an ordered basis V = ©
1  

ª
, the

associated coordinate function is

V :  →   7→ V () := []V

where V () is the unique vectors of coefficients which give  as a linear combination of the

element of the ordered basis, i.e., V () := ()

=1 such that  =

P
=1 

.

4.9 Row and column span

We start our analysis with a needed lemma.

Lemma 209 Given a vector space  , if

1.
¡
1  

¢ ⊆  is linearly independent, and

2. +1 ∈  and
¡
1   +1

¢
is linearly dependent,

then

+1 is a linear combination of the vectors in
¡
1  

¢
.

Proof. Since
¡
1  

¢
is linearly dependent,

∃ ∈ {1   + 1}  ¡¢∈{1+1}\{} such that  = X
∈{1+1}\{}




If  =  + 1we are done. If  6=  + 1, without loss of generality, take  = 1. Then

∃ ¡¢∈{1+1}\{1} such that 1 = +1X
=2


 

If +1 = 0, we would have 
1 −P

=2 
 = 0, contradicting Assumption 1 Then

+1 =
1

+1

⎛⎝ 1 −
X

=2



⎞⎠ 

Remark 210 Let  be a vector space and  ⊆  ⊆  . Then,

1. span  ⊆ span  ;

2. span (span ) = span .

Definition 211 For any  ∈M (),

the row rank of  is the dim(row span of );

the column rank of  is the dim(col span of )
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Proposition 212 For any  ∈M (), row rank of  is equal to column rank of .

Proof. Let  be an arbitrary ×  matrix⎡⎢⎢⎢⎢⎣
11  1  1


1    


1    

⎤⎥⎥⎥⎥⎦
Suppose the row rank is  ≤  and the following  vectors form a basis of the row space:⎡⎢⎢⎢⎢⎣

1 = [11  1  1]



 = [1    ]



 = [1    ]

⎤⎥⎥⎥⎥⎦
Then, each row vector of  is a linear combination of the above vectors, i.e., we have

∀ ∈ {1 }   =

X
=1



or

∀ ∈ {1 }  £
1    

¤
=

X
=1

 [1    ] 

and setting the  component of each of the above vector equations equal to each other, we have

∀ ∈ {1  } and ∀ ∈ {1 }   =

X
=1

 

and

∀ ∈ {1  } 

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 =

P
=1 1 



 =
P

=1  



 =
P

=1  

or

∀ ∈ {1  } 

⎡⎢⎢⎢⎢⎣
1







⎤⎥⎥⎥⎥⎦ =

X
=1



⎡⎢⎢⎢⎢⎣
1







⎤⎥⎥⎥⎥⎦ 
i.e., each column of  is a linear combination of the  vectors⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
11


1


1

⎞⎟⎟⎟⎟⎠  

⎛⎜⎜⎜⎜⎝
1







⎞⎟⎟⎟⎟⎠  

⎛⎜⎜⎜⎜⎝
1







⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ 

Then, from Remark 203,

dim col span  ≤  = row rank  (4.16)

i.e.,

col rank  ≤ row rank 
From (416) which holds for arbitrary matrix , we also get

dim col span  ≤ row rank   (4.17)
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Moreover,

dim col span   151
= dim row span  := row rank 

and

row rank  := dim row span   151
= dimcol span 

Then, from the two above equalities and (417), we get

row rank  ≤ dim col span  (4.18)

and (416) and (418) gives the desired result.

Proposition 213 For any  ∈M (),

1. the row rank of  is equal to the maximum number of linearly independent rows of ;

2. the column rank of  is equal to the maximum number of linearly independent columns of .

Proof. 1.

Let 1 := row rank of  and 2 :=maximum number of linearly independent rows of . Assume

our claim is false and therefore, either a. 1  2, or  1  2

a.

Let (1  2) a finite sequence of linearly independent rows of Since, by assumption, 2 is

the maximum number of linearly independent rows of , then, from Lemma 209, the other rows

of  are a linear combination of 1   2 and from Lemma 192, span(1  2) = row span.

Then, (1  2) is a basis of span  and therefore 1 := row rank := dim row span = 2,

contradicting the assumpiton of case a.

b.

In this case we would have 2 linearly independent vectors in a vector space of dimension 1,

with 2  1, contradicting Proposition 199.1 .

2.

The proof is basically the same as the above one.

Corollary 214 For every  ∈M (),

row rank  = maximum number of linearly independent rows of  =

= maximum number of linearly independent columns of  = col rank 

(4.19)

Proof. It follows from Propositions 212 and 213.

Exercise 215 Check the above result on the following matrix⎡⎣ 1 2 3

5 1 6

3 7 10

⎤⎦ 
4.10 Exercises

Problem sets: 1,2,3,4,5,6,7.

From Lipschutz (1991), starting from page 162:

5.3, 5.7, 5.8, 5.9, 5.10, 5.12 → 5.15, 5.17 → 5.23, 5.24 → 5.29, 5.31 → 5.34, 5.46 → 5.49.



Chapter 5

Determinant and rank of a matrix

In this chapter we are going to introduce the definition of determinant, an useful tool to study

linear dependence, invertibility of matrices and solutions to systems of linear equations.

5.1 Definition and properties of the determinant of a matrix

To motivate the definition of determinant, we present an informal discussion of a way to find

solutions to the linear system with two equations and two unknowns, shown below.½
111 + 122 = 1
211 + 222 = 2

(5.1)

The system can be rewritten as follows

 = 

where

 =

∙
11 12
21 22

¸
  =

∙
1
2

¸
  =

∙
1
2

¸


Let’s informally discuss how to find solutions to system (51). If 22 6= 0 and 12 6= 0, multiplying
both sides of the first equation by 22, of the second equation by −12 and adding up, we get

11221 + 12222 − 12211 − 12222 = 221 − 122

Therefore, if

1122 − 1221 6= 0
we have

1 =
122 − 212

1122 − 1221
(5.2)

In a similar manner1 we have

2 =
211 − 121

1122 − 1221
(5.3)

We can then the following preliminary definition: given  ∈M22, the determinant of  is

det  = det

∙
11 12
21 22

¸
:= 1122 − 1221

Using the definition of determinant, we can rewrite (52) and (53)as follows.

1 =

det

∙
1 12
2 22

¸
det 

and 2 =

det

∙
11 1
21 2

¸
det

1Assuming 21 6= 0 and 11 6= 0, multiply both sides of the first equation by 21, of the second equation by −11
and then add up.

67
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We can now present the definition of the determinant of a square matrix × for arbitrary
 ∈ N.

Definition 216 Given   1 and  ∈M ( ), ∀  ∈ {1  }, we call  ∈ M (− 1 − 1) the
matrix obtained from  erasing the −  row and the  −  column.

Definition 217 Given  ∈M (1 1), i.e.,  = [] with  ∈ R. The determinant of  is denoted by

det and we let det := . For N\ {0 1}, given  ∈M ( ), we define the determinant of  as

det :=

X
=1

(−1)1+1 det1

Observe that [1 ]


=1
is the first row of , i.e.,

det :=

X
=1

(−1)1+1 () det1

Example 218 For  = 2, we have

det

∙
11 12
21 22

¸
=

2X
=1

(−1)1+1 det1 = (−1)1+111 det11 + (−1)1+212 det12 =

= 1122 − 1221

and we get the informal definition given above.

Example 219 For  = 3, we have

det = det

⎡⎣ 11 12 13
21 22 23
31 32 33

⎤⎦ = (−1)1+111 det11 + (−1)1+212 det12 + (−1)1+313 det13

Definition 220 Given  = [ ] ∈M ( ), , ∀  det is called minor of  in ;

(−1)+ det

is called cofactor of  in .

Theorem 221 Given  ∈M ( ), det is equal to the sum of the products of the elements of any
rows or column for the corresponding cofactors, i.e.,

∀ ∈ {1 }  det =
X
=1

(−1)+ () det (5.4)

and

∀ ∈ {1 }  det =
X
=1

(−1)+ () det (5.5)

Proof. Omitted. We are going to omit several proofs about determinants. There are different

ways of introducing the concept of determinant of a square matrix. One of them uses the concept of

permutations - see, for example, Lipschutz (1991), Chapter 7. Another one is an axiomatic approach

- see, for example, Lang (1971) - he introduces (three) properties that a function  : M ( )→ R
has to satisfy and then shows that there exists a unique such function, called determinant. Following

the first approach the proof of the present theorem can be found on page 252, in Lipschutz (1991)

Theorem 7.8, or following the second approach, in Lang (1971), page 128, Theorem 4.

Definition 222 The expression used above for the computation of det in (5.4) is called “(Laplace)

expansion” of the determinant by row 

The expression used above for the computation of det in (5.5) is called “(Laplace) expansion”

of the determinant by column .
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Definition 223 Consider a matrix × Let 1 ≤  ≤  A  −  order principal submatrix

(minor) of  is the (determinant of the) square submatrix of  obtained deleting (− ) rows and

(− ) columns in the same position.

Theorem 224 (Properties of determinants)

Let the matrix  = [ ] ∈M ( ) be given. Properties presented below hold true even if words
“column, columns” are substituted by the words “row, rows”.

1. det = det .

2. if two columns are interchanged, the determinant changes its sign,.

3. if there exists  ∈ {1  } such that  () =
P

=1 
, then

det

"
1 ()  

X
=1


   ()

#
=

X
=1

 det
£
1 ()      ()

¤


i.e., the determinant of a matrix which has a column equal to the linear combination of some

vectors is equal to the linear combination of the determinants of the matrices in which the

column under analysis is each of the vector of the initial linear combination, and, therefore,

∀ ∈ R and ∀ ∈ {1  },

det
£
1 ()    ()    ()

¤
=  det

£
1 ()    ()    ()

¤
=  det

4. if ∃ ∈ {1  } such that  () = 0, then det = 0, i.e., if a matrix has column equal to

zero, then the determinant is zero.

5. if ∃   ∈ {1  } and  ∈ Rsuch that  () =  (), then det = 0, i.e., the determi-

nant of a matrix with two columns proportional one to the other is zero.

6. If ∃ ∈ {1  } and 1  −1 +1   ∈ R such that  () =
P

 6= 
 (), then

det = 0, i.e., if a column is equal to a linear combination of the other columns, then

det = 0.

7.

det

⎡⎣1 ()    () +
X
 6=

 ·  ()    ()

⎤⎦ = det
8. ∀ ∗ ∈ {1  } P

=1  ·(−1)+
∗
det∗ = 0, i.e., the sum of the products of the elements

of a column times the cofactor of the analogous elements of another column is equal to zero.

9. If  is triangular, det = 11 ·  · 22 · , i.e., if  is triangular (for example, diagonal),

the determinant is the product of the elements on the diagonal.

Proof. 1.

Consider the expansion of the determinant by the first row for the matrix  and the expansion

of the determinant by the first column for the matrix  .

2.

We proceed by induction. Let  be the starting matrix and 0the matrix with the interchanged
columns.

P (2) is obviously true.
P (− 1)⇒ P ()
Expand det and det0 by a column which is not any of the interchanged ones (say column ):

det =

X
=1

(−1)+ () det

det0 =
X
=1

(−1)+ () det0
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Since ∀ ∈ {1  },  , 
0
 ∈ M (− 1 − 1), and they have interchanged column, by the

induction argument, det = −det0 , and the desired result follows.
3.

Observe that
X

=1


 =

Ã
X

=1





!

=1



Then,

det
£
1 ()  

P
=1 

   ()
¤
=

= det

⎡⎢⎢⎢⎢⎣1 ()  
X

=1



⎡⎢⎢⎢⎢⎣
1







⎤⎥⎥⎥⎥⎦    ()

⎤⎥⎥⎥⎥⎦ =

= det

⎡⎢⎢⎢⎢⎣1 ()  
⎡⎢⎢⎢⎢⎣
P

=1 

1

P
=1 




P
=1 




⎤⎥⎥⎥⎥⎦    ()

⎤⎥⎥⎥⎥⎦ =

=

X
=1

(−1)+
Ã

X
=1





!
det =

=
P

=1 
P

=1 (−1)+  det =
P

=1  det
£
1 ()      ()

¤


4.

It is sufficient to expand the determinant by the column equal to zero.

5.

Let :=
£
1 ()  1 ()  3 ()    ()

¤
and e := £

1 ()  1 ()  3 ()    ()
¤
be

given. Then det =  det
£
1 ()  1 ()  3 ()    ()

¤
=  det e. Interchanging the first

column with the second column of the matrix e, from property 2, we have that det e = −det e and
therefore det e = 0, and det =  det e = 0.
6.

It follows from 3 and 5.

7.

It follows from 3 and 6.

8.

It follows from the fact that the obtained expression is the determinant of a matrix with two

equal columns.

9.

It can be shown by induction and expanding the determinant by the firs row or column, choosing

one which has all the elements equal to zero excluding at most the first element. In other words, in

the case of an upper triangular matrix, we can say what follows.

det

∙
11 12
0 22

¸
= 11 · 22

det

⎡⎢⎢⎢⎢⎢⎣
11 12 13  1
0 22 23  2
0 0 33 3


. . .

0  0  

⎤⎥⎥⎥⎥⎥⎦ = 11 det

⎡⎢⎢⎢⎣
22 23  2
0 33 3

. . .

 0  

⎤⎥⎥⎥⎦ = 11 · 22 · 33 · 

Theorem 225 For any  ∈M ( ), det() = det · det
Proof. Exercise.

Definition 226  ∈M ( ) is called nonsingular if det 6= 0.
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5.2 Rank of a matrix

Definition 227 Given  ∈ M (), a square submatrix of  of order  ≤ min {} is a matrix
obtained considering the elements belonging to  rows and  columns of .

Definition 228 Given  ∈ M (), the rank of  is the greatest order of square nonsingular

submatrices of .

Remark 229 rank ≤ min {}.

To compute rank , with  ∈ M (), we can proceed as follows.

1. Consider  = min {}, and the set of square submatrices of  of order . If there exists

a nonsingular matrix among them, then rank  = . If all the square submatrices of  of order 

are singular, go to step 2 below.

2. Consider − 1, and then the set of the square submatrices of  of order − 1. If there exists
a nonsingular matrix among them, then rank  = − 1. If all square submatrices of order − 1are
singular, go to step 3.

3. Consider  − 2 ...
and so on.

Remark 230 1. rank  = .

2. The rank of a matrix with a zero row or column is equal to the rank of that matrix without

that row or column, i.e.,

rank

∙


0

¸
= rank

£
 0

¤
= rank

∙
 0

0 0

¸
= rank 

That result follows from the fact that the determinant of any square submatrix of  involving

that zero row or columns is zero.

3. From the above results, we also have that

rank

∙
 0

0 0

¸
= 

We now describe an easier way to the compute the rank of , which in fact involves elementary

row and column operations we studied in Chapter 1.

Proposition 231 Given 0 ∈ M (),

h  is equivalent to 0i⇔ hrank  = rank 0i

Proof. [⇒] Since  is equivalent to 0, it is possible to go from  to 0 through a finite number
of elementary row or column operations. In each step, in any square submatrix ∗ of  which has
been changed accordingly to those operations, the elementary row or column operations 1, 2 and 3

(i.e., 1. row or column interchange, 2. row or column scaling and 3. row or column addition) are

such that the determinant of ∗ remains unchanged or changes its sign (Property 2, Theorem 224),
it is multiplied by a nonzero constant (Property 3), remains unchanged (Property 7), respectively.

Therefore, each submatrix ∗ whose determinant is different from zero remains with determinant
different from zero and any submatrix ∗ whose determinant is zero remains with zero determinant.
[⇐]
From Corollary 160.2 2, we have that there exist unique b and b0 such that

 is equivalent to

∙
 0

0 0

¸
2That results says what follows:

For any  ∈ M (), there exist invertible matrices  ∈ M () and  ∈ M ( ) and a unique number
 ∈ {0 1 min {}} such that  is equivalent to

 =


 0

0 0
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and

0 is equivalent to
∙
0 0

0 0

¸


Moreover, from [⇒] part of the present proposition, and Remark 230

 = rank

∙
 0

0 0

¸
= b

and

0 = rank
∙
0 0

0 0

¸
= b0

Then, by assumption, b = b0 := , and  and 0 are equivalent to∙
 0

0 0

¸
and therefore  is equivalent to 0

Example 232 Given ⎡⎣ 1 2 3

2 3 4

3 5 7

⎤⎦
we can perform the following elementary rows and column operations, and cancellation of zero

row and columns on the matrix:⎡⎣ 1 2 3

2 3 4

3 5 7

⎤⎦ 
⎡⎣ 1 2 3

2 3 4

0 0 0

⎤⎦  ∙ 1 2 3

2 3 4

¸


∙
1 1 3

2 1 4

¸


∙
1 1 0

2 1 1

¸


∙
1 1 0

0 0 1

¸


∙
0 1 0

0 0 1

¸


∙
1 0

0 1

¸


Therefore, the rank of the matrix is 2.

5.3 Inverse matrices (continued)

Using the notion of determinant, we can find another way of analyzing the problems of i. existence

and ii. computation of the inverse matrix. To do that, we introduce the concept of adjoint matrix.

Definition 233 Given a matrix ×, we call adjoint matrix of , and we denote it by  ,

the matrix whose elements are the cofactors3 of the corresponding elements of  .

Remark 234 In other words to construct  

1. construct  ,

2. consider the cofactors of each element of  .

Example 235

 =

∙
1 2

0 2

¸
  =

∙
1 0

2 2

¸
   =

∙
2 −2
0 1

¸
Observe that ∙

1 2

0 2

¸ ∙
2 −2
0 1

¸
=

∙
2 0

0 2

¸
= (det) · 

3From Definition 220, recall that given  = [ ] ∈ M (), ∀ 

(−1)+ det

is called cofacor of  in .
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Example 236

 =

⎡⎣ 1 2 3

0 1 2

1 2 0

⎤⎦   =

⎡⎣ 1 0 1

2 1 2

3 2 0

⎤⎦    =

⎡⎣ −4 6 1

2 −3 −2
−1 0 1

⎤⎦
Proposition 237 Given ×, we have

 ·  =   · = det ·  (5.6)

Proof. Making the product  ·  := , we have

1. ∀ ∈ {1  }, the  −  element on the diagonal of  is the expansion of the determinant

by the −  row and therefore is equal to det.

2. any element not on the diagonal of  is the product of the elements of a row times the

corresponding cofactor a parallel row and it is therefore equal to zero due to Property 8 of the

determinants stated in Theorem 224).

Example 238

det

⎡⎣ 1 2 3

0 1 2

1 2 0

⎤⎦ = −3
⎡⎣ 1 2 3

0 1 2

1 2 0

⎤⎦⎡⎣ −4 6 1

2 −3 −2
−1 0 1

⎤⎦ =
⎡⎣ −3 0 0

0 −3 0

0 0 −3

⎤⎦ = −3 · 
Proposition 239 Given an ×  matrix , the following statements are equivalent:

1. det 6= 0, i.e.,  is nonsingular;

2. −1 exists, i.e.,  is invertible;

3. rank  = ;

4. row rank = ;

5. the column vectors of the matrix  are linearly independent;

6. col rank = ;

7. the row vectors of the matrix  are linearly independent;

Proof. 1⇒ 2

From (56) and from the fact that det 6= 0, we have

 ·  
det

=
 

det
· = 

and therefore

−1 =
 

det
(5.7)

1⇐ 2

−1 =  ⇒ det
¡
−1

¢
= det  ⇒ det · det−1 = 1⇒ det 6= 0 (and det−1 6= 0).

1⇔ 3

It follows from the definition of rank and the fact that  is ×  matrix.

2⇒ 4

From (410), it suffices to show that h = 0⇒  = 0i. Since −1 exists,  = 0⇒ −1 =
−10⇒  = 0.

2⇐ 4

From Proposition 199.2, the  linearly independent column vectors
£
1 ()    ()   

 ()
¤

are a basis of R. Therefore, each vector in R is equal to a linear combination of those vectors.
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Then ∀ ∈ {1  } ∃ ∈ R such that the  −  vector  in the canonical basis is equal to£
1 ()    ()   

 ()
¤ ·  = , i.e.,£

1    
¤
=
£
1    

¤
or, from (34) in Remark 70, defined

 :=
£
1    

¤
 = 

i.e., −1 exists (and it is equal to ).
The remaining equivalences follow from Corollary 214.

Remark 240 From the proof of the previous Proposition, we also have that, if det 6= 0, then

det−1 = (det)−1.

Remark 241 The previous theorem gives a way to compute the inverse matrix as explained in

(57).

Example 242 1. ⎡⎣ 1 2 3

0 1 2

1 2 0

⎤⎦−1 = −1
3

⎡⎣ −4 6 1

2 −3 −2
−1 0 1

⎤⎦
2. ⎡⎣ 0 1 1

1 1 0

1 1 1

⎤⎦−1 =
⎡⎣ −1 0 1

1 1 −1
0 −1 1

⎤⎦
3. ⎡⎣ 0 1 2

3 4 5

6 7 8

⎤⎦−1 does not exist because det
⎡⎣ 0 1 2

3 4 5

6 7 8

⎤⎦ = 0
4. ⎡⎣ 0 1 0

2 0 2

1 2 3

⎤⎦−1 =
⎡⎣ 1 3

4
−1
2

1 0 0

−1 −1
4

1
2

⎤⎦
5. ⎡⎣  0 0

0  0

0 0 

⎤⎦−1 =
⎡⎣ 1


0 0

0 1


0

0 0 1


⎤⎦
if    6= 0.

5.4 Span of a matrix, linearly independent rows and columns,

rank

Proposition 243 Given  ∈M (), then

row rank  = rank 

Proof. First proof.

The following result which is the content of Corollary 160.5 plays a crucial role in the proof:

For any  ∈ M (), there exist invertible matrices  ∈ M () and  ∈ M ( ) and a
unique number  ∈ {0 1 min {}} such that

 is equivalent to  =

∙
 0

0 0

¸
.
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From the above result, Proposition 231 and Remark 230 , we have that

rank  = rank

∙
 0

0 0

¸
=  (5.8)

From Propositions 105 and 154, we have

row span  = row span ;

from Propositions 119 and 154, we have

col span  = col span  = col span

∙
 0

0 0

¸


From Corollary 214,

dim row span  = dimcol span 

Therefore

dim row span  = dimcol span

∙
 0

0 0

¸
=  (5.9)

where the last equality follows simply because

col span

∙
 0

0 0

¸
= col span

∙

0

¸


and the  column vectors of the matrix

∙

0

¸
are linearly independent and therefore, from Propo-

sition ?? , they are a basis of span

∙

0

¸
.

From (58) and (59), the desired result follows.

Second proof.

We are going to show that row rank  = rank .

Recall that

row rank  :=

*
 ∈ N such that
i .  row vectors of  are linearly independent,

ii. if   , any set of rows of  of cardinality   is linearly dependent.

+

We ant to show that

1. if row rank  = , then rank  = , and

2. if rank  = , then row rank  = .

1.

Consider the  l.i. row vectors of . Since  is the maximal number of l.i. row vectors, from

Lemma 209, each of the remaining (− ) row vectors is a linear combination of the  l.i. ones.

Then, up to reordering of the rows of , which do not change either row rank  or rank , there

exist matrices 1 ∈M ( ) and 2 ∈M (−  ) such that

rank  = rank

∙
1
2

¸
= rank 1

where the last equality follows from Proposition 231. Then  is the maximum number of l.i. row

vectors of 1 and therefore, from Proposition 212, the maximum number of l.i. column vectors of

1 Then, again from Lemma 209, we have that there exist 11 ∈ M ( ) and 12 ∈ M ( − )

such that

rank 1 = rank
£
11 12

¤
= rank 11

Then the square × matrix 11 contains  linearly independent vectors. Then from Proposition
239, the result follows.

2.
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By Assumption, up to reordering of rows, which do not change either row rank  or rank ,

 =

⎡⎢⎢⎣
  −  − 

 11 12 13
−  21 22 23

⎤⎥⎥⎦
with

rank 11 = 

Then from Proposition 239, row, and column, vectors of 12 are linearly independent. Then

from Corollary 185, the  row vectors of£
11 12 13

¤
are l.i.

Now suppose that the maximum number of l.i. row vectors of  are 0   (and the other −0
row vectors of  are linear combinations of them). Then from part 1 of the present proof, 

 = 0  , contradicting the assumption.

Remark 244 From Corollary 214 and the above Proposition, we have for any matrix ×, the
following numbers are equal.

1. rank  :=greatest order of square nonsingular submatrices of ,

2. row rank  := dim row span ,

3. max number of linear independent rows of ,

4. col rank  := dim col span ,

5. max number of linear independent columns of .

5.5 Exercises

Problem sets: 9,10

From Lipschutz (1991), starting from page 115:

4.13, 4.14;

starting from page 258:

7.1 → 7.10, 7.14 → 7.16, 7.44, 7.48.



Chapter 6

Linear functions

6.1 Definition

Definition 245 Given the vector spaces  and over the same field  , a function  :  →  is

linear if

1. ∀  ∈  ,  ( + ) =  () +  (), and

2. ∀ ∈  ∀ ∈  ,  () =  ().

Call  () the set of all such functions. Any time we write  (), we implicitly assume

that  and  are vector spaces on the same field  .

In other words,  is linear if it “preserves” the two basic operations of vector spaces.

Remark 246 1.  ∈  () iff ∀ ∈  and ∀  ∈   ( + ) =  () +  ();

2. If  ∈  (), then  (0) = 0: for arbitrary  ∈  ,  (0) =  (0) = 0 () = 0.

Example 247 Let  and  be vector spaces. The following functions are linear.

1. (identity function)

1 :  →  1 () = 

2. (null function)

2 :  →  2 () = 0

3.

∀ ∈   :  →   () = 

4. (projection function)

∀ ∈ N∀ ∈ N

+ : R+ → R + : ()
+
=1 7→ ()


=1 ;

5. (immersion function)

∀ ∈ N∀ ∈ N

+ : R → R+ + : ()

=1 7→ (()


=1  0) with 0 ∈ R

Example 248 Taken  ∈M (), then

 : R → R  () = 

is a linear function, as shown in part 3 in Remark 76.

Remark 249 Let  and  be vector spaces. If  ∈  (), then

  := {( ) ∈  ×  :  =  ()}

is a vector subspace of  ×  .

77
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Example 250 Let  be the vector space of polynomials in the variable . The following functions

are linear

1. The derivative defines a function D :  →  as

D :  7→ 0

where 0 is the derivative function of .
2. The definite integral from 0 to 1 defines a function  :  → R as

 :  7→
Z 1

0

 () 

Proposition 251 If  ∈  () is invertible, then its inverse −1 is linear.

Proof. Take arbitrary  0 ∈  and   ∈  . Then, since  is onto, there exist  0 ∈  such

that

 () =  and  (0) = 0

and by definition of inverse function

−1 () =  and −1 (0) = 0 

Then

+ 0 =  () +  (0) =  ( + 0)

where last equality comes from the linearity of . Then again by definition of inverse,

−1 (+ 0) =  + 0 = −1 () + −1 (0) 

6.2 Kernel and Image of a linear function

Definition 252 Assume that  ∈  (). The kernel of , denoted by ker  is the set

{ ∈  :  () = 0} = −1 (0) 

The Image of , denoted by Im  is the set

{ ∈  : ∃ ∈  such that  () = } =  ( ) 

Proposition 253 Given  ∈  (), then

1. ker  is a vector subspace of  and

2. Im  is a vector subspace of  .

Proof. 1.

Since  (0) = 0, then 0 ∈ ker .
Take 1 2 ∈ ker  and   ∈  . Then


¡
1 + 2

¢
= 

¡
1
¢
+ 

¡
2
¢
= 0

i.e., 1 + 2 ∈ ker .
2.

Since 0 ∈  and  (0) = 0, then 0 ∈ Im .

Take 1 2 ∈ Im  and   ∈  . Then for  ∈ {1 2} , ∃ ∈  such that 
¡

¢
= . Moreover,

1 + 2 =  () + 
¡
2
¢
= 

¡
1 + 2

¢
i.e., 1 + 2 ∈ Im .

Proposition 254 If span
¡©
1  

ª¢
=  and  ∈  (), then span

¡©

¡

¢ª

=1

¢
= Im .
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Proof. Taken  ∈ Im , there exists  ∈  such that  () = . Moreover, ∃ ()=1 ∈ R such
that  =

P
=1 

. Then

 =  () = 

Ã
X
=1




!
=

X
=1


¡

¢


as desired.

Remark 255 From the previous proposition, we have that if
©
1  

ª
is a basis of  , then

 ≥ dim span
³©


¡

¢ª

=1

´
= dim Im 

Example 256 Let  the vector space of polynomials and D3 :  →  ,  7→ 000, i.e., the third
derivative of . Then

kerD3 = set of polynomials of degree ≤ 2
since D3

¡
2 + + 

¢
= 0 and D3 () 6= 0 for   2. Moreover,

ImD3 = 

since every polynomial is the third derivative of some polynomial.

Proposition 257 (Dimension Theorem)If  is a finite dimensional vector space and  ∈  (),

then

dim = dimker  + dim Im 

Proof. (Idea of the proof.

1. Using a basis of ker  (with 1 elements) and a basis of Im  (with 2 elements) construct a

set with 1 + 2 elements which generates  .

2. Show that set is linearly independent (by contradiction), and therefore a basis of  , and

therefore dim = 1 + 2.)

Since ker  ⊆  and from Remark 255, ker  and Im  have finite dimension. Therefore, we can

define 1 = dimker  and 2 = dim Im .

Take an arbitrary  ∈  . Let ©
1  1

ª
be a basis of ker  (6.1)

and ©
1  2

ª
be a basis of Im  (6.2)

Then,

∀ ∈ {1  2}  ∃ ∈  such that  = 
¡

¢

(6.3)

From (62),

∃ = ()2=1 such that  () =
2X
=1


 (6.4)

Then, from (64) and (63) we get

 () =

2X
=1


 =

2X
=1


¡

¢

and from linearity of 

0 =  ()−
2X
=1


¡

¢
=  ()− 

Ã
2X
=1




!
= 

Ã
 −

2X
=1




!

i.e.,

 −
2X
=1


 ∈ ker  (6.5)
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From (61),

∃ ()=1 such that  −
2X
=1


 =

1X
=1




Summarizing, we have

∀ ∈ ∃ ()2=1 and ()1=1 such that  =
2X
=1


 +

1X
=1




Therefore, we found 1 + 2 vectors which generate  ; if we show that they are l .i., then, by

definition, they are a basis and therefore  = 1 + 2 as desired.

We want to show that

2X
=1


 +

1X
=1


 = 0 ⇒

³
()

2
=1 ,

¡

¢1
=1

´
= 0 (6.6)

Then

0 = 

⎛⎝ 2X
=1


 +

1X
=1




⎞⎠ =

2X
=1


¡

¢
+

1X
=1


¡

¢

From (61), i.e.,
©
1  1

ª
is a basis of ker , and from (63), we get

2X
=1

 = 0

From (62), i.e.,
©
1  2

ª
be a basis of Im ,

()
2
=1 = 0 (6.7)

But from the assumption in (66) and (67) we have that

1X
=1


 = 0

and since
©
1  1

ª
is a basis of ker , we get also that¡


¢1
=1

= 0

as desired.

Example 258 Let  and  be vector spaces, with dim = .

In 1. and 2. below, we verify the statement of the Dimension Theorem: in 3. and 4., we use

that statement.

1. Identity function  
dim Im  = 

dimker  = 0

2. Null function 0 ∈  ()

dim Im0 = 0

dimker 0 = 

3.  ∈ 
¡
R2R

¢


 ((1 2)) = 1

Since ker  =
©
(1 2) ∈ R2 : 1 = 0

ª
, {(0 1)} is a basis1 of ker  and

dimker  = 1

dim Im  = 2− 1 = 1
1 In Remark 337 we will present an algorithm to compute a basis of ker .
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4.  ∈ 
¡
R3R2

¢


 ((1 2 3)) =

∙
1 2 3

0 1 0

¸⎡⎣ 1
2
3

⎤⎦ 
Defined

 =

∙
1 2 3

0 1 0

¸


since

Im  =
©
 ∈ R2 : ∃ ∈ R3 such that  = 

ª
= span col  =  

and since the first two column vectors of  are linearly independent, we have that

dim Im  = 2

dimker  = 3− 2 = 1

Exercise 259 Let  ∈ L(R3R3) such that



⎛⎝ 





⎞⎠ 7→
⎛⎝  cos  −  sin 

 sin  +  cos 



⎞⎠
be given. Find ker  and Im  (Answer: ker  = {0}; Im  = R3).

6.3 Nonsingular functions and isomorphisms

Definition 260  ∈  () is singular if ∃ ∈  \ {0} such that  () = 0.

Remark 261 Thus  ∈  () is nonsingular if ∀ ∈  \ {0}   () 6= 0 i.e., ker  = {0}. Briefly,
 ∈  () is nonsingular ⇔ ker  = {0}.

Remark 262 In Remark 300, we will discuss the relationship between singular matrices and sin-

gular linear functions.

Example 263 1. Let  ∈ L(R3R3) be the projection mapping into the  plane, i.e.,
 : R3 → R3⎛⎝ 





⎞⎠ 7→
⎛⎝ 



0

⎞⎠
Then  is singular, since for any  ∈ R, (0 0 ) = (0 0 0).
2.  ∈ L(R3R3) defined in Example 259 is nonsingular, since ker  = {0}.

Proposition 264 If  ∈  () is nonsingular, then the image of any linearly independent set is

linearly independent.

Proof. Suppose
©
1  

ª
are linearly independent. We want to show that

©

¡
1
¢
   ()

ª
are linearly independent as well. Suppose

X
=1

 · 
¡

¢
= 0

Then



Ã
X
=1

 · 
!
= 0

and therefore
¡P

=1  · 
¢ ∈ ker  = {0}, where the last equality comes from the fact that  is

nonsingular. Then
P

=1  ·  = 0 and, since
©
1  

ª
are linearly independent, ()


=1 = 0, as

desired.
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Definition 265 Let two vector spaces  and  be given.  is isomorphic to  if there exists a

function  ∈  () which is one-to-one and onto.  is called an isomorphism from  to  .

Remark 266 By definition of isomorphism , if  is an isomorphism, the  is invertible and therefore,

from Proposition 251, −1is linear.

Remark 267 “To be isomorphic” is an equivalence relation.

Proposition 268 Any -dimensional vector space  on a field  is isomorphic to .

Proof. Since  and  are vector spaces, we are left with showing that there exists an isomor-

phism between them. Let v =
©
1  

ª
be a basis of  . Recall that we define

 :  →   7→ []v 

where  stands for “coordinates”.

1.  is linear. Given   ∈  , suppose

 =

X
=1


 and  =

X
=1




i.e.,

[]v = []

=1 and []v = []


=1 .

∀  ∈  and ∀1 2 ∈  ,

 +  = 

X
=1


 + 

X
=1


 =

X
=1

( + ) 


i.e.,

[ + ]v =  []

=1 +  []


=1 =  []v +  []v 

2.  is onto. ∀ ()=1 ∈ R, 
¡P

=1 

¢
= ()


=1.

3.  is one-to-one.  () =  () implies that  = , simply because  =
P

=1  ()
 and

 =
P

=1  ()
.

Proposition 269 Let  and  be finite dimensional vectors spaces on the same field  such that

 =
©
1  

ª
is a basis of  and

©
1  

ª
is a set of arbitrary vectors in  . Then there exists

a unique linear function  :  →  such that ∀ ∈ {1  },  ¡¢ = .

Proof. The proof goes the following three steps.

1. Define ;

2. Show that  is linear;

3. Show that  is unique.

1. Using the definition of coordinates, ∀ ∈  , define

 :  →   7→
X
=1

[]

 · 

where []

 denotes the − component of the vector [] . Recall that  ∈ R is the − element

in the canonical basis of R and defined  :=
³




´
=1
, we have



 =

⎧⎨⎩ 1   = 

0   6= 

Then ∀ ∈ {1  }, £¤

=  and


¡

¢
=

X
=1

£

¤

·  =

X
=1



 ·  =  
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2. Let   ∈  and   ∈  . Then

 ( + ) =

X
=1

[ + ]

 ·  =

X
=1

³
 []


 +  []




´
·  = 

X
=1

[]

 ·  + 

X
=1

[]

 · 

where the before the last equality follows from the linearity of [] - see the proof of Proposition 268

3. Suppose  ∈  () and ∀ ∈ {1  },  ¡¢ = . Then ∀ ∈  ,

 () = 

Ã
X
=1

[]

 · 

!
=

X
=1

[]

 · 

¡

¢
=

X
=1

[]

 ·  =  ()

where the last equality follows from the definition of .

Remark 270 Observe that if  and  are finite(nonzero) dimensional vector spaces, there is a

multitude of functions from  to  . The above Proposition says that linear functions are completely

determined by what “they do to the elements of a basis”of  .

Example 271 We want to find the unique linear mapping  : R2 → R2 such that

(1 2) = (2 3) and (0 1) = (1 4)

Observe that B := {(1 2) (0 1)} is a basis of R2. For any ( ) ∈ R2, there exist   ∈ R such that

( ) = (1 2) + (0 1) = ( 2+ )

i.e.,  =  and  = 2+  and therefore  =  and  = −2+ . Then,

( ) = ((1 2) + (0 1))
 linear
= (1 2) + (0 1) = (2 3) + (−2+ )(1 4) = (−5+ 4)

i.e.,

 : R2 → R2µ




¶
7→

µ


−5+ 4
¶

Proposition 272 Assume that  ∈  () Then,

 is one-to-one ⇔  is nonsingular

Proof. [⇒]
Take  ∈ ker . Then

 () = 0 =  (0)

where last equality follows from Remark 246. Since  is one-to-one,  = 0.

[⇐] If  () =  (), then  ( − ) = 0 and, since  is nonsingular,  −  = 0.

Proposition 273 Assume that  and  are finite dimensional vector spaces and  ∈  () Then,

1.  is one-to-one ⇒ dim ≤ dim ;

2.  is onto ⇒ dim ≥ dim ;

3.  is invertible ⇒ dim = dim .

Proof. The main ingredient in the proof is Proposition 257 , i.e., the Dimension Theorem.

1. Since  is one-to-one, from the previous Proposition, dimker  = 0. Then, from Proposition

257 (the Dimension Theorem), dim = dim Im . Since Im  is a subspace of  , then dim Im  ≤
dim .

2. Since  is onto iff Im  =  , from Proposition 257 (the Dimension Theorem), we get

dim = dimker  + dim ≥ dim

3.  is invertible iff  is one-to-one and onto.
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Proposition 274 Let  and  be finite dimensional vector space on the same field  . Then,

 and  are isomorphic ⇔ dim = dim

Proof. [⇒]
It follows from the definition of isomorphism and part 3 in the previous Proposition.

[⇐]
Assume that  and  are vector spaces such that dim = dim = . Then, from Proposition

268,  and  are isomorphic to  and from Remark 267, the result follows.

Proposition 275 Suppose  and  are vector spaces such that dim = dim =  and  ∈
 (). Then the following statements are equivalent.

1.  is nonsingular, i.e., ker  = {0} 
2.  is one-to-one,

3.  is onto,

4.  is an isomorphism.

Proof. [1⇔ 2] 

It is the content of Proposition 272.

[1⇒ 3]

Since  is nonsingular, then ker  = {0} and dimker  = 0. Then, from Proposition 257 (the

Dimension Theorem), i.e., dim = dimker  + dim Im , and the fact dim = dim , we get

dim = dim Im . Since Im  ⊆  and  is finite dimensional, from Proposition 202, Im  =  , i.e.,

 is onto, as desired.

[3⇒ 1]

Since  is onto, dim Im  = dim and from Proposition 257 (the Dimension Theorem), dim =

dimker + dim and therefore dimker  = 0, i.e.,  is nonsingular.

[1⇒ 4]

It follows from the definition of isomorphism and the facts that [1⇔ 2] and [1⇒ 3].

[4⇒ 1]

It follows from the definition of isomorphism and the facts that [2⇔ 1].

Definition 276 A vector space endomorphism is a linear function from a vector space  into itself.

6.4 Exercises

From Lipschutz (1991), starting from page 325:

9.3, 9.6, 9.9 → 9.11, 9.16 → 9.21, 9.26, 9.27, 9.31 → 9.35, 9.42 → 9.44; observe that Lipscutz

denotes L () by  ().



Chapter 7

Linear functions and matrices

In Remark 65 we have seen that the set of  ×  matrices with the standard sum and scalar

multiplication is a vector space, called M (). We are going to show that:

1. the set  () with naturally defined sum and scalar multiplication is a vector space, called

L ();
2. If dim =  and dim = , then L () and M () are isomorphic.

7.1 From a linear function to the associated matrix

Definition 277 Suppose  and  are vector spaces over a field  and 1 2 ∈  () and  ∈  .

1 + 2 :  →   7→ 1 () + 2 ()

1 :  →   7→ 1 ()

Proposition 278  () with the above defined operations is a vector space on  , denoted by

L ().

Proof. Exercise.1

Proposition 279 Compositions of linear functions are linear.

Proof. Suppose  ,  ,  are vector spaces over a field  1 ∈ L () and 2 ∈ L ( ). We

want to show that  := 2 ◦ 1 ∈ L ( ). Indeed, for any1 2 ∈  and for any 1 2 ∈  , we

have that


¡
1

1 + 2
2
¢
:= (2 ◦ 1)

¡
1

1 + 2
2
¢
= 2

¡
1
¡
1

1 + 2
2
¢¢
=

= 2
¡
11

¡
1
¢
+ 21

¡
2
¢¢
= 12

¡
1
¡
1
¢¢
+ 22

¡
1
¡
2
¢¢
= 1

¡
1
¢
+ 2

¡
2
¢


as desired.

Definition 280 Suppose  ∈ L () , v = ©1  ª is an ordered basis of  , u = ©1  ª
is an ordered basis of  . Then,

[]
u

v :=
£ £


¡
1
¢¤
u


£

¡

¢¤
u

 [ ()]u
¤ ∈M ()  (7.1)

where for any  ∈ {1  }, £ ¡¢¤
u
is a column vector, is called the matrix representation of 

relative to the basis v and u. In words, []
u
v is the matrix whose columns are the coordinates relative

to the basis of the codomain of  of the images of each vector in the basis of the domain of .

Remark 281 Observe that by definition of coordinates, there is a unique matrix representation of

a linear function.

1For a detailed proof see Lipschutz (1989), page 270.
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Definition 282 Suppose  ∈ L () , v = ©1  ª is a ordered basis of  , u = ©1  ª
is a ordered basis of  .

uv : L ()→M ()   7→ []
u

v defined in (71) 

If no confusion may arise, we will denote uv simply by .

Example 283 Given  ∈ L (  ) and a ordered basis v =
©
1  

ª
of  , then []

v

v = .

The proposition below shows that multiplying the coordinate vector of  relative to the ordered

basis v by the matrix []
u
v, we get the coordinate vector of  () relative to the ordered basis u.

Proposition 284 ∀ ∈  ,

[]
u
v · []v = [ ()]u (7.2)

Proof. Assume  ∈  . First of all observe that

[]
u
v · []v =

£ £

¡
1
¢¤
u


£

¡

¢¤
u

 [ ()]u
¤
⎡⎢⎢⎢⎢⎣
[]

1
v



[]

v



[]

v

⎤⎥⎥⎥⎥⎦ =
X
=1

[]

v ·
£

¡

¢¤
u


Moreover, from the linearity of the function u := []u, and using the fact that the composition

of linear functions is a continuous function, we get:

[ ()]u = u ( ()) = (u ◦ )
⎛⎝ X

=1

[]

v · 

⎞⎠
u

=

X
=1

[]

v · (u ◦ )

¡

¢
=

X
=1

[]

v ·
£

¡

¢¤
u


Example 285 Let’s verify equality (72) in the case in which

a.

 : R2 → R2 (1 2) 7→
µ

1 + 2
1 − 2

¶
b. the ordered basis v of the domain of  is½µ

1

0

¶


µ
0

1

¶¾


c. the ordered basis u of the codomain of  is½µ
1

1

¶


µ
2

1

¶¾


d.

 =

µ
3

4

¶


The main needed computations are presented below.

[]
u
v :=

∙∙


µ
1

0

¶¸
u



∙


µ
0

1

¶¸
u

¸
=

∙∙
1

1

¸
u



∙
1

−1
¸
u

¸
=

∙
1 −3
0 2

¸


[]v =

∙
3

4

¸


[ ()]u =

∙µ
7

−1
¶¸

u

=

∙ −9
8

¸


[]
u
v · []v =

∙
1 −3
0 2

¸ ∙
3

4

¸
=

∙ −9
8

¸
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7.2 From a matrix to the associated linear function

Given  ∈M ()  recall that ∀ ∈ {1 },  () denotes the −  row vector of , i.e.,

 =

⎡⎢⎢⎢⎢⎣
1 ()



 ()



 ()

⎤⎥⎥⎥⎥⎦
×

Definition 286 Consider vector spaces  and  with ordered basis v =
©
1  

ª
and u =©

1  
ª
, respectively. Given  ∈M ()  define

uv :  →   7→
X
=1

¡
 () · []v

¢ · 
Example 287 Take  =  = R2, v= E2, u =

½µ
1

1

¶


µ
2

1

¶¾
and  =

∙
1 −3
0 2

¸
. Then,

uv (1 2) :=
P2

=1

¡
 () · []E2

¢ ·  = µ£ 1 −3 ¤ ∙ 1
2

¸¶µ
1

1

¶
+

µ£
0 2

¤ ∙ 1
2

¸¶µ
2

1

¶
=

= (1 − 32)
µ
1

1

¶
+ 22

µ
2

1

¶
=

µ
1 − 32 + 42
1 − 32 + 22

¶
=

µ
1 + 2
1 − 2

¶
Proposition 288 uv defined above is linear, i.e., 

u
v ∈ L ().

Proof. ∀  ∈ R and ∀1 2 ∈  ,

uv
¡
1 + 2

¢
=
P

=1
 () · £1 + 2

¤
v
·  =P

=1
 () · ¡ £1¤

v
+ 

£
2
¤
v

¢ ·  =
= 

P
=1

 () · £1¤
v
·  + 

P
=1

 () · £2¤
v
·  = uv

¡
1
¢
+ uv

¡
2
¢


where the second equality follows from the proof of Proposition 268.

Definition 289 Given the vector spaces  and  with ordered basis v =
©
1  

ª
and u =©

1  
ª
, respectively, define

uv :M ()→ L () :  7→ uv 

If no confusion may arise, we will denote uv simply by .

Proposition 290  defined above is linear.

Proof. We want to show that ∀  ∈ R and ∀ ∈M (),

 (+ ) =  () +  ()

i.e.,

v+u = uv + vu

i.e., ∀ ∈  ,

v+u () = uv () + vu () 

Now,

v+u () =
P

=1

¡
 · () +  · ()

¢ · []v ·  =
= 

P
=1

 () · []v ·  + 
P

=1
 () · []v ·  = uv () + vu () 

where the first equality come from Definition 286.
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7.3 M () and L ( ) are isomorphic
Proposition 291 Given the vector space  and  with dimension  and , respectively,

M () and L () are isomorphic,
and

dimL () = 

Proof. Linearity of the two spaces was proved above. We want now to check that  presented

in Definition 289 is an isomorphism, i.e.,  is linear, one-to-one and onto. In fact, thanks to

Proposition 290, it is enough to show that  is invertible.

First proof.

1.  is one-to-one: see Theorem 2, page 105 in Lang (1971);

2.  is onto: see bottom of page 107 in Lang (1970).

Second proof.

1.  ◦  = L().
Given  ∈ L (), we want to show that ∀ ∈ 

 () = (( ◦ ) ()) ()
i.e., from Proposition 268,

[ ()]u = [(( ◦ ) ()) ()]u 
First of all, observe that from (72), we have

[ ()]u = []
u
v []v 

Moreover,

[(( ◦ ) ()) ()]u
(1)
=
£

¡
[]
u
v

¢
()
¤
u

(2)
=
£P

=1

¡
−  row of []

u
v

¢ · []v · ¤u (3)
=

=
£¡
−  row of []

u
v

¢ · []v¤=1 (4)= []
u
v · []v

where (1) comes from the definition of , (2) from the definition of , (3) from the definition of

[]u, (4) from the definition of product between matrices.

2.  ◦  = M().

Given  ∈M (), we want to show that ( ◦ ) () = . By definition of ,

 () = uv such that ∀ ∈  , uv () =

X
=1

 () · []v ·  (7.3)

By definition of ,

 ( ()) =
£
uv

¤u
v
.

Therefore, we want to show that
£
uv

¤u
v
= . Observe that from 7.3,

u
v

(1) =



=1 

()·[1]v· =



=1[1 ]·[100]· = 111++1++1



u
v

() =



=1

()·[ ]v· =



=1[1 ]·[010]· = 11++++



u
v

() =



=1 

()·[]v· =



=1[1 ]·[001]· = 11++++

(From the above, it is clear why in definition 280 we take the transpose.) Therefore,

£
uv

¤u
v
=

⎡⎢⎢⎢⎢⎣
11  1  1


1  


1    

⎤⎥⎥⎥⎥⎦ = 

as desired.

The fact that dimL () follows from Proposition 274.
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Proposition 292 Let the following objects be given.

1. Vector spaces  with ordered basis v =
©
1     

ª
,  with ordered basis u =©

1    
ª
and  with ordered basis w =

©
1    

ª
;

2. 1 ∈ L () and 2 ∈ L ( ).

Then

[2 ◦ 1]wv = [2]wu · [1]uv 
or

wv (2 ◦ 1) = wu (2) · uv (1) 

Proof. By definition2

[1]
u
v =

£ £
1
¡
1
¢¤
u


£
1
¡

¢¤
u

 [1 (
)]u

¤
× :=

:=

⎡⎢⎢⎢⎢⎣
11
¡
1
¢

 11
¡

¢

 11 (
)



1
¡
1
¢

1
¡

¢

1 (
)



1
¡
1
¢

 1
¡

¢

 1 (
)

⎤⎥⎥⎥⎥⎦ :=
⎡⎢⎢⎢⎢⎣

111  
1
1  11



11 

1 1



11  

1  

1

⎤⎥⎥⎥⎥⎦ :=

:=
h


1

i
∈{1}∈{1}

:=  ∈M () 

and therefore ∀ ∈ {1  }  1
¡

¢
=
P

=1 

1 · .

Similarly,

[2]
w
u =

£ £
2
¡
1
¢¤
w


£
2
¡

¢¤
w

 [2 (
)]w

¤
× :=

:=

⎡⎢⎢⎢⎢⎣
12
¡
1
¢

 12
¡

¢

 12 (
)



2
¡
1
¢

2
¡

¢

2 (
)





2

¡
1
¢

 

2

¡

¢

 

2 (

)

⎤⎥⎥⎥⎥⎦ :=
⎡⎢⎢⎢⎢⎣

112  12  12


12 2 2



1
2  


2  


2

⎤⎥⎥⎥⎥⎦ :=

:=
£
2
¤
∈{1}∈{1} :=  ∈M () 

and therefore ∀ ∈ {1 }  2
¡

¢
=
P

=1 

2 · .

Moreover, defined  := (2 ◦ 1), we get

[2 ◦ 1]wv =
£ £


¡
1
¢¤
w


£

¡

¢¤
w

 [ ()]w
¤
× :=

:=

⎡⎢⎢⎢⎢⎣
1
¡
1
¢

 1
¡

¢

 1 ()




¡
1
¢


¡

¢

 ()




¡
1
¢

 
¡

¢

  ()

⎤⎥⎥⎥⎥⎦ :=
⎡⎢⎢⎢⎢⎣

11  1  1



1  



1    

⎤⎥⎥⎥⎥⎦ :=

:=
£

¤
∈{1}∈{1} :=  ∈M ( ) 

and therefore ∀ ∈ {1  }   ¡¢ =P
=1 

 · .

Now, ∀ ∈ {1  }


¡

¢
= (2 ◦ 1)

¡

¢
= 2

¡
1
¡

¢¢
= 2

³P
=1 


1 · 

´
=P

=1 

1 · 2

¡

¢
=
P

=1 

1 ·
P

=1 

2 ·  =

P
=1

P
=1 


2 · 1 · 

2

1

1

u
  [1 (

)]u are column vectors.
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The above says that ∀ ∈ {1  }, the  −  column of  is⎡⎢⎢⎢⎢⎣
P

=1 
1
2 · 1P

=1 

2 · 1P

=1 

2 · 1

⎤⎥⎥⎥⎥⎦
On the other hand, the  −  column of  · is

⎡⎢⎢⎢⎢⎣
[1 row of ] · [ −  column of ]



[ −  row of ] · [ −  column of ]



[−  row of ] · [ −  column of ]

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

£
112  12  12

¤ ·
⎡⎢⎢⎢⎢⎣


1
1



1



1

⎤⎥⎥⎥⎥⎦


£
12 2 2

¤ ·
⎡⎢⎢⎢⎢⎣


1
1



1



1

⎤⎥⎥⎥⎥⎦


£

1
2  


2  


2

¤ ·
⎡⎢⎢⎢⎢⎣


1
1



1



1

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
P

=1 
1
2 · 1P

=1 

2 · 1P

=1 

2 · 1

⎤⎥⎥⎥⎥⎦

as desired.

7.4 Some related properties of a linear function and associ-

ated matrix

In this section, the following objects will be given: a vector space  with a ordered basis v =©
1  

ª
; a vector space  with a ordered basis u =

©
1  

ª
;  ∈ L () and  ∈M ().

From Remark 152, recall that

col span  = { ∈ R : ∃  ∈ R such that  = } ;

Lemma 293 u (Im ) = col span []
u
v.

Proof. [⊆]
 ∈ u (Im )

def ⇒ ∃ ∈ Im  such that u () = []u = 
def Im ⇒ ∃ ∈  such that  () = ⇒

∃ ∈  such that [ ()]u = 
Prop. 284⇒ ∃ ∈  such that []

u

v · []v =  ⇒  ∈ col span []uv.
[⊇]
We want to show that  ∈ col span []uv ⇒  ∈ u (Im ), i.e., ∃ ∈ Im  such that  = []u.

 ∈ col span []uv ⇒ ∃ ∈ R such that []uv · = 
def ⇒ ∃ =P

=1 
 such that []

u
v · []v =


Prop. 284⇒ ∃ ∈  such that [ ()]u = 

=()⇒ ∃ ∈ Im  such that  = []u, as desired.

Lemma 294 dim Im  = dimcol span []
u
v = rank []

u
v.

Proof. It follows from the above Lemma, the proof of Proposition 268, which says that u is

an isomorphism and Proposition 274, which says that isomorphic spaces have the same dimension.

Proposition 295 Given  ∈ L (),
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1.  onto ⇔ rank []
u
v = dim ;

2.  one-to-one ⇔ rank []
u

v = dim ;

3.  invertible ⇔ []
u
v invertible, and in that case

£
−1
¤v
u
=
£
[]
u
v

¤−1
,

i.e.,

Proof. Recall that from Remark 261 and Proposition 272,  one-to-one ⇔  nonsingular ⇔
ker  = {0}.

1.  onto ⇔ Im  =  ⇔ dim Im  = dim
Lemma 294⇔  []

u
v = dim .

2.  one-to-one
Proposition 257⇔ dim Im  = dim

Lemma 294⇔  []
u
v = dim .

3. The first part of the statement follows from 1. and 2. above. The second part is proven below.

First of all observe that for any vector space  with ordered basis w,  ∈ L ( ) and

if  has a ordered basis w =
©
1  

ª
, we also have that

[ ]
w
w =

££


¡
1
¢¤
w
 
£


¡

¢¤
w

¤
= 

Moreover, if  is invertible

−1 ◦  = 

and £
−1 ◦ ¤v

v
= [ ]

v

v = 

Since £
−1 ◦ ¤v

v
=
£
−1
¤v
u
· []uv 

the desired result follows.

Remark 296 From the definitions of  and , we have what follows:

1.

 =  ( ()) = 
¡
[]
u
v

¢
= u[]uvv



2.

 =  ( ()) = 
¡
uv

¢
=
£
uv

¤u
v


Lemma 297 u
¡
Im uv

¢
= col span.

Proof. Recall that  () = []
u
v and  () = uv. For any  ∈ L (),

u (Im )
 293

= col span []
u
v

 282
= col span  () (7.4)

Take  = uv. Then from (74) we have

u
¡
Im uv

¢
= col span 

¡
uv

¢  2962
= col span 

Lemma 298 dim Im uv = dimcol span = rank.

Proof. Since Lemma 294 holds for any  ∈ L () and uv ∈ L (), we have that

dim Im uv = dimcol span
£
uv

¤u
v

 2962
= dimcol span 

 244
= rank 

Proposition 299 Let  ∈M () be given.
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1. rank = ⇔ uv onto;

2. rank = ⇔ uv one-to-one;

3.  invertible ⇔ uv invertible, and in that case 
v
−1u =

¡
uv

¢−1


Proof. 1. rank = 
Lemma 298⇔ dim Im uv = ⇔ uv onto;

2. rank = 
(1)⇔ dimker uv = 0

Proposition 272⇔ uv one-to-one,

where (1) the first equivalence follows form the fact that  = dimker uv + dim Im uv, and

Lemma 298.

3. First statement:  invertible
Prop. 239⇔ rank =  = 

1 and 2 above⇔ uv invertible.

Second statement: Since uv invertible, there exists
¡
uv

¢−1
:  →  such that

 =
¡
uv

¢−1 ◦ uv
Then

 = vv ( )
Prop. 292
= vu

³¡
uv

¢−1´ · uv ¡uv¢ Rmk. 296= vu

³¡
uv

¢−1´ ·
Then, by definition of inverse matrix,

−1 = vu

³¡
uv

¢−1´
and

vu
¡
−1

¢
= (vu ◦ vu)

³¡
uv

¢−1´
= L()

³¡
uv

¢−1´
=
¡
uv

¢−1


Finally, from the definition of vu, we have

vu
¡
−1

¢
= v−1u

as desired.

Remark 300 Consider  ∈M ( ). Then from Proposition 299,

 invertible ⇔ uv invertible;

from Proposition 239,

 invertible ⇔  nonsingular;

from Proposition 275,

uv invertible ⇔ uv nonsingular.

Therefore,

 nonsingular ⇔ uv nonsingular.

Symmetrically,

[]
u
v invertible ⇔ []

u
v nonsingular ⇔  invertible⇔  nonsingular.

Proposition 301 Let  ∈ L() be given. Then there exists a ordered basis V of  and a ordered

basis U of  such that

[]UV =
∙
 0

0 0

¸


where  is the -square identity matrix and  = []UV .

Proof. Suppose dim =  and dim = . Let  = ker  and  0 = . By assumption,

[]UV = . Then, by Lemma 294,

dim  = []UV = 

Therefore, from the Dimension Theorem

dimker = dim − dim  = − 
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Let W = {1  −} be a ordered basis of  . Then, from the Completion Lemma, there

exists {1  } ∈  such that V := {1   1  −} is a ordered basis of  . For any
 ∈ {1  }, set  = (). Then, U 01  } is a ordered basis of  0. Then, again from the

Completion Lemma, there exists {+1  } ∈  such that U := {1   +1  } is a
ordered basis of  . Then,

(1) = 1 = 11 + 02 + + 0 + 0+1 + + 0

(2) = 2 = 01 + 12 + + 0 + 0+1 + + 0

· · · · · · · · ·
() =  = 01 + 02 + + 1 + 0+1 + + 0

(1) = 0 = 01 + 02 + + 0 + 0+1 + + 0

· · · · · · · · ·
(−) = 0 = 01 + 02 + + 0 + 0+1 + + 0

i.e.,

[]UV =
∙
 0

0 0

¸


7.5 Some facts on L (RR)

In this Section, we specialize (basically repeat) the content of the previous Section in the important

case in which
 = R v =

¡

¢
=1

:= e

 = R u =
¡

¢
=1

:= e

 =  (7.5)

and therefore

 ∈ L (RR) 
From L (RR) to M ().

From Definition 280, we have

[]
e
e
=
h £


¡
1
¢¤
e


£

¡

¢¤
e

 [ ()]e

i
=

=
£

¡
1
¢

 
¡

¢

  ()
¤
:= [] ;

(7.6)

from Definition 282,

 := ee : L (RR)→M ()   7→ [] ;

from Proposition 284,

[] ·  =  ()  (7.7)

From M () to L (RR).
From Definition 286,

 := ee : R
 → R (7.8)

 () =
P

=1

¡
 () · []e

¢ ·  =

=

⎡⎢⎢⎢⎢⎣
1 () · 



 () · 


 () · 

⎤⎥⎥⎥⎥⎦ = 

(7.9)
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From Definition 289,

 := ee :M ()→ L (RR) :  7→  

From Proposition 291,

M () and L (RR) are isomorphic.

From Proposition 292, if 1 ∈ L (RR) and 2 ∈ L (RR), then

[2 ◦ 1] = [2] · [1]  (7.10)

Some related properties.

From Proposition 295, given  ∈ L (RR),
1.  onto ⇔ rank [] = ;

2.  one-to-one ⇔ rank [] = ;

3.  invertible ⇔ [] invertible, and in that case
£
−1
¤
= []

−1
.

From Remark 296,

1.

 =  ( ()) =  ([]) = []

2.

 =  ( ()) =  () = [] 

From Proposition 299, given  ∈M (),

1. rank = ⇔  onto;

2. rank = ⇔  one-to-one;

3.  invertible ⇔  invertible, and in that case −1 = ()
−1



Remark 302 From (77) and Remark 152,

Im  := { ∈ R : ∃ ∈ R such that  = [] · } = col span []  (7.11)

Then, from the above and Remark 244,

dim Im  = rank [] = max# linearly independent columns of []  (7.12)

Similarly, from (79) and Remark 244, we get

Im  := { ∈ R : ∃ ∈ R such that  =  ·  = } = col span 

and

dim Im  = rank  = max# linearly independent columns of 

Remark 303 Assume that  ∈ L (RR). The above Remark gives a way of finding a ordered
basis of Im : it is enough to consider a number equal to rank [] of linearly independent vectors

among the column vectors of []. In a more detailed way, we have what follows.

1. Compute [].

2. Compute dim Im  = rank [] := .

3. To find a ordered basis of Im , we have to find  vectors which are a. linearly independent,

and b. elements of Im . Indeed, it is enough to take  linearly independent columns of []. Observe

that for any  ∈ {1 },  ([]) ∈ Im  = col span [].

To get a “simpler” basis, you can make elementary operations on those column. Recall that

elementary operations on linearly independent vectors lead to linearly independent vectors, and that

elementary operations on vectors lead to vector belonging to the span of the set of starting vectors.

Example 304 Given  ∈ N with  ≥ 3, and the linear function

 : R → R3  := ()

=1 7→

⎧⎨⎩
P

=1 
2
2 + 3
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find a basis forIm .

1.

[] =

⎡⎣ 1 1 1 1  1

0 1 0 0  0

0 1 1 0  0

⎤⎦
2.

rank

⎡⎣ 1 1 1

0 1 0

0 1 1

⎤⎦ = rank
⎡⎣ 1 0 1

0 1 0

0 0 1

⎤⎦ = 3
3. A basis of Im  is given by the column vectors of⎡⎣ 1 0 1

0 1 0

0 0 1

⎤⎦ 
Remark 305 From (77), we have that

ker  = { ∈ R : [] = 0} 
i.e., ker  is the set, in fact the vector space, of solution to the systems [] = 0. In Remark

337, we will describe an algorithm to find a basis of the kernel of an arbitrary linear function.

Remark 306 From Remark 302 and Proposition 257 (the Dimension Theorem), given  ∈ L (RR),
dimR = dimker  +  [] 

and given  ∈M (),

dimR = dimker  +  

7.6 Examples of computation of []
u
v

1.  ∈ L (  ) 

[]
v
v =

££

¡
1
¢¤
v
 

£

¡

¢¤
v
  [ ()]v

¤
=

=
££
1
¤
v
 

£

¤
v
  []v

¤
=
£
1  


  




¤
= 

2. 0 ∈ L () 

[0]
u
v = [[0]v   [0]v   [0]v] = 0 ∈M () 

3.  ∈ L (  ), with  ∈ 

[]
v

v =
££
 · 1¤

v
 

£
 · ¤

v
  [ · ]v

¤
=
£
 · £1¤

v
   · £¤

v
   · []v

¤
=

=
£
 · 1   ·    · 

¤
=  · 

4.  ∈ L (RR), with  ∈M ().

[] =
£
 · 1   ·    · 

¤
=  · £1    ¤ =  ·  = 

5. (projection function) + ∈ L
¡
R+R

¢
 + : ()

+
=1 7→ ()


=1  Defined

+ := , we have

[] =
£

¡
1+

¢
  

¡
+

¢
 
¡
+1+

¢
  

¡
++

¢¤
=
£
1  


 0  0

¤
= [|0] 

where 0 ∈M ( ).
6. (immersion function) + ∈ L

¡
RR+

¢
 + : ()


=1 7→ (()


=1  0) with

0 ∈ RDefined + := , we have

[] =
£

¡
1
¢
   ()

¤
=

∙
1  
0  0

¸
=

∙

0

¸


where 0 ∈M ( ).
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Remark 307 Point 4. above implies that if  : R → R  7→ , then [] = . In other words,

to compute [] you do not have to take the image of each element in the canonical basis; the first

line of [] is the vector of the coefficient of the first component function of  and so on. For example,

if  : R2 → R3

 7→
⎧⎨⎩ 111 + 122

211 + 222
311 + 322



then

[] =

⎡⎣ 11 12
21 22
31 32

⎤⎦
7.7 Exercises

Problem sets: 15,16,17,18,19,21,22.

From Lipschutz (1991), starting from page 352:

10.1 → 10.9, 10.29 → 10.33.

7.8 Appendices.

7.8.1 The dual and double dual space of a vector space

The dual space of a vector space

Definition 308 The3 dual space of a vector space  is

 ∗ := L (R) 

Remark 309 From Proposition 291, we have that if dim is finite, then dim ∗ = dim .

Definition 310 The Kronecker delta is a function defined as follows

 : N2 → {0 1}  ( ) 7→  :=

⎧⎨⎩ 1   = 

0 otherwise.

Proposition 311 Let  be a finite dimensional vector space over a field and let V = ©ª
=1

be

a basis for Then,

1. there exists a unique basis V∗ = {}=1 for  ∗ such that ∀  ∈ {1  }  
¡

¢
= , i.e.,¡


¡

¢¢

=1
= ;

2.

∀ ∈  ∗  =
P

=1 
¡

¢ · , i.e., [ ]V∗ = ¡ ¡¢¢=1,

i.e., the coordinates of  with respect to V∗are the images via  of the elements of the basis V, and
3.

∀ ∈   =
P

=1  () · , i.e., []V = ( ())=1,
i.e., the coordinates of  with respect to V are the images of  via the elements of the basis V.

Proof. 1. From Proposition 269, we have that given a basis V = ©ª
=1

for 

∀ ∈ {1  }  ∃ !  ∈  ∗ such that ∀ ∈ {1  }  
¡

¢
=  

We are left with showing that {}=1 is a linearly independent and the therefore a basis of the
 dimensional vector space  ∗. We want to show that if

P
=1  = 0, then ()


=1 = 0, i.e., if

∀ ∈ 
P

=1  () = 0, then ()

=1 = 0. Then, ∀ ∈ {1  }  0 = P

=1 
¡

¢
= , as

desired.

3Here I follow pages 98 and 99 in Hoffman and Kunze (1971).
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2. Take  ∈  ∗; then , since V∗ = {}=1 is a basis for  ∗ ∃ ()

=1 ∈ R such that

 =
P

=1 . Then,

∀ ∈ V 
¡

¢
=

X
=1


¡

¢
= 

as desired.

3. Take  ∈  ; then , since V = ©ª
=1

is a basis for  ∃ ()=1 ∈ R such that  =
P

=1 
.

Then,

∀ ∈ V∗  () =

X
=1


¡

¢
=  

as desired.

Definition 312 Let a basis V = ©

ª
=1

for  be given. The unique basis V∗ = {}=1 for  ∗
such that ∀  ∈ {1  }  

¡

¢
= is called the dual basis of V.

Corollary 313 If V∗ is the unique dual basis of V = ©ª
=1
, defined  :  → R  7→ ( ())


=1 

we have that

[]
E
V =  ∈M ( ) 

Proof. []
E
V :=

£

¡
1
¢
   ()

¤
= .

The double dual space of a vector space

Question. Take4 a basis V∗of  ∗. Is V∗the dual basis of some basis V of  ? Corollary 319 below
will answer positively to that question.

Definition 314 The double dual  ∗∗of  is the dual space of  ∗,i.e.,

 ∗∗ := ( ∗)∗ := L ( ∗R) 

Remark 315 If  has finite dimension, then

dim = dim ∗ = dim ∗∗

Proposition 316 For any  ∈  , the function

 : 
∗ → R  7→  ()

is linear, i.e.,  ∈  ∗∗.

Proof. For any   ∈  , 1 2 ∈  ∗

 (1 + 2) = (1 + 2) () = 1 () + 2 () = 1 + 2 

Proposition 317 Let  be a finite dimensional vector space. Then

 :  →  ∗∗  7→ 

is an isomorphism.

Proof. Step 1.  is linear.

For any   ∈  , 1 2 ∈ by definition of ,

 (1 + 2) = 1+2 

and

 (1) +  (2) = 1 + 2 

4Here I follow pages 107 and 108 in Hoffman and Kunze (1971).
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Moreover, ∀ ∈  ∗

1+2 () :=  (1 + 2)
∈ ∗
=  (1) +  (2)

def. 
= 1 + 2 

Step 2.  is nonsingular.

We want to show that ker = {0}, i.e., h 6= 0⇒  () :=  6= 0i, i.e., ∀ 6= 0 ∃ ∈  ∗

such that  () 6= 0Take a basis V =
©
 

ª
=2
of  . The existence of such a basis is insured

by Proposition 201 . Then, from Proposition 311, there exists a unique dual basis V∗ = ()

=1

associated with V, and 1 () = 1 6= 0.
Step 3. Desired result.

From Remark 309,  = dim =  ∗ = dim ∗∗. Then, from Proposition ??? 281 ?? my

EUI notes, since  is nonsingular, it is invertible and therefore an isomorphism.

Corollary 318 Let  be a finite dimensional vector space over a field  . If  ∈  ∗∗, then ∃ !
 ∈  such that ∀ ∈  ∗,  () =  ().

Proof. Such  is just  ().

Corollary 319 Let  be a finite dimensional vector space over a field  . Any basis of  ∗ is the
unique dual basis of some basis of  .

Proof. Take a basis {}=1 of  ∗. From Proposition 311, there exists a unique basis {}=1
of  ∗∗such that

∀  ∈ {1  }   () =  (7.13)

Then, from the previous Corollary,

∀ ∈ {1  } ∃ ! ∈  such that ∀ ∈  ∗  () =  ()  (7.14)

Now, from the definition of  , we have

∀ ∈  ∗  () =  ()  (7.15)

Then, from (714) and (715) we get

 =   (7.16)

Then,

−1 ()
(716)
= −1 () = 

where the last equality follows from Proposition 317. Since {}=1 is a basis of  ∗∗ and
 is an isomorphism, then from Proposition 264,

©

ª
=1

is a basis of Moreover, from (714),


¡
 =  ()

¢ (713)
=  , and then, by definition , {}=1 is the unique dual basis associated with

{}=1.
A sometimes useful result is presented below.

Proposition 320 If  is a vector space of dimension bigger than , for any  ∈ {1  }   ∈
L (R) 5 and {}=1 is a linearly independent set, then  :  → R  7→ ( ())


=1 is onto.

Proof. Take an  dimensional vector subspace  0 of  . From Corollary 319, there exists a

basis V = ©ª
=1

of  0 such that {}=1 is its unique associated dual basis. Then, by definition
of dual basis, for any  ∈ {1  },  ¡¢ =  Therefore, for any  ∈ R



Ã
X
=1




!
=

X
=1



 = 

as desired.

5L (R) is the vector space of linear functions from  to R.
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7.8.2 Vector spaces as Images or Kernels of well chosen linear functions

This section is preliminary and incomplete.

Proposition 321 If  is a vector subspace of Rof dimension , then

1. a. ∃1 ∈ 
¡
R R−

¢
such that ker 1 = ;

b. ∃ ∈ Σ and ∃ ∈ ( −) such that

[1] = [−|] ·  ∈M ( −) ;

c.  =  () where  is a chart of an atlas of .

2. a. ∃2 ∈ 
¡
RR

¢
such that 2 = ;

b. 6

[2] = −1

∙ −
×

¸
and, therefore, if  = ,

[2] =

∙ −


¸
×

3.

L= [−|] · P=ImP−1
∙ −
×

¸
Moreover,

4. Let  0 ∈ ( −) be given. Then

ker = ker 0 ⇔ there exists  ∈M ( − −) such that  0 = 

5. Let   0 ∈ () be given. Then

Im = Im 0 ⇔ there exists a unique  ∈M () such that  0 =  

Proof. 1.

Take a basis
©
1 

ª ⊆ R of . Define
 =

⎡⎣ 1





⎤⎦
×



where the vectors are taken to be row vectors. By definition of basis, rank  = . From the

Dimension Theorem, dimR = dim +dimker  and  = +dimker  , or dimker  = −.
Let

©
1  −

ª ⊆ R be a basis of ker  . Then, ∀ ∈ {   −}   = 0, and

∀ ∈ 1  ∀ ∈ {1   −}   ·  = 0

i.e.,7

 = (ker )
⊥
 (7.17)

Define

 =

⎡⎣ 1



−

⎤⎦
(−)×



6Recall that ∀ ∈ Σ,

−1 = −1 = 
 

7We are using the obvious fact that:

Two vector spaces  and  are orthogonal iff each each element in a basis of  is orthogonal to each element in

a basis of  .
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By definition of basis, rank  =  − . Moreover, from the fact that
©
1  −

ª ⊆ R be
a basis of ker  and from (717), we have that

 =
©
 ∈ R : ∀ ∈ {1   −}   ·  = 0ª = © ∈ R : ·  = 0ª = ker  

2.

a. Let {}=1 be a basis of  ⊆ R . Take 2 ∈ L
¡
RR

¢
such that

∀ ∈ {1  }  2 () = 

where  is the —th element in the canonical basis in R. From a standard Proposition in

linear algebra8, such function does exists and, in fact, it is unique. Then, from the (linear algebra)

dimension theorem

dim Im2 = − dimker 2 ≤ 

Moreover,  = span {}=1 ⊆ Iml2 and dim = . Therefore dim Im2 = and  = Im2, as

desired.

b. From Step 2a above, and by definition of [2], we have that

[2] =
£
1    

¤ ∈M () 
where {}=1 is a basis of  and the vectors  are written as column vectors. Therefore, we

are left with finding a basis of  = ker [−|] · , which we claim is given by the  column

vectors of

−1

∙ −
×

¸


a fact which is proved below:

i. The vectors belong to ker [−|] · :

[|] ·  · −1
∙ −



¸
= [|] ·

∙ −


¸
= 0

ii. the vectors are linearly independent:

rank−1

∙ −


¸
(1)
= rank

∙ −


¸
= 

where (1) follows from Corollary 7, page 10 in the 4-author book.

3.

It is an immediate consequence of 2. and 3. above.

4.

See Villanacci and others (2002), Proposition 39, page 388, or observe what follows

[⇒]
From, say, Theorem on page 41, in Ostaszewski (1990)9, we have that

(ker )
⊥
= Im  

(this result is proved, along other things, in my handwritten file some-facts-on-Stiefel-

manifolds-2011-10-12.pdf

and therefore, using the assumption

ker  = (Im )
⊥
= (Im 0)⊥ = ker( 0) 

Then, from part 3 in the present Proposition,

there exists b ∈M () such that  0 = b  

8Let  and  be finite dimensional vectors spaces such that  =

1  


is a basis of  and


1  


is a set of arbitrary vectors in  . Then there exists a unique linear function  :  →  such that ∀ ∈ {1  },




=  - see my math class notes, Proposition 273, page 82.

9Ostaszewski, A., (1990), Advanced mathematical methods, London School of Economics Mathematics Series,

Cambridge University Press, Cambridge, UK
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and


0
=  b 

and it is then enough to take  = b .

[⇐]
Im ⊆ Im 0 :  ∈ Im ⇒ ∃ ∈ R such that  =   =  0 ⇒ ∃0 =  ∈ R such that

 =  00 ⇔  ∈ Im 0.
Im 0 ⊆ Im : 0 ∈ Im 0 ⇒ ∃0 ∈ R such that 0 =  00 =  0−10 =  −10 ⇒ ∃ =

−10 ∈ R such that 0 =   ⇔ 0 ∈ Im .
Uniqueness. Since  ∈ M (), there exists  ∈ Σ () such that  =

∙
 ∗b

¸
, with

 ∗ ∈ M (). Define also 
0 =

∙
 0∗b 0

¸
. Then, premultiplying  0 =   by , we get

 0∗ =  ∗ and  =  ∗−1 0∗.
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Chapter 8

Solutions to systems of linear

equations

8.1 Some preliminary basic facts

Let’s recall some basic definition from Section 1.6.

Definition 322 Consider the following linear system with  equations and  unknowns⎧⎪⎨⎪⎩
111 + · · ·+ 1 = 1

...

11 + · · ·+  = 

which can be rewritten as

 = 

× is called matrix of the coefficients (or coefficient matrix) associated with the system and

×(+1) =
£
 | 

¤
is called augmented matrix associated with the system.

Recall the following definition.

Definition 323 Two linear system are said to be equivalent if they have the same solutions.

Let’s recall some basic facts we discussed in previous chapters.

Remark 324 It is well known that the following operations applied to a system of linear equations

lead to an equivalent system:

I) interchange two equations;

II) multiply both sides of an equation by a nonzero real number;

III) add left and right hand side of an equation to the left and right hand side of another equation;

IV) change the place of the unknowns.

The transformations I), II), III) and IV) are said elementary transformations, and, as it is well

known, they do not change the solution set of the system they are applied to.

Those transformations correspond to elementary operations on rows of  or columns of A in

the way described below

I) interchange two rows of  ;

II) multiply a row of  by a nonzero real number;

III) sum a row of  to another row of  ;

IV) interchange two columns of .

The above described operations do not change the rank of  and they do not change the rank of

 - see Proposition 231.

Homogenous linear system.

103
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Definition 325 A linear system for which  = 0, i.e., of the type

 = 0

with  ∈M (), is called homogenous system.

Remark 326 Obviously, 0 is a solution of the homogenous system. The set of solution of a homo-

geneous system is ker . From Remark 306,

dimker  = − rank 

8.2 A solution method: Rouchè-Capelli’s and Cramer’s the-

orems

The solution method presented in this section is based on two basic theorems.

1. Rouchè-Capelli’s Theorem, which gives necessary and sufficient condition for the existence of

solutions;

2. Cramer’s Theorem, which gives a method to compute solutions - if they exist.

Theorem 327 (̀− ) A system with  equations and  unknowns

× =  (8.1)

has solutions

⇔
rank  = rank

£
 | 

¤
Proof. [⇒]
Let ∗ be a solution to 8.1. Then,  is a linear combination, via the solution ∗ of the columns

of . Then, from Proposition 231,

rank
£
 | 

¤
= rank

£
 | 0

¤
= rank

£

¤


[⇐]
1st proof.

We want to show that

∃ ∈ R such that ∗ = , i.e.,  =

X
=1

∗ ·  () 

By assumption, rank  = rank
£
 | 

¤
:= . Since rank  = , there are  linearly

independent column vectors of , say
©
 ()

ª
∈, where  ⊆ {1  } and # = .

Since rank
£
 | 

¤
= ,

©
 ()

ª
∈ ∪ {} is a linearly dependent set and from Lemma

209,  is a linear combinations of the vectors in
©
 ()

ª
∈, i.e., ∃ ()∈ such that  =

P
∈  ·

 () and

 =
X
∈

 ·  () +
X

0∈{1}\
0 · 0 () 

Then, ∗ =
¡
∗
¢
=1

such that

∗ =

⎧⎨⎩    ∈ 

0  0 ∈ {1  } \

is a solution to  = .

Second proof.
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Since rank  :=  ≤ min {}, by definition of rank, there exists a rank  square submatrix

∗ of . From Remark 324, reordering columns of  and rows of
£
 | 

¤
does not change the

rank of  or
£
 | 

¤
and leads to the following system, which is equivalent to  = :∙

∗ 12
21 22

¸ ∙
1

2

¸
=

∙
0

00

¸


where 12 ∈ M ( − )  21 ∈ M (−  )  22 ∈ M (−  − )  1 ∈ R 2 ∈ R− 0 ∈
R 00 ∈ R−¡

1 2
¢
has been obtained from  performing on it the same permutations performed on the

columns of ,

(0 00) has been obtained from  performing on it the same permutations performed on the rows

of .

Since

rank
£
∗ 12 0

¤
= rank ∗ = 

the  rows of
£
∗ 12 0

¤
are linearly independent. Since

rank

∙
∗ 12 0

21 22 00

¸
= 

the rows of that matrix are linearly dependent and from Lemma 209, the last  −  rows of

[|] are linear combinations of the first  rows. Therefore, using again Remark 324, we have that
 =  is equivalent to £

∗ 12
¤ ∙ 1

2

¸
= 0

or, using Remark 74.2,

∗1 +122 = 0

and

1 = (∗)−1
¡
0 −12

2
¢ ∈ R

while 2 can be chosen arbitrarily; more preciselyn¡
1 2

¢ ∈ R : 1 = (∗)−1 ¡0 −12
2
¢ ∈ R and 2 ∈ R−

o
is the nonempty set of solution to the system  = .

Theorem 328 (Cramer) A system with  equations and  unknowns

× = 

with det 6= 0, has a unique solution  = (1    ) where for  ∈ {1  } 

 =
det

det

and  is the matrix obtained from  substituting the column vector  in the place of the  −
 column.

Proof. since det 6= 0, −1 exists and it is unique. Moreover, from  = , we get −1 =
−1 and

 = −1

Moreover

−1 =
1

det
  · 

It is then enough to verify that

  ·  =

⎡⎢⎢⎢⎢⎣
det1


det



det

⎤⎥⎥⎥⎥⎦
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which we omit (see Exercise 7.34, page 268, in Lipschutz (1991).

The combinations of Rouche-Capelli and Cramer’s Theorem allow to give a method to solve any

linear system - apart from computational difficulties.

Remark 329 Rouche’-Capelli and Cramer’s Theorem based method.

Let the following system with  equations and  unknowns be given:

× = 

0. Simplify the system using elementary row operations on
£
 | 

¤
and elementary column

operations on . Those operation do not change rank , rank  set of solution to system  = 

1. Compute rank  and rank
£
 | 

¤
.

i. If

rank  6= rank £  | 
¤


then the system has no solution.

ii. If

rank  = rank
£
 | 

¤
:= 

then the system has solutions which can be computed as follows.

2. Extract a square -dimensional invertible submatrix  from .

i. Discard the equations, if any, whose corresponding rows are not part of 

ii. In the remaining equations, bring on the right hand side the terms containing unknowns

whose coefficients are not part of the matrix , if any.

iii. You then get a system to which Cramer’s Theorem can be applied, treating as constant the

expressions on the right hand side and which contain  −  unknowns. Those unknowns can be

chosen arbitrarily. Sometimes it is said that then the system has “∞−” solutions or that the
system admits −  degrees of freedom. More formally, we can say what follows.

Definition 330 Given   ⊆ R, we define the sum of the sets  and  , denoted by  +  , as

follows

{ ∈ R : ∃ ∈ ∃ ∈  such that  = + } 
Proposition 331 Assume that the set  of solutions to the system  =  is nonempty and let

∗ ∈ . Then

 = {∗}+ ker  :=
©
 ∈ R : ∃0 ∈ ker  such that  = ∗ + 0

ª
Proof. [⊆]
Take  ∈ . We want to find 0 ∈ ker such that  = ∗ + 0. Take 0 =  − ∗. Clearly

 = ∗ + (− ∗). Moreover,

0 =  (− ∗)
(1)
= −  = 0 (8.2)

where (1) follows from the fact that  ∗ ∈ .

[⊇]
Take  = ∗ + 0 with ∗ ∈  and 0 ∈ ker. Then

 = ∗ +0 = + 0 = 

Remark 332 The above proposition implies that a linear system either has no solutions, or has a

unique solution, or has infinite solutions.

Definition 333  is an affine subspace of R if there exists a vector subspace  of R and a
vector  ∈ R such that

 = {}+

We say that the1 dimension of the affine subspace  is dim

1 If  0 and  00 are vector subspaces of R,  ∈ R and  := {}+ 0 = {}+ 00, then  0 = 00.
Take  ∈  0 , then +  ∈  = {}+ 00. Then there exists  ∈ {} and  ∈  00 such that +  =  + .

Then  =  ∈ 00, and  0 ⊆ 00. Similar proof applies for the opposite inclusion.
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Remark 334 Let  ∈ R be given. First of all observe that©
( ) ∈ R2 :  = 

ª
= ker 

where  ∈ L ¡R2R¢ and  ( ) = −  Let’s present a geometric description of Proposition 331.

We want to verify that the following two sets are equal.

 := {(0 0)}+
©
( ) ∈ R2 :  = 

ª


 :=
©
( ) ∈ R2 :  =  (− 0) + 0

ª


In words, we want to verify that the affine space “{(0 0)} plus ker ” is nothing but the set of
points belonging to the line with slope  and going through the point (0 0).

 ⊆  . Take (0 0) ∈ ; then ∃00 ∈ R such that 0 = 0 + 00 and 0 = 0 + 00. We have tho
check that 0 =  (0 − 0) + 0Indeed,  (

0 − 0) + 0 =  (0 + 00 − 0 + ) = 00 + 0

 ⊆ . Take (0 0) such that 0 =  (0 − 0) + 0. Take 
00 = 0 + 0Then 0 = 0 + 00 and

0 = 0 + 00, as desired.

Remark 335 Since dimker  =  − rank , the above Proposition and Definition say that if a

nonhomogeneous systems has solutions, then the set of solutions is an affine space of dimension

− rank .

Exercise 336 Apply the algorithm described in Remark 329 to solve the following linear system.⎧⎨⎩ 1 + 22 + 33 = 1

41 + 52 + 63 = 2

51 + 72 + 93 = 3

The associated matrix
£
 | 

¤
is⎡⎣ 1 2 3 | 1

4 5 6 | 2

5 7 9 | 3

⎤⎦
1. Since the third row of the matrix

£
 | 

¤
is equal to the sum of the first two rows, and

since

det

∙
1 2

4 5

¸
= 5− 8 = −3

we have that

rank  = rank
£
 | 

¤
= 2

and the system has solutions.

2. Define

2 =

∙
1 2

4 5

¸
i. Discarding the equations, whose corresponding rows are not part of 2and, in the remaining

equations, bringing on the right hand side the terms containing unknowns whose coefficients are not

part of the matrix 2, we get ⎧⎨⎩ 1 + 22 = 1− 33
41 + 52 = 2− 63
51 + 72 = 3− 93

iii. Then, using Cramer’s Theorem, recalling that det2 = −3we get

1 =

det

∙
1− 33 2

2− 63 5

¸
−3 = 3 − 1

3


2 =

det

∙
1 1− 33
4 2− 63

¸
−3 =

2

3
− 23

and the solution set is½
(1 2 3) ∈ R3 : 1 = 3 − 1

3
 2 =

2

3
− 23

¾
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Remark 337 How to find a basis of ker 

Let  ∈ M () be given and  =  ≤ min {}. Then, from the second proof of

Rouche’-Capelli’s Theorem, we have that system

 = 0

admits the following set of solutionsn¡
1 2

¢ ∈ R ×R− : 1 = (∗)−1 ¡−12 · 2¢o (8.3)

Observe that dimker  = −  := . Then, a basis of ker  is

B =
½∙ − [∗]−112 · 1

1

¸
 

∙ − [∗]−112 · 


¸¾


To check the above statement, we check that 1. B ⊆ ker , and 2. B is linearly independent2 .
1. It follows from (83);

2. It follows from the fact that det
£
1  




¤
= det  = 1.

Example 338 ½
1 + 2 + 3 + 24 = 0

1 − 2 + 3 + 24 = 0

Defined

∗ =
∙
1 1

1 −1
¸
 12 =

∙
1 2

1 2

¸
the starting system can be rewritten as∙

1
2

¸
= −

∙
1 1

1 −1
¸−1 ∙

1 2

1 2

¸ ∙
3
4

¸


Then a basis of ker is

B =

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣ −

∙
1 1

1 −1
¸−1 ∙

1 2

1 2

¸ ∙
1

0

¸
∙
1

0

¸
⎤⎥⎥⎦ 
⎡⎢⎢⎣ −

∙
1 1

1 −1
¸−1 ∙

1 2

1 2

¸ ∙
0

1

¸
∙
0

1

¸
⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ =

=

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣
−1
0

1

0

⎤⎥⎥⎦ 
⎡⎢⎢⎣
−2
0

0

1

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

Example 339 Discuss the following system (i.e., say if admits solutions).⎧⎨⎩ 1 + 2 + 3 = 4

1 + 2 + 23 = 8

21 + 22 + 33 = 12

The augmented matrix [|] is: ⎡⎣ 1 1 1 | 4

1 1 2 | 8

2 2 3 | 12

⎤⎦

rank [|] = rank
⎡⎣ 1 1 1 | 4

1 1 2 | 8

0 0 0 | 0

⎤⎦ = 2 = rank 

2Observe that B is made up by  vectors and dimker  = .
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From Step 2 of Rouche’-Capelli and Cramer’s method, we can consider the system½
2 + 3 = 4− 1
2 + 23 = 8− 1

Therefore, 1 can be chosen arbitrarily and since det

∙
1 1

1 2

¸
= 1,

2 = det

∙
4− 1 1

8− 1 2

¸
= −1

3 = det

∙
1 4− 1
1 8− 1

¸
= 4

Therefore, the set of solution is©
(1 2 3) ∈ R3 : 2 = −1 3 = 4

ª
Example 340 Discuss the following system½

1 + 2 = 2

1 − 2 = 0

The augmented matrix [|] is: ∙
1 1 | 2

1 −1 | 0

¸
Since det = −1− 1 = −2 6= 0,

rank [|] = rank = 2

and the system has a unique solution:

1 =

det

∙
2 1

0 −1
¸

−2 =
−2
−2 = 1

2 =

det

∙
1 2

1 0

¸
−2 =

−2
−2 = 1

Therefore, the set of solution is

{(1 1)}

Example 341 Discuss the following system½
1 + 2 = 2

1 + 2 = 0

The augmented matrix [|] is: ½
1 1 | 2

1 1 | 0

Since det = 1− 1 = 0, and det
∙
1 2

1 0

¸
= −2 6= 0, we have that

rank [|] = 2 6= 1 = rank

and the system has no solutions. Therefore, the set of solution is ∅.
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Example 342 Discuss the following system½
1 + 2 = 2

21 + 22 = 4

The augmented matrix [|] is: ∙
1 1 | 2

2 2 | 4

¸
From rank properties,

rank

∙
1 1

2 2

¸
= rank

∙
1 1

0 0

¸
= 1

rank

∙
1 1 2

2 2 4

¸
= rank

∙
1 1 2

0 0 0

¸
= 1

Recall that elementary operations of rows on the augmented matrix do not change the rank of

either the augmented or coefficient matrices.

Therefore

rank [|] = 1 = rank
and the system has infinite solutions. More precisely, the set of solutions is©

(1 2) ∈ R2 : 1 = 2− 2
ª

Example 343 Say for which value of the parameter  ∈ R the following system has one, infinite

or no solutions: ⎧⎨⎩ ( − 1)+ ( + 2)  = 1
−+  = 1

− 2 = 1

[|] =
⎡⎣  − 1  + 2 | 1

−1  | 1

1 −2 | 1

⎤⎦
det [|] = det

⎡⎣  − 1  + 2 1

−1  1

1 −2 1

⎤⎦ = det ∙ −1 

1 −2
¸
−det

∙
 − 1  + 2

1 −2
¸
+det

∙
 − 1  + 2

−1 

¸
=

(2− )− (−2 + 2−  − 2) + ¡2 −  +  + 2
¢
= 2−  + 2 +  + 2 + 2 = 2 + 2 + 4

∆ = −1− 17  0 Therefore, the determinant is never equal to zero and rank [|] = 3 Since rank
3×2 ≤ 2, the solution set of the system is empty of each value of .

Remark 344 To solve a parametric linear system  = , where  ∈ M () \ {0}, it is conve-
nient to proceed as follows.

1. Perform “easy” row operations on [|];
2. Compute min {+ 1} :=  and consider the  ×  submatrices of the matrix [|].
There are two possibilities.

Case 1. There exists a  ×  submatrix whose determinant is different from zero for some

values of the parameters;

Case 2. All  ×  submatrices have zero determinant for each value of the parameters.

If Case 2 occurs, then at least one row of [|] is a linear combinations of other rows; therefore
you can eliminate it. We can therefore assume that we are in Case 1. In that case, proceed

as described below.

3. among those × submatrices, choose a matrix ∗ which is a submatrix of , if possible; if you
have more than one matrix to choose among, choose “the easiest one” from a computational

viewpoint, i.e., that one with highest number of zeros, the lowest number of times a parameters

appear, ... ;
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4. compute det∗, a function of the parameter;

5. analyze the cases det∗ 6= 0 and possibly det∗ = 0
Example 345 Say for which value of the parameter  ∈ R the following system has one, infinite

or no solutions: ½
1 + 2 + 3 = 2

1 − 2 = 0

Example 346 Say for which value of the parameter  ∈ R the following system has one, infinite

or no solutions: ⎧⎨⎩ 1 + 2 + 3 = 2

1 − 2 = 0

21 + 2 = 4

[|] =
⎡⎣  1 1 2

1 − 0 0

2  0 4

⎤⎦
det

⎡⎣  1 1

1 − 0

2  0

⎤⎦ = + 22 = 0 if  = 0−1
2


Therefore, if  6= 0− 1
2
,

 [|] =  = 3

and the system has a unique solution.

If  = 0

[|] =
⎡⎣ 0 1 1 2

1 0 0 0

0 0 0 4

⎤⎦
Since det

∙
0 1

1 0

¸
= −1,   = 2. On the other hand,

det

⎡⎣ 0 1 2

1 0 0

0 0 4

⎤⎦ = −1 det ∙ 1 2

0 4

¸
= −4 6= 0

and therefore  [|] = 3 and
 [|] = 3 6= 2 = 

and the system has no solutions.

If  = −1
2


[|] =
⎡⎣ −12 1 1 2

1 1
2

0 0

−1 −1
2

0 4

⎤⎦
Since

det

∙
1 1
1
2

0

¸
= −1

2


 = 2

Since

det

⎡⎣ −12 1 2

1 0 0

1 0 4

⎤⎦ = −det ∙ 1 2

0 4

¸
= −4

and therefore

 [|] = 3
 [|] = 3 6= 2 = 

and the system has no solutions.
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Example 347 Say for which value of the parameter  ∈ R the following system has one, infinite

or no solutions: ⎧⎨⎩ (+ 1)1 + (−2)2 + 23 = 

1 + (−)2 + 3 = −2
2 + (2− 4)2 + (4− 2)3 = 2+ 4

Then,

[|] =
⎡⎣ + 1 −2 2 | 

 − 1 | −2
2 2− 4 4− 2 | 2+ 4

⎤⎦ 
It is easy to see that we are in Case 2 described in Remark 344: all 3× 3 submatrices of [|] have
determinant equal to zero - indeed, the last row is equal to 2 times the first row plus (−2) times the
second row. We can then erase the third equation/row to get the following system and matrix.½

(+ 1)1 + (−2)2 + 23 = 

1 + (−)2 + 3 = −2

[|] =
∙
+ 1 −2 2 | 

 − 1 | −2
¸

det

∙ −2 2

− 1

¸
= 22 − 2 = 0

whose solutions are −1 1. Therefore, if  ∈ R\ {−1 1},

 [|] = 2 = 

and the system has infinite solutions. Let’s study the system for  ∈ {−1 1}.
If  = −1, we get

[|] =
∙
0 −2 −2 | −1
−1 1 1 | −2

¸
and since

det

∙
0 −2
−1 1

¸
= 2 6= 0

we have again

 [|] = 2 = 

If  = 1,we have

[|] =
∙
2 −2 2 | 1

1 −1 1 | −2
¸

and

 [|] = 2  1 = 

and the system has no solution..

Example 348 Say for which value of the parameter  ∈ R the following system has one, infinite

or no solutions: ⎧⎪⎪⎨⎪⎪⎩
1 + 2 = 1

1 + 2 = 

21 + 2 = 3

31 + 22 = 

[|] =

⎡⎢⎢⎣
 1 | 1

1 1 | 

2 1 | 3

3 2 | 

⎤⎥⎥⎦
Observe that

 4×2 ≤ 2
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det

⎡⎣ 1 1 

2 1 3

3 2 

⎤⎦ = 3 = 0 if  = 0

Therefore, if  ∈ R\ {0},
 [|] = 3  2 ≥  4×2

If  = 0,

[|] =

⎡⎢⎢⎣
0 1 | 1

1 1 | 0

2 1 | 0

3 2 | 0

⎤⎥⎥⎦
and since

det

⎡⎣ 0 1 1

1 1 0

2 1 0

⎤⎦ = −1
the system has no solution for  = 0.

Summarizing, ∀ ∈ R, the system has no solutions.

8.3 Exercises

Problem sets: 20,23,24.

From Lipschutz (1991), page 179: 5.56; starting from page 263, 7.17 → 7.20.
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Part II

Some topology in metric spaces

115





Chapter 9

Metric spaces

9.1 Definitions and examples

Definition 349 Let  be a nonempty set. A metric or distance on  is a function  : × → R
such that ∀   ∈ 

1. ()  ( ) ≥ 0, and ()  ( ) = 0⇔  = ,

2.  ( ) =  ( ),

3.  ( ) ≤  ( ) +  ( ) (Triangle inequality).

( ) is called a metric space.

Remark 350 Observe that the definition requires that ∀  ∈ , it must be the case that  ( ) ∈
R.

Example 351 -dimensional Euclidean space with Euclidean metric.

Given  ∈ N, take  = R, and

2 : R ×R → R ( ) 7→
Ã

X
=1

( − )
2

! 1
2



( 2) was shown to be a metric space in Proposition 58, Section 2.3. 2 is called the Euclidean

distance in R. In what follows, unless needed, we write simply 2 in the place of 2.

Proposition 352 (Discrete metric space) Given a nonempty set  and the function

 : 2 → R  ( ) =

⎧⎨⎩ 0   = 

1   6= 

( ) is a metric space, called discrete metric space.

Proof. 1a. 0 1 ≥ 0
1b. From the definition,  ( ) = 0⇔  = .

2. It follows from the fact that  =  ⇔  =  and  6=  ⇔  6= .

3. If  = , the result follows. If  6= , then it cannot be  =  and  = , and again the result

follows.

Proposition 353 Given  ∈ N  ∈ [1+∞)   = R

 : R ×R → R ( ) 7→
Ã

X
=1

| − |
! 1





( ) is a metric space.

117
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Proof. 1a. It follows from the definition of absolute value.

1b. [⇐]Obvious.
[⇒] (

P
=1 | − |)

1
 = 0 ⇔ P

=1 | − | = 0 ⇒ for any  , | − | = 0 ⇒for any  ,

 −  = 0.

2. It follows from the fact | − | = | − |.
3. First of all observe that

 ( ) =

Ã
X
=1

|( − ) + ( − )|
! 1





Then, it is enough to show thatÃ
X
=1

|( − ) + ( − )|
! 1



≤
Ã

X
=1

| − |
! 1



+

Ã
X
=1

|( − )|
! 1



which is a consequence of Proposition 354 below.

Proposition 354 Taken  ∈ N  ∈ [1+∞)  = R   ∈ RÃ
X
=1

| + |
! 1



≤
Ã

X
=1

||
! 1



+

Ã
X
=1

||
! 1



Proof. It follows from the proof of the Proposition 357 below.

Definition 355 Let R∞ be the set of sequences in R.

Definition 356 For any  ∈ [1+∞), define1

 =

(
()∈N ∈ R∞ :

+∞X
=1

||  +∞
)


i.e., roughly speaking,  is the set of sequences whose associated series are absolutely convergent.

Proposition 357 (Minkowski inequality). ∀ ()∈N  ()∈N ∈ ∀ ∈ [1+∞),
Ã
+∞X
=1

| + |
! 1



≤
Ã
+∞X
=1

||
! 1



+

Ã
+∞X
=1

||
! 1



 (9.1)

Proof. If either ()∈N or ()∈N are such that ∀ ∈ N  = 0 or ∀ ∈ N  = 0, i.e., if

either sequence is the constant sequence of zeros, then (91) is trivially true.

Then, we can consider the case in which

∃  ∈ R++ such that
³P+∞

=1 ||
´ 1


=  and
³P+∞

=1 ||
´ 1


= . (9.2)

Define

∀ ∈ N b = µ ||


¶
and b = µ ||



¶
 (9.3)

Then
+∞X
=1

b = +∞X
=1

b = 1 (9.4)

For any  ∈ N, from the triangle inequality for the absolute value, we have

| + | ≤ ||+ || ;
1For basic results on series, see, for example, Section 10.5 in Apostol (1967).
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since ∀ ∈ [1+∞),  : R+ → R  () =  is an increasing function, we have

| + | ≤ (||+ ||)  (9.5)

Moreover, from (93),

(||+ ||) =
³
 |b| 1 +  |b| 1´ = (+ )



µµ


+ 
|b| 1 + 

+ 
|b| 1¶¶  (9.6)

Since ∀ ∈ [1+∞),  is convex (just observe that  00 () =  (− 1) −2 ≥ 0), we getµ


+ 
|b|+ 

+ 
|b|¶ ≤ 

+ 
|b|+ 

+ 
|b| (9.7)

From (95)  (96) and (97), we get

| + | ≤ (+ ) ·
µ



+ 
|b| + 

+ 
|b|¶ 

From the above inequalities and basic properties of the series, we then get

+∞X
=1

| + | ≤ (+ )


Ã


+ 

+∞X
=1

|b|+ 

+ 

+∞X
=1

|b|! (94)
= (+ )



µ


+ 
+



+ 

¶
= (+ )




Therefore, using (92), we get

+∞X
=1

| + | ≤
⎛⎝Ã+∞X

=1

||
! 1



+

Ã
+∞X
=1

||
! 1



⎞⎠



and therefore the desired result.

Proposition 358 ( ) with

 : 
 ×  → R 

¡
()∈N  ()∈N

¢
=

Ã
+∞X
=1

| − |
! 1





is a metric space.

Proof. We first of all have to check that  ( ) ∈ R, i.e., that
³P+∞

=1 | − |
´ 1


converges.

Ã
+∞X
=1

| − |
! 1



=

Ã
+∞X
=1

| + (−)|
! 1



≤
Ã
+∞X
=1

||
! 1



+

Ã
+∞X
=1

||
! 1



 +∞

where the first inequality follows from Minkowski inequality and the second inequality from the

assumption that we are considering sequences in .

Properties 1 and 2 of the distance follow easily from the definition. Property 3 is again a

consequence of Minkowski inequality:

 ( ) =

Ã
+∞X
=1

|( − ) + ( − )|
! 1



≤
Ã
+∞X
=1

| − |
! 1



+

Ã
+∞X
=1

|( − )|
! 1



:=  ( )+ ( ) 

Definition 359 Let  be a non empty set. B ( ) is the set of all bounded real functions defined on
 , i.e.,

B ( ) := { :  → R : sup {| ()| :  ∈ }  +∞} 



120 CHAPTER 9. METRIC SPACES

and2

∞ : B ( )× B ( )→ R ∞ ( ) = sup {| ()−  ()| :  ∈ }

Definition 361

∞ =
©
()∈N ∈ R∞ : sup {|| :  ∈ N}  +∞

ª
is called the set of bounded real sequences, and, still using the symbol of the previous definition,

∞ : ∞ × ∞ → R ∞
¡
()∈N  ()∈N

¢
= sup {| − | :  ∈ N}

Proposition 362 (B ( )  ∞)and (∞ ∞) are metric spaces, and ∞ is called the sup metric.

Proof. We show that (B ( )  ∞) is a metric space. As usual, the difficult part is to show
property 3 of ∞, which is done below.
∀   ∈ B ( ) ∀ ∈ 

| ()−  ()| ≤ | ()−  ()|+ | ()−  ()| ≤

≤ sup {| ()−  ()| :  ∈ }+ sup {| ()−  ()| :  ∈ } =

= ∞ ( ) + ∞ ( ) 

Then,∀ ∈ 

∞ ( ) := sup | ()−  ()| ≤ ∞ ( ) + ∞ ( ) 

Exercise 363 If ( ) is a metric space, thenµ




1 + 

¶
is a metric space.

Proposition 364 Given a metric space ( ) and a set  such that ∅ 6=  ⊆ , then
¡
 |×

¢
is a metric space.

Proof. By definition.

Definition 365 Given a metric space () and a set  such that ∅ 6=  ⊆ , then
¡
 |×

¢
,

or simply, ( ) is called a metric subspace of .

Example 366 1. Given R with the (Euclidean) distance 21, ([0 1)  21) is a metric subspace of
(R 21).
2. Given R2 with the (Euclidean) distance 22, ({0} ×R 22) is a metric subspace of

¡
R2 22

¢
.

Exercise 367 Let  ([0 1]) be the set of continuous functions from [0 1] to R. Show that a metric
on that set is defined by

 ( ) =

Z 1

0

| ()−  ()| 

where   ∈  ([0 1]).

Example 368 Let  be the set of continuous functions from R to R, and consider  ( ) =

sup∈R | ()−  ()|. () is not a metric space because  is not a function from 2 to R: it
can be sup∈R | ()−  ()| = +∞.

2

Definition 360 Observe that ∞ ( ) ∈ R :

∞ ( ) := sup {| ()−  ()| :  ∈ } ≤ sup {| ()| :  ∈ }+ sup {| ()| :  ∈ }  +∞
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Example 369 Let  = {  } and  : 2 → R such that

 ( ) =  ( ) = 2

 ( ) =  ( ) = 0

 ( ) =  ( ) = 1

Since  ( ) = 2  0 + 1 =  ( ) +  ( ), then ( ) is not a metric space.

Example 370 Given  ∈ N  ∈ (0 1)   = R2 define

 : R2 ×R2 → R ( ) 7→
Ã

2X
=1

| − |
! 1





( ) is not a metric space, as shown below. Take  = (0 1)   = (1 0) and  = (0 0). Then

 ( ) = (1 + 1)
1
 = 2

1
 

 ( ) = (0 + 1)
1
 = 1

 ( ) = 1

Then,  ( )− ( ( ) +  ( )) = 2
1
 − 2  0

9.2 Open and closed sets

Definition 371 Let ( ) be a metric space. ∀0 ∈  and ∀ ∈ R++, the open -ball of 0 in

( ) is the set

() (0 ) = { ∈  :  ( 0)  } 
If there is no ambiguity about the metric space ( ) we are considering, we use the lighter

notation  (0 ) in the place of () (0 ).

Example 372 1.

(R2) (0 ) = (0 −  0 + )

is the open interval of radius  centered in 0.

2.

(R22) (0 ) =

½
(1 2) ∈ R2 :

q
(1 − 01)

2
+ (2 − 02)

2
 

¾
is the open disk of radius  centered in 0.

3. In R2 with the metric  given by

 ((1 2)  (1 2)) = max {|1 − 1 |2 − 2||}

the open ball  (0 1) can be pictured as done below:

a square around zero.

Definition 373 Let ( ) be a metric space.  is an interior point of  ⊆  if

there exists an open ball centered in  and contained in , i.e.,

∃  ∈ R++ such that  ( ) ⊆ .

Definition 374 The set of all interior points of  is called the Interior of  and it is denoted by

()  or simply by  .
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Remark 375   ⊆ , simply because  ∈   ⇒  ∈  ( ) ⊆ , where the first inclusion

follows from the definition of open ball and the second one from the definition of Interior. In other

words, to find interior points of , we can limit our search to points belonging to .

It is not true that ∀ ⊆   ⊆  , as shown below. We want to prove that

¬(∀ ⊆ ∀ ∈   ∈  ⇒  ∈ )

i.e.,

(∃ ⊆  and  ∈  such that  ∈  ).

Take () = (R 2),  = {1} and  = 1. Then, clearly 1 ∈ {1}, but 1 ∈   : ∀ ∈ R++ ,

(1−  1 + ) * {1}.

Remark 376 To understand the following example, recall that ∀  ∈ R such that   , ∃ ∈ Q
and  ∈ R\Q such that   ∈ ( ) - see, for example, Apostol (1967).

Example 377 Let (R 2) be given.
1.  N =  Q =∅.
2. ∀  ∈ R   ,  [ ] =  [ ) =  ( ] =  ( ) = ( ).

3.  R = R.
4.  ∅ = ∅.

Definition 378 Let ( ) be a metric space. A set  ⊆  is open in ()  or ( )-open, or

open with respect to the metric space (), if  ⊆  , i.e.,  =  , i.e.,

∀ ∈ , ∃ ∈ R++ such that () ( ) := { ∈  :  ( )  } ⊆ 

Remark 379 Let (R 2) be given. From Example 377, it follows that

NQ [ ]  [ )  ( ] are not open sets, and ( ) R and ∅ are open sets. In particular, open
interval are open sets, but there are open sets which are not open interval. Take for example

 = (0 1) ∪ (2 3).

Exercise 380 ∀ ∈ N∀ ∈ {1  } ∀  ∈ R with   ,

×
=1 ( )

is (R 2) open.

Proposition 381 Let ( ) be a metric space. An open ball is an open set.

Proof. Take  ∈  (0 ). Define

 =  −  (0 )  (9.8)

First of all, observe that, since  ∈  (0 ),  (0 )   and then  ∈ R++. It is then enough
to show that  ( ) ⊆  (0 ), i.e., we assume that

 ( )   (9.9)

and we want to show that  ( 0)  . From the triangle inequality

 ( 0) ≤  ( ) +  ( 0)
(99)(98)

   + ( − ) = 

as desired.

Example 382 In a discrete metric space ( ), ∀ ∈ ∀ ∈ (0 1]   ( ) := { ∈  :  ( )  } =
{} and ∀  1  ( ) := { ∈  :  ( )  } = . Then, it is easy to show that any subset of

a discrete metric space is open, as verified below. Let ( ) be a discrete metric space and  ⊆ .

For any  ∈ , take  = 1
2
; then 

¡
 1

2

¢
= {} ⊆ .
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Definition 383 Let a metric space ( ) be given. A set  ⊆  is ( ) closed or closed in

( ) if its complement in , i.e., \ is open in ( ).

If no ambiguity arises, we simply say that  is closed in , or even,  is closed; we also write

 in the place of \ .

Remark 384  is open ⇔  is closed, simply because  closed ⇔ ¡

¢
=  is open.

Example 385 The following sets are closed in (R 2): R;N;∅;∀  ∈ R,   , {} and [ ].
Remark 386 It is false that:

 is not open ⇒  is closed

(and therefore that  is not closed ⇒  is open), i.e., there exist sets which are not open and

not closed, for example (0 1] in (R 2). There are also two sets which are both open and closed: ∅
and R in (R 2).

Proposition 387 Let a metric space ( ) be given.

1. ∅ and  are open sets.

2. The union of any (finite or infinite) collection of open sets is an open set.

3. The intersection of any finite collection of open sets is an open set.

Proof. 1.

∀ ∈  ∀ ∈ R++,  ( ) ⊆ . ∅ is open because it contains no elements.
2.

Let I be a collection of open sets and  = ∪∈I. Assume that  ∈ . Then there exists  ∈ I
such that  ∈ . Then, for some  ∈ R++

 ∈  ( ) ⊆  ⊆ 

where the first inclusion follows from fact that  is open and the second one from the definition of

.

3.

Let F be a collection of open sets, i.e., F = {}∈ , where  ⊆ N, # is finite and ∀ ∈  ,

 is an open set. Take  = ∩∈. If  = ∅, we are done. Assume that  6= ∅ and that  ∈ .

Then from the fact that each set  is open and from the definition of  as the intersection of sets

∀ ∈ ∃ ∈ R++ such that  ∈  ( ) ⊆ 

Since  is a finite set, there exists a positive ∗ = min { :  ∈ }  0. Then
∀ ∈  ∈  ( ∗) ⊆  ( ) ⊆ 

and from the very definition of intersections

 ∈  ( ∗) ⊆ ∩∈ ( ) ⊆ ∩∈ = 

Remark 388 The assumption that # is finite cannot be dispensed with:

∩+∞=1
µ
0
1



¶
= ∩+∞=1

µ
− 1


1



¶
= {0}

is not open.

Remark 389 A generalization of metric spaces is the concept of topological spaces. In fact, we

have the following definition which “ assumes the previous Proposition”.

Let  be a nonempty set. A collection T of subsets of  is said to be a topology on  if

1. ∅ and  belong to T ,
2. The union of any (finite or infinite) collection of sets in T belongs to T ,
3. The intersection of any finite collection of sets in T belongs to T .
( T ) is called a topological space.
The members of T are said to be open set with respect to the topology T , or (T ) open.
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Proposition 390 Let a metric space ( ) be given.

1. ∅ and  are closed sets.

2. The intersection of any (finite or infinite) collection of closed sets is a closed set.

3. The union of any finite collection of closed sets is a closed set.

Proof. 1

It follows from the definition of closed set, the fact that ∅ =   = ∅ and Proposition 387.
2.

Let I be a collection of closed sets and  = ∩∈I. Then, from de Morgan’s laws,

 = (∩∈I) = ∪∈I

Then from Remark 384, ∀ ∈ I,  is open and from Proposition 387.1, ∪∈I is open as

well.

2.

Let F be a collection of closed sets, i.e., F = {}∈ , where  ⊆ N, # is finite and ∀ ∈  ,

 is an open set. Take  = ∪∈. Then, from de Morgan’s laws,

 = (∪∈)

= ∩∈



Then from Remark 384, ∀ ∈  ,  is open and from Proposition 387.2, ∩∈I is open as well.

Remark 391 The assumption that # is finite cannot be dispensed with:µ
∩+∞=1

µ
0
1



¶¶
= ∪+∞=1

µ
0
1



¶
= ∪+∞=1

µµ
−∞− 1




¸
∪
∙
1


+∞

¶¶
= R\ {0} 

is not closed.

Definition 392 If  is both closed and open in ( ),  is called clopen in ( ).

Remark 393 In any metric space (),  and ∅ are clopen.

Proposition 394 In any metric space ( ), {} is closed.

Proof. We want to show that \ {} is open. If  = {}, then \ {} = ∅, and we are done.
If  6= {}, take  ∈ , where  6= . Taken

 =  ( ) (9.10)

with   0, because  6= . We are left with showing that  ( ) ⊆ \ {}, which is true
because of the following argument. Suppose otherwise; then  ∈  ( ), i.e., 

(910)
=  ( )  , a

contradiction.

Remark 395 From Example 382, any set in any discrete metric space is open. Therefore, the

complement of each set is open, and therefore each set is then clopen.

Definition 396 Let a metric space () and a set  ⊆  be given.  is an boundary point of 

if

any open ball centered in  intersects both  and its complement in , i.e.,

∀ ∈ R++  ( ) ∩  6= ∅ ∧  ( ) ∩  6= ∅

Definition 397 The set of all boundary points of  is called the Boundary of  and it is denoted

by F ().

Exercise 398 F () = F ¡¢.
Exercise 399 F () is a closed set.
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Definition 400 The closure of , denoted by Cl () is the intersection of all closed sets containing

, i.e., Cl () = ∩0∈S0 where S := {0 ⊆  : 0 is closed and 0 ⊇ }.

Proposition 401 1. Cl ()is a closed set;

2.  is closed ⇔  = Cl ().

Proof. 1.

It follows from the definition and Proposition 390.

2.

[⇐]
It follows from 1. above.

[⇒]
Since  is closed, then  ∈ S. Therefore, Cl () =  ∩ (∩0∈S0) = .

Definition 402  ∈  is an accumulation point for  ⊆  if any open ball centered at  contains

points of  different from , i.e., if

∀ ∈ R++ (\ {}) ∩ ( ) 6= ∅

The set of accumulation points of  is denoted by  () and it is called the Derived set of .

Definition 403  ∈  is an isolated point for  ⊆  if  ∈  and it is not an accumulation point

for , i.e.,

 ∈  and ∃ ∈ R++ such that (\ {}) ∩ ( ) = ∅
or

∃ ∈ R++ such that  ∩ ( ) = {} 
The set of isolated points of  is denoted by  ().

Proposition 404  () = { ∈ R : ∀ ∈ R++  ∩ ( ) has an infinite cardinality}.

Proof. [⊆]
Suppose otherwise, i.e.,  is an accumulation point of  and ∃ ∈ R++ such that  ∩ ( ) =

{1  }.Then defined  := min { ( ) :  ∈ {1  }}, (\ {}) ∩ 
¡
 

2

¢
= ∅, a contradic-

tion.

[⊇]
Since  ∩ ( ) has an infinite cardinality, then (\ {}) ∩ ( ) 6= ∅.

9.2.1 Sets which are open or closed in metric subspaces.

Remark 405 1. [0 1) is ([0 1)  2) open.

2. [0 1) is not (R 2) open. We want to show

¬ ∀0 ∈ [0 1) ∃ ∈ R++ such that (R2) (0 )® = (0 −  0 + ) ⊆ [0 1)  (9.11)

i.e.,

∃0 ∈ [0 1) such that ∀ ∈ R++ ∃0 ∈ R such that 0 ∈ (0 −  0 + ) and 0 ∈ [0 1) 

It is enough to take 0 = 0 and 0 = − 
2
.

3. Let ([0+∞)  2) be given. [0 1) is open, as shown below. By definition of open set, - go
back to Definition 378 and read it again - we have that, given the metric space ((0+∞)  2), [0 1)
is open if

∀0 ∈ [0 1), ∃ ∈ R++ such that ([0+∞)2) (0 ) :=
n
 ∈ [0+∞) :  (0 )  

o
= [0 ) ⊆ [0 1) 

If 0 ∈ (0 1), then take  = min {0 1− 0}  0.
If 0 = 0, then take  = 1

2
. Therefore, we have (R+2)

¡
0 1

2

¢
=
©
 ∈ R+ : |− 0|  1

2

ª
=£

0 1
2

¢ ⊆ [0 1).
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Remark 406 1. (0 1) is ((0 1)  2) closed.

2. (0 1] is ((0+∞)  2) closed, simply because (1+∞) is open.
Proposition 407 Let a metric space (), a metric subspace ( ) of () and a set  ⊆  be

given.

 is open in ( )⇔ there exists a set  open in ( ) such that  =  ∩
Proof. Preliminary remark.

∀0 ∈ ∀ ∈ R++

() (0 ) := { ∈  :  (0 )  } =  ∩ { ∈  :  (0 )  } =  ∩() (0 ) 
(9.12)

[⇒]
Taken 0 ∈ , by assumption ∃0 ∈ R++ such that () (0 ) ⊆  ⊆  . Then

 = ∪0∈() (0 )
(912)
= ∪0∈

¡
 ∩() (0 )

¢ distributive laws
=  ∩ ¡∪0∈() (0 )¢ 

and the it is enough to take  = ∪0∈() (0 ) to get the desired result.
[⇐]
Take 0 ∈ . then, 0 ∈ , and, since, by assumption,  is open in ( )  ∃ ∈ R++ such that

() (0 ) ⊆ . Then

() (0 )
(912)
=  ∩() (0 ) ⊆  ∩  = 

where the last equality follows from the assumption. Summarizing, ∀0 ∈ ∃ ∈ R++ such that
() (0 ) ⊆ , as desired.

Corollary 408 Let a metric space (), a metric subspace ( ) of ( ) and a set  ⊆  be

given.

1.

h closed in ( )i⇔ hthere exists a set  closed in ( ) such that  =  ∩i 
2.

h open (respectively, closed) in ( )i ⇒
:

h open (respectively, closed) in ( )i 

3. If  is open (respectively, closed) in ,

h open (respectively, closed) in ()i⇐ h open (respectively, closed) in ( )i 
i.e., “the implication ⇐ in the above statement 2. does hold true”.

Proof. 1.

h closed in ( )i def.⇔ h \ open in ( )i Prop. 407⇔
⇔ hthere exists an open set 00 in ( ) such that  \ = 00 ∩  i⇔
⇔ hthere exists a closed set 0 in ( ) such that  = 0 ∩  i 
where the last equivalence is proved below;

[⇐]
Take 00 = \0, open in ( ) by definition. We want to show that

if 00 = \,  = 0 ∩  and  ⊆ , then  \ = 00 ∩  :

 ∈  \   ∈  ∧  ∈ 

 ∈  ∧ ( ∈ 0 ∩  )
 ∈  ∧ (¬ ( ∈ 0 ∩  ))
 ∈  ∧ (¬ ( ∈ 0 ∧  ∈  ))

 ∈  ∧ (( ∈ 0 ∨  ∈  ))

( ∈  ∧  ∈ 0) ∨ (( ∈  ∧  ∈  ))

 ∈  ∧  ∈ 0
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 ∈ 00 ∩    ∈  ∧  ∈ 00

 ∈  ∧ ( ∈  ∧  ∈ 0)
( ∈  ∧  ∈ ) ∧  ∈ 0

 ∈  ∧  ∈ 0

[⇒]
Take 0 = \Then 0 is closed in ( ). We want to show that

if  0 = \00  \ = 00 ∩   ⊆ , then  = 0 ∩  .
Observe that we want to show that  \ =  \ (0 ∩  ) or from the assumptions, we want to

show that

00 ∩  =  \ ((\00) ∩  ) 
 ∈  \ ((\00) ∩  )   ∈  ∧ (¬ ( ∈ \00 ∧  ∈  ))

 ∈  ∧ ( ∈ \00 ∨  ∈  )

 ∈  ∧ ( ∈ 00 ∨  ∈  )

( ∈  ∧  ∈ 00) ∨ ( ∈  ∧  ∈  )

 ∈  ∧  ∈ 00

 ∈ 00 ∩ 
2. and 3.

Exercises.

9.3 Sequences

Unless otherwise specified, up to the end of the chapter, we assume that

 is a metric space with metric ,

and

R is the metric space with Euclidean metric.

Definition 409 A sequence in  is a function  : N→ .

Usually, for any  ∈ N, the value  () is denoted by which is called the -th term of the

sequence; the sequence is denoted by ()∈N.

Definition 410 Given a nonempty set , ∞ is the set of sequences ()∈N such that ∀ ∈ N,
 ∈ .

Definition 411 A strictly increasing sequence of natural numbers is a sequence ()∈N in N such

1 ≤ 1  2      

Definition 412 A subsequence of a sequence ()∈N is a sequence ()∈N such that there exists
a strictly increasing sequence ()∈N of natural numbers such that ∀ ∈ N,  =  .

Definition 413 A sequence ()∈N ∈ ∞ is said to be () convergent to 0 ∈  (or convergent

to 0 ∈  with respect to the metric space ( ) ) if

∀  0∃0 ∈ N such that ∀  0  ( 0)   (9.13)

0 is called the limit of the sequence ()∈N and we write

lim→+∞  = 0, or 
→ 0 (9.14)

()∈N in a metric space ( ) is convergent if there exist 0 ∈  such that (913) holds. In

that case, we say that the sequence converges to 0 and 0 is the limit of the sequence.
3

Remark 414 A more precise, and heavy, notation for (914) would be

lim→+∞
()

 = 0 or 
→

()
0

3For the last sentence in the Definition, see, for example, Morris (2007), page 121.
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Remark 415 Observe that
¡
1


¢
∈N+ converges with respect to (R 2) and it does not converge with

respect to (R++ 2) .

Proposition 416 lim→+∞  = 0 ⇔ lim→+∞  ( 0) = 0.

Proof. Observe that we can define the sequence ( ( 0))∈N in R. Then from definition 413,
we have that lim→+∞  ( 0) = 0 means that

∀  0∃0 ∈ N such that ∀  0 | ( 0)− 0|  

Remark 417 Since ( ( 0))∈N is a sequence in R, all well known results hold for that sequence.
Some of those results are listed below.

Proposition 418 (Some properties of sequences in R).
All the following statements concern sequences in R.
1. Every convergent sequence is bounded.

2. Every increasing (decreasing) sequence that is bounded above (below) converges to its sup

(inf).

3. Every sequence has a monotone subsequence.

4. (Bolzano-Weierstrass 1) Every bounded sequence has a convergent subsequence.

5. (Bolzano-Weierstrass 2) Every sequence contained in a closed and bounded set has a conver-

gent subsequence in the set.

Moreover, suppose that ()∈N and ()∈N are sequences in R and lim→∞  = 0 and

lim→+∞  = 0. Then

6. lim→+∞ ( + ) = 0 + 0;

7. lim→+∞  ·  = 0 · 0;
8. if ∀ ∈ N,  6= 0 and 0 6= 0, lim→+∞ 1


= 1

0
;

9. if ∀ ∈ N,  ≤ , then 0 ≤ 0;

10. Let ()∈N be a sequence such that ∀ ∈ N,  ≤  ≤ , and assume that 0 = 0. Then

lim→+∞  = 0.

Proof. See Villanacci, (2015), Basic Facts on sequences and series in R, mimeo.

Proposition 419 If ()∈N converges to 0 and ()∈N is a subsequence of ()∈N, then ()∈N
converges to 0.

Proof. By definition of subsequence, there exists a strictly increasing sequence ()∈N of
natural numbers, i.e., 1  1  2      , such that ∀ ∈ N,  =  .

If → +∞, then  → +∞. Moreover, ∀, ∃ such that
 (0 ) =  (0 )

Taking limits of both sides for → +∞, we get the desired result.
Proposition 420 A sequence in () converges at most to one element in .

Proof. Assume that 
→  and 

→ ; we want to show that  = . From the Triangle

inequality,

∀ ∈ N 0 ≤  ( ) ≤  ( ) +  ( ) (9.15)

Since  ( )→ 0 and  ( )→ 0, Proposition 418.10 and (915) imply that  ( ) = 0 and

therefore  = .

Proposition 421 Given a sequence ()∈N =
³¡

¢
=1

´
∈N

in R,


()∈N converges to 

®⇔ D
∀ ∈ {1  }  ¡¢∈N converges to 

E


and

lim
→+∞

 =

µ
lim

→+∞


¶
=1
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Proof. [⇒]
Observe that ¯̄

 − 
¯̄
=

q
( − )

2 ≤  () 

Then, the result follows.

[⇐]
By assumption, ∀  0 and ∀ ∈ {1  }  there exists 0 such that ∀  0, we have¯̄

 − 
¯̄
 √


. Then ∀  0,

 () =

Ã
X
=1

¯̄
 − 

¯̄2! 1
2



Ã
X
=1

¯̄̄̄
√


¯̄̄̄2! 1
2

=

Ã
2

X
=1

1



! 1
2

= 

Proposition 422 Suppose that ()∈N and ()∈N are sequences in R
 and lim→∞  = 0

and lim→+∞  = 0. Then

1. lim→+∞ ( + ) = 0 + 0;

2. ∀ ∈ R, lim→+∞  ·  =  · 0;
3. lim→+∞  ·  = 0 · 0.
Proof. It follows from Propositions 418 and 421.

Example 423 In Proposition 362 , we have seen that (B ([0 1])  ∞) is a metric space. Observe
that defined ∀ ∈ N,

 : [0 1]→ R  7→ 

we have that () ∈ B ([0 1])∞. Moreover, ∀ ∈ [0 1],
¡

¡

¢¢

∈N ∈ R∞ and it converges in

(R 2). In fact,

lim
→+∞



=

⎧⎨⎩ 0   ∈ [0 1)

1   = 1

Define

 : [0 1]→ R  7→
⎧⎨⎩ 0   ∈ [0 1)

1   = 1



10.750.50.250

1

0.75

0.5

0.25

0

x

y

x

y

We want to check that it is false that

 →
(B([01])∞)



i.e., it is false that ∞ ( )→

0. Then, we have to check

¬  ∀  0 ∃ ∈ N such that ∀  , ∞ ( )  
®
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i.e.,

∃  0 such that ∀ ∈ N ∃   such that ∞ ( ) ≥  

Then, taken  = 1
4
, it suffice to show that ∀ ∈ N ∃ ∈ (0 1) such that ¯̄ ¡¢− 

¡

¢¯̄ ≥ 1

4

®


It is then enough to take  =
¡
1
2

¢


Exercise 424 For any metric space ( ) and ()∈N ∈ ∞,¿
 →

()


À
⇔
*
 →
( 1

1+)


+


9.4 Sequential characterization of closed sets

Proposition 425 Let ( ) be a metric space and  ⊆ .4
 is closed

® ⇔ 
any () convergent sequence ()∈N ∈ ∞ converges to an element of 

®


Proof. We want to show that

 is closed⇔

⇔
¿¿

()∈N is such that 1. ∀ ∈ N  ∈  and

2.  → 0

À
⇒ 3. 0 ∈ 

À


[⇒]
We are going to show that if  is closed, 2. and not 3. hold, then 1. does not hold. Taken a

sequence converging to 0 ∈ \ Since  is closed, \ is open and therefore ∃ ∈ R++ such that
 (0 ) ⊆ \. Since  → 0, ∃ ∈ N such that ∀   ,  ∈  (0 ) ⊆ \, contradicting
Assumption 1 above.

[⇐]
Suppose otherwise, i.e.,  is not closed. Then, \ is not open. Then, ∃  ∈ \ such that

∀ ∈ N, ∃ ∈  such that  ∈ 
¡
 1



¢ ∩ , i.e.,
i.  ∈ \
ii. ∀ ∈ N,  ∈ ,

iii.  ( ) 
1

, and therefore  → ,

and i., ii. and iii. contradict the assumption.

Remark 426 The Appendix to this chapter contains some other characterizations of closed sets

and summarizes all the presented characterizations of open and closed sets.

9.5 Compactness

Definition 427 Let ( ) be a metric space,  a subset of , and Γ be a set of arbitrary cardi-

nality. A family S = {}∈Γ such that ∀ ∈ Γ,  is () open, is said to be an open cover of

 if  ⊆ ∪∈Γ.
A subfamily S 0 of S is called a subcover of  if  ⊆ ∪0∈S00.

Definition 428 A metric space ( ) is compact if every open cover of  has a finite subcover.

A set  ⊆  is compact in  if every open cover of  has a finite subcover of .

Example 429 Any finite set in any metric space is compact.

Take  = {}=1 in () and an open cover S of . For any  ∈ {1  }, take an open set
in S which contains ; call it . Then S 0 = { :  ∈ {1  }} is the desired open subcover of S.

4Proposition 488 in Appendix 9.8.1 presents a different proof of the result below.
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Example 430 1. (0 1) is not compact in (R 2).
We want to show that the following statement is true:

¬ h∀S such that ∪∈S  ⊇ (0 1)  ∃S 0 ⊆ S such that #S 0 is finite and ∪∈S0  ⊇ (0 1)i 

i.e.,

∃S such that ∪∈S  ⊇ (0 1) and ∀S 0 ⊆ S either #S 0 is infinite or ∪∈S0  + (0 1) 

Take S = ¡¡ 1

 1
¢¢

∈N\{01} and S 0 any finite subcover of SThen there exists a finite set  such

that S 0 = ¡¡
1

 1
¢¢

∈ . Take ∗ = max { ∈ }. Then, ∪∈S0 = ∪∈
¡
1

 1
¢
=
¡
1
∗  1

¢
and¡

1
∗  1

¢
+ (0 1).

2. (0 1] is not compact in ((0+∞)  2). Take S =
¡¡

1

 2
¢¢

∈N and S 0 any finite subcover of
SThen there exists a finite set  such that S 0 = ¡¡

1

 2
¢¢

∈ . Take ∗ = max { ∈ }. Then,
∪∈S0 = ∪∈

¡
1

 2
¢
=
¡
1
∗  2

¢
and

¡
1
∗  2

¢
+ (0 1].

Proposition 431 Let ( ) be a metric space.

 compact and  ⊆  closed ⇒ h compacti 

Proof. Take an open cover S of . Then S ∪ (\) is an open cover of . Since  is

compact, then there exists an open covers S 0of S ∪ (\) which cover . Then S 0\ {\} is a
finite subcover of S which covers .

9.5.1 Compactness and bounded, closed sets

Definition 432 Let ( ) be a metric space and a nonempty subset  of .  is bounded in ()

if ∃ ∈ R++ such that ∀  ∈ ,  ( )  .

Proposition 433 Given a metric space () and a nonempty subset  of , then

 is bounded ⇔ ∃∗ ∈ R++ and ∃ ∈  such that  ⊆  ( ∗).

Proof. [⇒] Take ∗ =  and an arbitrary point  in  ⊆ .

[⇒] Take   ∈ . Then

 ( ) ≤  ( ) +  ( )  2

Then it is enough to take ∗ = 2.

Proposition 434 The finite union of bounded set is bounded.

Proof. Take  ∈ N and {}=1 such that ∀ ∈ {1  },  is bounded. Then, ∀ ∈ {1  },
∃ ∈ R++ such that  ⊆  ( ). Take  = max {}=1. Then ∪=1 ⊆ ∪=1 ( ) ⊆  ( ).

Proposition 435 Let ( ) be a metric space and  a subset of .

 compact ⇒  bounded.

Proof. If  = ∅, we are done. Assume then that  6= ∅, and take  ∈  and B = { ( )}∈N.
B is an open cover of  and therefore of . Then, there exists B0 ⊆ B such that

B0 = { ( )}∈ 

where  is a finite set and B0 covers .
Then takes ∗ = max∈ , we get  ⊆  ( ∗) as desired.

Proposition 436 Let ( ) be a metric space and  a subset of .

 compact ⇒  closed.
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Proof. If  = , we are done by Proposition 390. Assume that  6= : we want to show that

\ is open. Take  ∈  and  ∈ \. Then, taken  ∈ R such that

0   
1

2
 ( ) 

we have

 ( ) ∩ ( ) = ∅
Now, S = { ( ) :  ∈ } is an open cover of , and since  is compact, there exists a finite

subcover S 0 of S which covers , say

S 0 = { ( )}∈ 

such that  is a finite set. Take

∗ = min
∈



and therefore ∗  0. Then ∀ ∈  ,

 ( ) ∩ ( ) = ∅

 ( ) ∩ ( ∗) = ∅
and

(∪∈N  ( )) ∩ ( ∗) = ∅
Since { ( )}∈ covers , we then have

 ∩ ( ∗) = ∅

or

 ( ∗) ⊆ \
Therefore, we have shown that

∀ ∈ \∃∗ ∈ R++ such that  ( ∗) ⊆ \

i.e., \ is open and  is closed.

Remark 437 Summarizing, we have seen that in any metric space

 compact ⇒  bounded and closed.

The opposite implication is false. In fact, the following sets are bounded, closed and not compact.

1. Let the metric space ((0+∞)  2). (0 1] is closed from Remark 406, it is clearly bounded

and it is not compact from Example 430.2 .

2. ( ) where  is an infinite set and  is the discrete metric.

 is closed, from Remark 395 .

 is bounded: take  ∈  and  = 2 

 is not compact. Take S = { ( 1)}∈ . Then ∀ ∈  there exists a unique element  in

S such that  ∈ .
5

Remark 438 In next section we are going to show that if ( ) is an Euclidean space with the

Euclidean distance and  ⊆ , then

 compact ⇐  bounded and closed.

5For other examples, see among others, page 155, Ok (2007).
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9.5.2 Sequential compactness

Definition 439 Let a metric space ( ) be given.  ⊆  is sequentially compact if every sequence

of elements of  has a subsequence which converges to an element of , i.e.,
()∈N is a sequence in 

®⇒ ∃ a subsequence ()∈N of ()∈N such that  →  ∈ 
®


In what follows, we want to prove that in metric spaces, compactness is equivalent to sequential

compactness. To do that requires some work and the introduction of some, useful in itself, concepts.

Proposition 440 (Nested intervals) For every  ∈ N, define  = [ ] ⊆ R such that +1 ⊆ .

Then ∩∈N 6= ∅

Proof. By assumption,

1 ≤ 2 ≤  ≤  ≤  (9.16)

and

 ≤ −1 ≤  ≤ 1 (9.17)

Then,

∀ ∈ N   

simply because, if   , then    ≤ where the first inequality follows from the

definition of interval  and the second one from (917), and if  ≤ , then  ≤  ≤ where

the first inequality follows from (916) and the second one from the definition of interval .

Then  := { :  ∈ N} is nonempty and bounded above by  for any Then sup :=  exists.

Since ∀ ∈ N,  is an upper bound for ,

∀ ∈ N  ≤ 

and from the definition of sup

∀ ∈ N  ≤ 

Then

∀ ∈ N  ≤  ≤ 

and

∀ ∈ N  6= ∅

Remark 441 The statement in the above Proposition is false if instead of taking closed bounded

intervals we take either open or unbounded intervals. To see that consider  =
¡
0 1



¢
and  =

[+∞].

Proposition 442 (Bolzano- Weirstrass) If  ⊆ R has infinite cardinality and is bounded, then 

admits at least an accumulation point, i.e.,  () 6= ∅.

Proof. Step 1.  = 1

Since  is bounded, ∃0 0 ∈ R such that  ⊆ [0 0] := 0Divide 0 in two subinterval of

equal length: ∙
0

0 + 0

2

¸
and

∙
0 + 0

2
 0

¸
Choose an interval which contains an infinite number of points in . Call 1 = [1 1] that

interval. Proceed as above for 1. We therefore obtain a family of intervals

0 ⊇ 1 ⊇  ⊇  ⊇ 

Observe that  0 := 0 − 0 and

∀ ∈ N   =
0 − 0

2
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Therefore, ∀  0 ∃  ∈ N such that ∀      .

From Proposition 440, it follows that

∃ ∈ ∩+∞=0

We are now left with showing that  is an accumulation point for 

∀ ∈ R++  ( ) contains an infinite number of points.

By construction, ∀ ∈ N  contains an infinite number of points; it is therefore enough to

show that

∀ ∈ R++∃ ∈ N such that  ( ) ⊇ .

Observe that

 ( ) ⊇  ⇔ (−  + ) ⊇ [ ]⇔ −       +  ⇔ max {−   − }  

Moreover, since  ∈ [ ],

max {−   − }   −  =   =
0 − 0

2

Therefore, it suffices to show that

∀ ∈ R++∃ ∈ N such that 0 − 0

2
 

i.e.,  ∈ N and   log2 (0 − 0).

Step 2. Omitted (See Ok (2007)).

Remark 443 The above Proposition does not say that there exists an accumulation point which

belongs to . To see that, consider  =
©
1

:  ∈ Nª.

Proposition 444 Let a metric space ( ) be given and consider the following statements.

1.  is compact set;

2. Every infinite subset of  has an accumulation point which belongs to , i.e.,

h ⊆  ∧# is infinitei⇒ h ( ) ∩  6= ∅i 

3.  is sequentially compact

4.  is closed and bounded.

Then

1⇔ 2⇔ 3⇒ 4

If  = R,  = 2, then we also have that

3⇐ 4

Proof. (1)⇒ (2)6

Take an infinite subset  ⊆  and suppose otherwise. Then, no point in  is an accumulation

point of  , i.e., ∀ ∈  ∃  0 such that

 ( ) ∩ \ {} = ∅

Then7

 ( ) ∩  ⊆ {}  (9.19)

6Proofs of 1⇒ 2 and 2⇒ 3 are taken from Aliprantis and Burkinshaw (1990), pages 38-39.
7 In general,

\ =  ⇒  ⊆  ∪ (9.18)

as shown below.
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Since

 ⊆ ∪∈ ( )
and  is compact, ∃1   such that

 ⊆ ∪=1 ( )

Then, since  ⊆ ,

 =  ∩  ⊆ (∪=1 ( )) ∩  = ∪=1 ( ( ) ∩  ) ⊆ {1  }

where the last inclusion follows from (919). But then # ≤ , a contradiction.

(2)⇒ (3)

Take a sequence ()∈N of elements in .

If # { :  ∈ N} is finite, then ∃∗ such that  = ∗ for  in an infinite subset of N, and
(∗   ∗  ) is the required convergent subsequence - converging to ∗ ∈ .

If # { :  ∈ N} is infinite, then there exists a subsequence ()∈N of ()∈N with an infinite
amount distinct values, i.e., such that ∀ ∈ N  6= , we have  6= . To construct the

subsequence ()∈N, proceed as follows.
1 = 1 := 1 ,

2 = 2 ∈ {1},
3 = 3 ∈ {1  2},
...

 =  ∈ ©1  2  −1ª,
...

Since  := { :  ∈ N} is an infinite subset of , by assumption it does have an accumulation
point  in ; moreover, we can redefine ()∈N in order to have ∀ ∈ N,  6=  8 , as follows.

If ∃ such that  = , take the (sub)sequence (+1 +2 ) = (+)∈N. With some abuse of
notation, call still ()∈N the sequence so obtained. Now take a further subsequence as follows,
using the fact that  is an accumulation point of { :  ∈ N} :=  ,

1
∈  such that  (1 ) 

1
1
,

2
∈  such that  (2 )  min

n
1
2
 ( ( ))≤1

o


3
∈  such that  (3 )  min

n
1
3
 ( ( ))≤2

o


...


∈  such that  (

 )  min
n
1

 ( ( ))≤−1

o


Observe that since ∀  (
 )  min

n
( ( ))≤−1

o
, we have that ∀   −1

and therefore (
)∈N is a subsequence of ()∈N and therefore of ()∈N. Finally, since

lim
→+∞

 (
 )  lim

→+∞
1


= 0

we also have that

lim
→+∞


= 

as desired.

Since \ =  ∩ , by assumption, we have
 ∩


∪ =  ∪

Moreover, 
 ∩


∪ = ( ∪) ∩


 ∪


=  ∪ ⊇ 

Observe that the inclusion in (918) can be strict, i.e., it can be

\ =  ∧ ⊂  ∪;

just take  = {1}   = {2} and  = {1} :

\ = {1} =  ∧ = {1} ⊂  ∪ = {1 2} ;
8Below we need to have  ( )  0.
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(3)⇒ (1)

It is the content of Proposition 453 below.

(1)⇒ (4)

It is the content of Remark 437.

If  = R, (4)⇒ (2)

Take an infinite subset  ⊆ . Since  is bounded  is bounded as well. Then from Bolzano-

Weirestrass theorem, i.e., Proposition 442,  ( ) 6= ∅. Since  ⊆ , from Proposition 479,  ( ) ⊆
 () and since  is closed,  () ⊆ . Then, summarizing ∅ 6=  ( ) ⊆  and therefore

 ( ) ∩  =  ( ) 6= ∅, as desired.
To complete the proof of the above Theorem it suffices to show sequential compactness implies

compactness, which is done below, and it requires some preliminary results.

Definition 445 Let () be a metric space and  a subset of .  is totally bounded if ∀  0∃
a finite set  ⊆  such that  ⊆ ∪∈ ( ).

Proposition 446 Let ( ) be a metric space and  a subset of .

 totally bounded ⇒  bounded.

Proof. It follows from the definition of totally bounded sets and from Proposition 434.

Remark 447 In the previous Proposition, the opposite implication does not hold true.

Example 448 Take ( ) where  is an infinite set and  is the discrete metric. Then, if  = 1
2
,

a ball is needed to “take care of each element in ” . Similar situation arises in the following

probably more interesting example.

Example 449 Consider the metric space
¡
2 2

¢
- see Proposition 358. Recall that

2 =

(
()∈N ∈ R∞ :

+∞X
=1

||2  +∞
)

and

2 : 
2 × 2 → R+

¡
()∈N  ()∈N

¢ 7→ Ã
+∞X
=1

| − |2
! 1

2



Define  = ()∈N such that

 =

⎧⎨⎩ 1   = 

0   6= 

and  = { :  ∈ N}. In other words,  =

{(1 0 0  0 )  (0 1 0  0 )  (0 0 1  0 )  } 

Observe that ∀ ∈ N, P+∞
=1 ||2 = 1 and therefore  ⊆ 2. We now want to check that  is

bounded, but not totally bounded. The main ingredient of the argument below is that

∀  ∈ N such that  6=   ( ) =
√
2 (9.20)

1.  is bounded. For any  ∈ N,  (1 ) =
³P+∞

=1 |1 |2
´ 1
2

= 2
1
2 

2.  is not totally bounded. We want to show that ∃  0 such that for any finite subset 

of  there exists  ∈  such that  ∈ ∪∈ ( ). Take  = 1and let  = { :  ∈ } with 

arbitrary finite subset of N. Then, for 0 ∈ N\ , 0 ∈  and from (920)  for any 0 ∈ N\ and

 ∈  ,  ( 0) =
√
2  1. Therefore, for 0 ∈ N\ , 0 ∈ ∪∈ ( 1) 

Remark 450 In (R 2),  bounded ⇒  totally bounded.



9.5. COMPACTNESS 137

Lemma 451 Let ( ) be a metric space and  a subset of .

 sequentially compact ⇒  totally bounded.

Proof. Suppose otherwise, i.e., ∃  0 such that for any finite set  ⊆ ,  " ∪∈ ( ).
We are now going to construct a sequence in  which does not admit any convergent subsequence,

contradicting sequential compactness.

Take an arbitrary

1 ∈ 

Then, by assumption  "  (1 ). Then take 2 ∈ \ (1 ), i.e.,

2 ∈  and  (1 2)  

By assumption,  "  (1 ) ∪ (2 ). Then, take 3 ∈ \ ( (1 ) ∪ (2 )), i.e.,
3 ∈  and for  ∈ {1 2}   (3 )  

By the axiom of choice, we get that

∀ ∈ N  ∈  and for  ∈ {1  − 1}   ( )  

Therefore, we have constructed a sequence ()∈N ∈ ∞ such that

∀  ∈ N if  6= , then  ( )   (9.21)

But, then it is easy to check that ()∈N does not have any convergent subsequence in , as

verified below. Suppose otherwise, then ()∈N would admit a subsequence ()∈N ∈ ∞ such

that  →  ∈ . But, by definition of convergence, ∃ ∈ N such that ∀    ( ) 

2
,

and therefore

 ( +1) ≤  ( ) +  (+1 )  

contradicting (921).

Lemma 452 Let ( ) be a metric space and  a subset of .¿
 sequentially compact

S is an open cover of 
À
⇒  ∃  0 such that ∀ ∈  ∃ ∈ S such that  ( ) ⊆ 

®


Proof. Suppose otherwise; then

∀ ∈ N+ ∃ ∈  such that ∀ ∈ S 

µ


1



¶
*  (9.22)

By sequential compactness, the sequence ()∈N ∈ ∞ admits a subsequence, without loss of

generality the sequence itself, ()∈N ∈ ∞ such that  →  ∈ . Since S is an open cover of ,
∃  ∈ S such that  ∈  and, since  is open, ∃  0 such that

 ( ) ⊆  (9.23)

Since  → , ∃ ∈ N such that{+  ∈ N} ⊆ 
¡
 

2

¢
. Now, take   max

©
 2



ª
. Then,



µ


1



¶
⊆  ( )  (9.24)

i.e.,  ( ) 
1

⇒  ( )  , as shown below.

 ( ) ≤  ( ) +  ( ) 
1


+



2
 

From (923) and (924), we get 
¡


1


¢ ⊆  ∈ S, contradicting (922).
Proposition 453 Let ( ) be a metric space and  a subset of .

 sequentially compact ⇒  compact.
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Proof. Take an open cover S of . Since  is sequentially compact, from Lemma 452,

∃  0 such that ∀ ∈  ∃ ∈ S such that  ( ) ⊆ 

Moreover, from Lemma 451 and the definition of total boundedness, there exists a finite set

 ⊆  such that  ⊆ ∪∈ ( ) ⊆ ∪∈. But then { :  ∈ } is the required subcover of
S which covers .
We conclude our discussion on compactness with some results we hope will clarify the concept

of compactness in R

Proposition 454 Let  be a proper subset of R, and  a subset of .

 is bounded and (R 2) closed
(m 1)
 is (R 2) compact
(m 2)
 is ( 2) compact

⇓ (not ⇑) 3
 is bounded and ( 2) closed

Proof. [1 m]
It is the content of (Propositions 435, 436 and last part of) Proposition 444.

To show the other result, observe preliminarily that

( ∩ ) ∪ ( ∩ ) =  ∩ ( ∪ )
[2 ⇓]
Take T := {}∈ such that ∀ ∈   is ( ) open and  ⊆ ∪∈. From Proposition

407,

∀ ∈  ∃  such that  is (R 2) open and  =  ∩ 
Then

 ⊆ ∪∈ ⊆ ∪∈ ( ∩ ) =  ∩ (∪∈) 
We then have that

 ⊆ ∪∈
i.e., S := {}∈ is a (R 2) open cover of  and since  is (R 2) compact, then there exists
a finite subcover {}∈ of S such that

 ⊆ ∪∈
Since  ⊆  , we then have

 ⊆ (∪∈) ∩ = ∪∈ ( ∩) = ∪∈
i.e., {}∈ is a ( ) open subcover of {}∈ which covers , as required.
[2 ⇑]
Take S := {}∈ such that ∀ ∈   is (R 2) open and  ⊆ ∪∈. From Proposition

407,

∀ ∈   :=  ∩  is ( ) open

Since  ⊆  , we then have

 ⊆ (∪∈) ∩ = ∪∈ ( ∩) = ∪∈
Then, by assumption, there exists {}∈ is an open subcover of {}∈ which covers , and
therefore there exists a set  with finite cardinality such that

 ⊆ ∪∈ = ∪∈ ( ∩) = (∪∈) ∩ ⊆ (∪∈) 
i.e., {}∈ is a (R 2) open subcover of {}∈ which covers , as required.
[3 ⇓]
It is the content of Propositions 435, 436.

[3 not ⇑]
See Remark 437.1.
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Remark 455 The proof of part [2 m] above can be used to show the following result.
Given a metric space ( ), a metric subspace ( ) a set  ⊆  , then

 is ( ) compact

m
 is ( ) compact

In other words, ( 0 ) compactness of  ⊆  0 ⊆  is an intrinsic property of : it does not

depend by the subspace  0you are considering. On the other hand, as we have seen, closedness and
openness are not an intrinsic property of the set.

Remark 456 Observe also that to define “anyway” compact sets as closed and bounded sets would

not be a good choice. The conclusion of the extreme value theorem (see Theorem 525) would not

hold in that case. That theorem basically says that a continuous real valued function on a compact

set admits a global maximum. It is not the case that a continuous real valued function on a closed

and bounded set admits a global maximum: consider the continuous function

 : (0 1]→ R  () =
1




The set (0 1] is bounded and closed (in ((0+∞)  2) and  has no maximum on (0 1].

9.6 Completeness

9.6.1 Cauchy sequences

Definition 457 Let ( ) be a metric space. A sequence ()∈N ∈ ∞ is a Cauchy sequence if

∀  0 ∃ ∈ N such that ∀    ( )  

Proposition 458 Let a metric space ( ) and a sequence ()∈N ∈ ∞ be given.

1. ()∈N is convergent ⇒ ()∈N is Cauchy, but not vice-versa;

2. ()∈N is Cauchy ⇒ ()∈N is bounded;

3. ()∈N is Cauchy and it has a subsequence converging to  ∈  ⇒ ()∈N is convergent to
 ∈ .

Proof. 1.

[⇒] Since ()∈N is convergent, by definition, ∃ ∈  such that  →  ∃ ∈ N such that
∀   ,  ( ) 


2
and  ( ) 


2
. But then  ( ) ≤  ( ) +  ( ) 


2
+ 

2
= 

[:]
Take  = (0 1)   = absolute value, ()∈N ∈ (0 1)∞ such that ∀ ∈ N  = 1


.

()∈N is Cauchy:

∀  0 

µ
1



1



¶
=

¯̄̄̄
1


− 1



¯̄̄̄


¯̄̄̄
1



¯̄̄̄
+

¯̄̄̄
1



¯̄̄̄
=
1


+
1






2
+



2
= 

where the last inequality is true if 1

 

2
and 1


 

2
, i.e., if   2


and   2


. Then, it is

enough to take   2

and  ∈ N, to get the desired result.

()∈N is not convergent to any point in (0 1):
take any  ∈ (0 1). We want to show that

∃  0 such that ∀ ∈ N ∃   such that  ( )  

Take  = 
2
 0 and ∀ ∈ N , take ∗ ∈ N such that 1

∗  min
©
1

 
2

ª
. Then, ∗   , and¯̄̄̄

1

∗
− 

¯̄̄̄
= − 1

∗
 − 

2
=



2
= 

2.
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Take  = 1. Then ∃ ∈ N such that ∀    ( )  1. If  = 1, we are done. If

 ≥ 1, define
 = max {1  (1  )    (−1  )} 

Then

{ :  ∈ N} ⊆  (  ) 

3.

Let ()∈N be a convergent subsequence to  ∈ . Then,

 ( ) ≤  ( ) +  (  ) 

Since  ( )→ 0, because the sequence is Cauchy, and  ( )→ 0, because the subse-

quence is convergent, the desired result follows.

9.6.2 Complete metric spaces

Definition 459 A metric space () is complete if every Cauchy sequence is a convergent se-

quence.

Remark 460 If a metric space is complete, to show convergence you do not need to guess the limit

of the sequence: it is enough to show that the sequence is Cauchy.

Example 461 ((0 1)  absolute value) is not a complete metric space; it is enough to consider¡
1


¢
∈N.

Example 462 Let ( ) be a discrete metric space. Then, it is complete. Take a Cauchy sequence

()∈N ∈ ∞. Then, we claim that ∃ ∈ N and  ∈  such that ∀    = . Suppose

otherwise:

∀ ∈ N∃0   such that  6= 0 

but then  ( 0) = 1, contradicting the fact that the sequence is Cauchy.

Example 463 (Q 2) is not a complete metric space. Since R\Q is dense in R, ∀ ∈ R\Q, we
can find ()∈N ∈ Q∞ such that  → .

Proposition 464
¡
R 2

¢
is complete.

Proof. 1. (R 2) is complete.
Take a Cauchy sequence ()∈N ∈ R∞. Then, from Proposition 458.2, it is bounded. Then from

Bolzano-Weierstrass Theorem (i.e., Proposition 418.4), ()∈N does have a convergent subsequence
- i.e., ∃ ()∈N ∈ R∞ which is a subsequence of ()∈N and such that  →  ∈ R. Then from
Proposition 458.3.

2. For any  ≥ 2 ¡R 2¢ is complete.
Take a Cauchy sequence ()∈N ∈

¡
R
¢∞

For  ∈ {1  }, consider ¡¢∈N ∈ R∞. Then, for
any  ∈ N, ¯̄

 − 
¯̄
 k − k 

Then, ∀ ∈ {1  }, ¡¢∈N ∈ R∞ is Cauchy and therefore from 1. above, ∀ ∈ {1  },¡

¢
∈N is convergent. Finally, from Proposition 421, the desired result follows.

Example 465 For any nonempty set  , (B ( )  ∞) is a complete metric space.
Let ()∈N ∈ (B ( ))∞ be a Cauchy sequence. For any  ∈  , ( ())∈N ∈ R∞ is a Cauchy

sequence, and since R is complete, it has a convergent subsequence, without loss of generality,

( ())∈N itself converging say to  ∈ R. Define

 :  → R :  7→ 

We are going to show that (i).  ∈ B ( ), and (ii)  →  .

(i). Since () is Cauchy,

∀  0 ∃ ∈ N such that ∀   ∞ ( ) := sup
∈

| ()−  ()|  
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Then,

∀ ∈  | ()−  ()| ≤ sup
∈

| ()−  ()| = ∞ ( )   (9.25)

Taking limits of both sides of (925) for → +∞, and using the continuity of the absolute value
function, we have that

∀ ∈  lim
→+∞

| ()−  ()| = | ()−  ()|   (9.26)

Since9

∀ ∈  | | ()|− | ()| | ≤ |  ()−  () |  

and therefore,

∀ ∈  | ()| ≤  () + 

Since  ∈ B ( ),  ∈ B ( ) as well.
(ii) From (926), we also have that

∀ ∈  | ()−  ()|  

and by definition of sup

∞ ( ) := sup
∈

| ()−  ()|  

i.e., ∞ ( )→ 0.

For future use, we also show the following result.

Proposition 466

BC () := { :  → R :  is bounded and continuous}

endowed with the metric  ( ) = sup∈ | ()−  ()| is a complete metric space.

Proof. See Stokey and Lucas (1989), page 47.

9.6.3 Completeness and closedness

Proposition 467 Let a metric space ( ) and a metric subspace ( ) of () be given.

1.  complete ⇒  closed;

2.  complete ⇐  closed and  complete.

Proof. 1.

Take ()∈N ∈ ∞ such that  → . From Proposition 425, it is enough to show that  ∈  .

Since ()∈N is convergent in, then it is Cauchy. Since  is complete, by definition,  →  ∈  .

2.

Take a Cauchy sequence ()∈N ∈ ∞. We want to show that  →  ∈  . Since  ⊆ ,

()∈N is Cauchy in , and since  is complete,  →  ∈ . But since  is closed,  ∈ 

Remark 468 An example of a metric subspace ( ) of () which is closed and not complete is

the following one. ( ) = (R++ 2), ( ) = ((0 1]  2) and ()∈N =
¡
1


¢
∈N.

Corollary 469 Let a complete metric space ( ) and a metric subspace ( ) of () be given.

Then,

 complete ⇔  closed.

9 See, for example, page 37 in Ok (2007).
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9.7 Fixed point theorem: contractions

Definition 470 Let ( ) be a metric space. A function  :  →  is said to be a contraction if

∃ ∈ (0 1) such that ∀  ∈   ( ()   ()) ≤  ·  ( ) 

The inf of the set of  satisfying the above condition is called contraction coefficient of .

Example 471 1. Given (R 2),

 : R→ R  7→ 

is a contraction iff ||  1; in that case || is the contraction coefficient of .
2. Let  be a nonempty open subset of R and  :  →  a differentiable function. If

sup
∈

| 0 ()|  1

then  is a contraction.

Definition 472 For any   ∈  ⊆ B ( ), we say that  ≤  if ∀ ∈   () ≤  ().

Proposition 473 (Blackwell) Let the following objects be given:

1. a nonempty set  ;

2.  is a nonempty subset of the set B ( ) such that ∀ ∈  ∀ ∈ R+  +  ∈ ;

3.  :  →  is increasing, i.e.,  ≤  ⇒  () ≤  ();

4. ∃ ∈ (0 1) such that ∀ ∈ ∀ ∈ R+  ( + ) ≤  () + .

Then  is a contraction with contraction coefficient .

Proof. ∀  ∈  ∀ ∈ 

 ()−  () ≤ | ()−  ()| ≤ sup
∈

| ()−  ()| = ∞ ( ) 

Therefore,  ≤  + ∞ ( ), and from Assumption 3,

 () ≤  ( + ∞ ( )) 

Then, from Assumption 4,

∃ ∈ (0 1) such that  ( + ∞ ( )) ≤  () + ∞ ( ) 

and therefore

 () ≤  () + ∞ ( )  (9.27)

Since the argument above is symmetric with respect to  and , we also have

 () ≤  () + ∞ ( )  (9.28)

From (927) and (928) and the definition of absolute value, we have

| ()−  ()| ≤ ∞ ( ) 

as desired.

Proposition 474 (Banach fixed point theorem) Let ( ) be a complete metric space. If  :  →
 is a contraction with coefficient , then

∃! ∗ ∈  such that ∗ =  (∗)  (9.29)

and

∀0 ∈  and ∀ ∈ N  ( (0)  
∗) ≤  ·  (0 ∗)  (9.30)

where  :=
1

( ◦
2

 ◦  ◦


).

Proof. (929) holds true.
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Take any 0 ∈  and define the sequence

()∈N ∈ ∞ with ∀ ∈ N +1 =  () 

We want to show that 1. that ()∈N is Cauchy, 2. its limit is a fixed point for , and 3. that
fixed point is unique.

1. First of all observe that

∀ ∈ N  (+1 ) ≤  (1 0)  (9.31)

where  is the contraction coefficient of , as shown by induction below.

Step 1: P (1) is true:
 (2 1) =  ( (1)   (0)) ≤  (1 0)

from the definition of the chosen sequence and the assumption that  is a contraction.

Step 2. P (− 1)⇒ P () :
 (+1 ) =  ( ()   (−1)) ≤  ( −1) ≤  (1 0)

from the definition of the chosen sequence, the assumption that  is a contraction and the assumption

of the induction step.

Now, for any   ∈ N with   

 ( ) ≤  ( −1) +  (−1 −2) + +  (+1 ) ≤

≤ ¡−1 + −2 + + 
¢
 (1 0) ≤  1−

−
1−  (1 0) 

where the first inequality follows from the triangle inequality, the third one from the following

computation10 :

−1 + −2 + +  = 
¡
1 +  + + −+1

¢
= 

1− −

1− 


Finally, since  ∈ (0 1) we get

 ( ) ≤ 

1− 
 (1 0)  (9.32)

If 1 = 0 then for any   ∈ N with     ( ) = 0 and ∀ ∈ N  = 0 and the

sequence is converging and therefore it is Cauchy. Therefore, consider the case 1 6= 0From (932)

it follows that ()∈N ∈ ∞ is Cauchy: ∀  0 choose  ∈ N such that 


1− (1 0)  , i.e.,

 
(1−)
(10)

and  
log

(1−)
(10)

log
.

2. Since ( ) is a complete metric space, ()∈N ∈ ∞ does converge say to ∗ ∈ , and,

in fact, we want to show that  (∗) = ∗. Then, ∀  0∃ ∈ N such that ∀  

 ( (∗)  ∗) ≤  ( (∗)  +1) + 
¡
+1 ∗

¢ ≤
≤  ( (∗)   ()) + 

¡
+1 ∗

¢ ≤  (∗ ) + 
¡
+1 ∗

¢ ≤
≤ 

2
+ 

2
= 

10We are also using the basic facat used to study geometrical series. Define

 ≡ 1 + + 2 + + ;

:

Multiply both sides of the above equality by(1− ):

(1− )  ≡ (1− )

1 + + 2 + + 


(1− )  ≡


1 + + 2 + + 

− + 2 + + +1

= 1− +1

Divide both sides by (1− ):

 ≡

1 + + 2 + + 

− + 2 + + +1

=
1− +1

1− 
=

1

1− 
− +1

1− 
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where the first equality comes from the triangle inequality, the second one from the construction

of the sequence ()∈N ∈ ∞, the third one from the assumption that  is a contraction and the

last one from the fact that ()∈N converges to ∗. Since  is arbitrary,  ( (∗)  ∗) = 0, as

desired.

3. Suppose that b is another fixed point for  - beside ∗. Then,
 (b ∗) =  ( (b)   (∗)) ≤  (b ∗)

and assuming b 6= ∗ would imply 1 ≤ , a contradiction of the fact that  is a contraction with

contraction coefficient .

(930) hods true.

We show the claim by induction on  ∈ N.
P (1) is true.

 ( (0)  
∗) =  ( (0)   (

∗)) ≤  ·  (0 ∗) 
where the equality follows from the fact that ∗ is a fixed point for , and the inequality by the

fact that  is a contraction.

P (− 1) is true implies that P () is true.
 ( (0)  

∗) =  ( (0)   (
∗)) = 

¡

¡
−1 (0)

¢
  (∗)

¢ ≤
≤  ·  ¡−1 (0)  ∗¢ ≤  · −1 ·  (0 ∗) =  ·  (0 ∗) 

9.8 Appendices.

9.8.1 Some characterizations of open and closed sets

Remark 475 From basic set theory, we have  ∩ = ∅⇔  ⊆ , as verified below.

¬ ∃ :  ∈  ∧  ∈ 
®
= h∀ :  ∈  ∨ ¬ ( ∈ )i =

= h∀ : ¬ ( ∈ ) ∨  ∈ i (∗)= h∀ :  ∈  ⇒  ∈ i 
where (∗) follows from the fact that h⇒ i = h(¬) ∨ i.

Proposition 476  is open ⇔  ∩F () = ∅.
Proof. [⇒]
Suppose otherwise, i.e., ∃ ∈  ∩F (). Since  ∈ F (), ∀ ∈ R++  ( ) ∩  6= ∅. Then,

from Remark 475, ∀ ∈ R++, it is false that  ( ) ⊆ , contradicting the assumption that  is

open.

[⇐]
Suppose otherwise, i.e., ∃ ∈  such that

∀ ∈ R++  ( ) ∩  6= ∅ (9.33)

Moreover

 ∈  ( ) ∩  6= ∅ (9.34)

But (933) and (934) imply  ∈ F (). Since  ∈ , we would have  ∩F () 6= ∅, contradicting
the assumption.

Proposition 477  is closed ⇔ F () ⊆ .

Proof.

 closed ⇔  open
(1)⇔  ∩F ¡¢ = ∅ (2)⇔  ∩F () = ∅ (3)⇔ F () ⊆ 

where

(1) follows from Proposition 476;

(2) follows from Remark 398

(3) follows Remark 475.
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Proposition 478  is closed ⇔  () ⊆ 

Proof. We are going to use Proposition 477, i.e.,  is closed ⇔ F () ⊆ .

[⇒]
Suppose otherwise, i.e.,

∃ ∈  such that ∀ ∈ R++ (\ {}) ∩ ( ) 6= ∅

and since  ∈ , it is also true that

∀ ∈ R++  ∩ ( ) 6= ∅ (9.35)

and

∀ ∈ R++  ∩ ( ) 6= ∅ (9.36)

From (935) and (936), it follows that  ∈ F (), while  ∈ , which from Proposition 477

contradicts the assumption that  is closed.

[⇐]
Suppose otherwise, i.e., using Proposition 477,

∃ ∈ F () such that  ∈ 

Then, by definition of F (),

∀ ∈ R++  ( ) ∩  6= ∅.

Since  ∈ , we also have

∀ ∈ R++  ( ) ∩ (\ {}) 6= ∅,

i.e.,  ∈  () and  ∈ , a contradiction.

Proposition 479 ∀  ⊆ ,  ⊆  ⇒  () ⊆  ( ).

Proof. Take  ∈  (). Then

∀ ∈ R++ (\ {}) ∩ ( ) 6= ∅ (9.37)

Since  ⊆  , we also have

(\ {}) ∩ ( ) ⊇ (\ {}) ∩ ( )  (9.38)

From (937) and (938), we get  ∈  ( ).

Proposition 480  ∪ () is a closed set.

Proof. Take  ∈ ( ∪ ()) i.e.,  ∈  and  ∈  (). We want to show that

∃ ∈ R++ such that  ( ) ∩ ( ∪ ()) = ∅

i.e.,

∃ ∈ R++ such that ( ( ) ∩ ) ∪ ( ( ) ∩ ()) = ∅
Since  ∈  (), ∃ ∈ R++ such that  ( ) ∩ (\ {}) = ∅. Since  ∈ , we also have that

∃ ∈ R++ such that  ∩ ( ) = ∅ (9.39)

We are then left with showing that  ( )∩ () = ∅. If  ∈  ( ), then from (939),  ∈ 

and  ( ) ∩  \ {} = ∅ i.e.,  ∈  () i.e.,  ( ) ∩ () = ∅, as desired.

Proposition 481 Cl () =  ∪ ().
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Proof. [⊇]
Since

 ⊆ Cl () (9.40)

from Proposition 479,

 () ⊆  (Cl ())  (9.41)

Since Cl () is closed, from Proposition 478,

 (Cl ()) ⊆ Cl () (9.42)

From (940)  and (941)  (942), we get

 ∪ () ⊆ Cl ()

[⊆]
Since, from Proposition 480,  ∪ () is closed and contains , then by definition of Cl (),

Cl () ⊆  ∪ () 

To proceed in our analysis, we need the following result.

Lemma 482 For any metric space ( ) and any  ⊆ , we have that

1.  =   ∪ F () ∪  , and
2. (  ∪F ()) =   

Proof. If either  = ∅ or  = , the results are trivial. Otherwise, observe that either  ∈ 

or  ∈  \ 
1. If  ∈ then

either ∃ ∈ R++ such that  ( ) ⊆  and then  ∈  ,

or ∀ ∈ R++,  ( ) ∩  6= ∅ and then  ∈ F () 
Similarly, if  ∈  \ then
either ∃0 ∈ R++ such that  ( 0) ⊆  \  and then  ∈  ( \ ),
or ∀0 ∈ R++,  ( 0) ∩  6= ∅ and then  ∈ F () 
2. By definition of Interior and Boundary of a set, (  ∪F ()) ∩   = ∅
Now, for arbitrary sets  ⊆  such that  ∪ =  and  ∩ = ∅, we have what follow:
 ∪ =  ⇔ ( ∪) =  ⇔  ∩ = ∅, and from Remark 475,  ⊆ ;

 ∩ = ∅⇔  ∩ ¡
¢
= ∅⇒  ⊆  .

Therefore we can the desired result.

Proposition 483 Cl () =   ∪ F ().

Proof. From Lemma 482, it is enough to show that

(Cl ())

=   

[⊇]
Take  ∈   . Then, ∃ ∈ R++ such that  ( ) ⊆  and therefore  ( )∩ = ∅ and,

since  ∈ ,

 ( ) ∩ (\ {}) = ∅
Then  ∈  and  ∈  (), i.e.,

 ∈  ∪ () = Cl ()

where last equality follows from Proposition 481. In other words,  ∈ (Cl ()) .
[⊆]
Take  ∈ (Cl ()) = ( () ∪ ) . Since  ∈  (),

∃ ∈ R++ such that (\ {}) ∩ ( ) = ∅ (9.43)
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Since  ∈ ,

∃ ∈ R++ such that  ∩ ( ) = ∅ (9.44)

i.e.,

∃ ∈ R++ such that  ( ) ⊆  (9.45)

and  ∈   .

Definition 484  ∈  is an adherent point for  if ∀ ∈ R++  ( ) ∩  6= ∅ and

 () := { ∈  : ∀ ∈ R++  ( ) ∩  6= ∅}

Corollary 485 1. Cl () =  ().

2. A set  is closed ⇔  () = .

Proof. 1.

[⊆]
 ∈ Cl ()⇒ h ∈  or F ()i and in both cases the desired conclusion is insured.
[⊇]
If  ∈ , then, by definition of closure,  ∈ Cl (). If  ∈ then  = \ {} and, from the

assumption, ∀ ∈ R++  ( ) ∩ (\ {}) 6= ∅, i.e.,  ∈  () which is contained in Cl ()from

Proposition 481.

2. It follows from 1. above and Proposition 401.2.

Proposition 486 Let  ⊆ R be given. Then, F () = Cl () \ Int ().

Proof. We want to show

h ∀ ∈ R++  ( ) ∩  6= ∅ and  ( ) ∩  6= ∅ i⇔ h  ∈ Cl () \Int i 

FromDefinition ?? and ??,  ∈ Cl () \Int () iff ∀ ∈ R++  ( )∩ 6= ∅ and ¬ (∃  0 such that  ( ) ⊆ ),

i.e., ∀  0,
 ( ) ∩ (R\) =  ( ) ∩ R ∩  =  ( ) ∩  6= ∅

Therefore,  ∈ Cl () \Int () iff ∀ ∈ R++  ( ) ∩  6= ∅ and  ( ) ∩  6= ∅.

Proposition 487  ∈ Cl ()⇔ ∃ ()∈N in  converging to .

Proof. [⇒]
From Corollary 485, if  ∈ Cl () then ∀ ∈ N, we can take  ∈ 

¡
 1



¢∩. Then  ( ) 
1

and lim→+∞  ( ) = 0.

[⇐]
By definition of convergence,

∀  0∃ ∈ N such that ∀    ( )   or  ∈  ( )

or

∀  0  ( ) ∩  ⊇ { :   }
and

∀  0  ( ) ∩  6= ∅
i.e.,  ∈  ()  and from the Corollary 485.1, the desired result follows.

Proposition 488  is closed ⇔ any convergent sequence ()∈N with elements in  converges to

an element of .

Proof. We are going to show that  is closed using Proposition 478, i.e.,  is closed ⇔
 () ⊆ . We want to show that

h () ⊆ i⇔
¿¿

()∈N is such that 1. ∀ ∈ N  ∈  and

2.  → 0

À
⇒ 0 ∈ 

À


[⇒]
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Suppose otherwise, i.e., there exists ()∈N such that 1. ∀ ∈ N  ∈ . and 2 → 0, but

0 ∈ .

By definition of convergent sequence, we have

∀  0∃0 ∈ N such that ∀  0  ( 0)  

and, since ∀ ∈ N  ∈ ,

{ :   0} ⊆  (0 ) ∩ (\ {0})

Then,

∀  0  (0 ) ∩ (\ {0}) 6= ∅
and therefore 0 ∈  () while 0 ∈ , contradicting the fact that  is closed.

[⇐]
Suppose otherwise, i.e., ∃ 0 ∈  () and 0 ∈ . We are going to construct a convergent

sequence ()∈N with elements in  which converges to 0 (a point not belonging to ).

From the definition of accumulation point,

∀ ∈ N (\ {0}) ∩
µ

1



¶
6= ∅

Then, we can take  ∈ (\ {})∩
¡
 1



¢
, and since  ( 0) 

1

, we have that  ( 0)→

0.

Summarizing, the following statements are equivalent:

1.  is open (i.e.,  ⊆  )

2.  is closed,

3.  ∩F () = ∅,

and the following statements are equivalent:

1.  is closed,

2.  is open,

3. F () ⊆ 

4.  = Cl () 

5.  () ⊆ 

6.  () = 

7. any convergent sequence ()∈N with elements in  converges to an element of 

9.8.2 Norms and metrics

In these notes, a field  can be either R or C.

Definition 489 A norm on a vector space  on a field  ∈ {RC} is a function

|| · || :  → R  7→ ||||

which satisfies the following properties: ∀  ∈ ,∀ ∈ ,

1. |||| ≥ 0 (non negativity),
2. ||+ || ≤ ||||+ |||| (triangle inequality),
3. |||| = || · |||| (homogeneity), 11
11 If  ∈ R, || is the absolute value of ; if  = ( ) ∈ C, then || = √2 + 2.
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4. |||| = 0⇒  = 0 (separation).

Proposition 490 Given a norm || · || on , ∀  ∈ 

1.  = 0⇒ |||| = 0
2. ||− || = || − ||
3. |(||||− ||||)| ≤ ||− ||.

Proof.

1. Since  is a vector space, ∀ ∈ , 0 = 0 (from Proposition 135 in Villanacci (2012)). Then

||0|| = ||0|| ()= |0| · |||| ()= 0|||| = 0

where () follows from property 3 of norm and () from the definition of absolute value.

2. || − || = || −  + || = 12 || −  − (−)|| ()= ||(−1) + (−1)(−)|| = ||(−1)( − )|| =
|− 1| · || − || = || − ||
where () follows from Proposition 135.4 in Villanacci (2012).

3. From the definition of absolute value, we want to show that

−||− || ≤ ||||− |||| ≤ ||− ||

Indeed,

|||| = ||−  + || ≤ ||− ||+ ||||
i.e., ||− || ≥ ||||− |||| and

|||| = || − + || ≤ || − ||+ |||| = ||− ||+ ||||

i.e., −||− || ≤ ||||− ||||, as desired.

Proposition 491 If properties 2. and 3. in Definition 489 hold true, then property 1. in the same

definition holds true.

Proof. We want to show that

h||+ || ≤ ||||+ |||| ∧ |||| = || · ||||i

⇒ h∀ ∈  |||| ≥ 0i
Observe that if  = 0, from Proposition 490.2 (which uses only property 3 of Definition 489) we

have |||| = 0. Then

||0|| ≤ ||− || ≤ ||||+ ||− || and therefore
|||| ≥ −|||| = −|− 1| · |||| = −||||

Now, if ||||  0 we would have a negative number strictly larger than a positive number, which is
a contradiction.

Definition 492 The pair ( ||·||), where  is a vector space and ||·|| is a norm, is called a normed
vector space.

Remark 493 Normed spaces are, by definition, vector space.

Definition 494 A seminorm is a function satisfying properties 1, 2 and 3 in Definition 489.

12∀ ∈  (−1) = − and −(−) = (−1)((−1)) = ((−1)(−1)) = 1 ·  = 
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Definition 495 Given a non-empty set , a function  :  ×  → R is called a metric or a

distance on  if ∀   ∈ ,

1. ( ) ≥ 0 (non negativity),
2. ( ) = 0⇔  =  (coincidence),

3. ( ) = ( ) (symmetry),

4. ( ) ≤ ( ) + ( ) (triangle inequality),

( ) is called a metric space.

Definition 496 Given a normed vector space ( || · ||) the metric

 : 2 → R ( ) 7→ ||− ||

is called the metric induced by the norm || · ||

Proposition 497 Given a normed vector space ( || · ||),

 :  × → R ( ) 7→ ||− ||

is a metric and ( ) is a metric space.

Proof.

1. It follows from the fact that   ∈  ⇒ −  ∈  and property 1 of the norm.

2. It follows from property 1 of the norm and Proposition 490.1.

3. It follows from Proposition 490.2.

4. ( ) = ||− || = ||(− ) + ( − )|| ≤ ||− ||+ || − || = ( ) + ( ).

Proposition 498 If || · || is a norm on a vector space  and

 :  × → R ( ) 7→ ||− ||

then ∀   ∈ ∀ ∈ 

a. ( 0) = ||||
b. (+   + ) = ( ) (translation invariance)

c. ( ) = ||( ) (homogeneity).

Proof.

a. ( 0) = ||− 0|| = ||||
b. (+   + ) = ||(+ )− ( + )|| = ||− || = ( )

c. ( ) = ||− || = ||(− )|| = || · ||− || = ||( ).

Proposition 499 Let ( ) be a metric space such that  satisfies translation invariance and

homogeneity. Then

 :  → R  7→ ( 0)

is a norm and ∀  ∈ , ( − ) = ( ).

Proof.
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1. () = ( 0) ≥ 0, where the inequality follows from property 1 in Definition 4,

2.

(+ ) = (+  0)
()
= (+  −  0− ) = (−)

()

≤ ( 0) + (0−) =
()
= ( 0) + (− 0) ()= (0 ) + (0 ) = () + ()

where () follows from translation invariance, () from triangle inequality in Definition 495,

() from symmetry in Definition 495 and () from homogeneity.

3.

() = ( 0) = ||( 0) = ||()

4.

() = 0⇒ ( 0) = 0⇒  = 0

It follows that

( − ) = ( −  0) = ( − +  0 + ) = ( ) = ( )

Remark 500 The above Proposition suggests that the following statement is false:

Given a metric space ( ), then  :  → R :  7→ ( 0) is a norm on .

The fact that the above statement is false is verified below. Take an arbitrary vector space 

with the discrete metric ,

 :  × → R ( ) =

(
0 if  = 

1 if  6= 

First of all, let’s verify that d does not satisfy (translation invariance and homogeneity), other-

wise from Proposition 499, we would contradict the desired result. Indeed homogeneity fails.

Take  6=  and  = 2 then

( ) = 1  ( ) = 1

||( ) = 2 6= 1
Let’s now show that in the case of the discrete metric

 :  → R  7→ ( 0)

is not a norm. Take  6= 0 and  = 2 then

|||| = ( 0) = 1

||( 0) = 2

9.9 Exercises

Problem sets: 3,4,5,6.

From Lipschutz (1965), starting from page 54: 1, 18, 19, 20, 23, 28 (observe that Lipscutz uses

the word “range” in the place of “image”);

starting from page 120: 1, 3, 6, 7, 25, 29.
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Chapter 10

Functions

10.1 Limits of functions

In what follows we take for given metric spaces () and ( 0 0) and sets  ⊆  and  ⊆  0.

Definition 501 Given 0 ∈  () i.e., given an accumulation point 0 for , and  :  →  , we

write

lim
→0

 () = 

if

∀  0∃  0 such that  ∈ ¡() (0 ) ∩ ¢ \ {0} ⇒  () ∈ (00) ( )

or

∀  0∃  0 such that h  ∈  ∧ 0   ( 0)  i⇒ 0 ( ()  )  

Proposition 502 Given 0 ∈  () and  :  →  ,

hlim→0  () = i
⇔*

for any sequence ()∈N in S such that ∀ ∈ N,  6= 0 and lim→+∞ =0,

lim→+∞  () = 

+

Proof. for the following proof see also Proposition 6.2.4, page 123 in Morris.

[⇒]
Take

a sequence ()∈N in  such that ∀ ∈ N  6= 0 and lim
→+∞

 = 0

We want to show that lim→+∞  () = , i.e.,

∀  0∃0 ∈ N such that ∀  0  ( ()  )  

Since lim→0  () = ,

∀  0∃  0 such that  ∈  ∧ 0   ( 0)   ⇒  ( ()  )  

Since lim→+∞  = 

∀  0∃0 ∈ N such that ∀  0 0
(∗)
  ( 0)  

where (∗) follows from the fact that ∀ ∈ N,  6= 0

Therefore, combining the above results, we get

∀  0∃0 ∈ N such that ∀  0  ( ()  )  

as desired.
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[⇐]
Suppose otherwise, then

∃  0 such that ∀ = 1

, i.e., ∀  ∈ N, ∃ ∈  such that

 ∈  ∧ 0   ( 0) 
1

and  ( ()  ) ≥ 

(10.1)

Consider ()∈N; then, from the above and from Proposition 416,  → 0, and from the above

(specifically the fact that 0   ( 0)), we also have that ∀ ∈ N  6= 0. Then by assumption,

lim→+∞  () = , i.e., by definition of limit,

∀  0 ∃ ∈ N such that if    then | ( − )|  

contradicting (101).

Proposition 503 (uniqueness) Given 0 ∈  () and  :  →  ,¿
lim
→0

 () = 1 and lim
→0

 () = 2

À
⇒ h1 = 2i

Proof. It follows from Proposition 502 and Proposition 420.

Proposition 504 Given  ⊆ , 0 ∈  () and   :  → R, , and

lim
→0

 () =  and lim
→0

 () = 

1. lim→0  () +  () =  +;

2. lim→0  () ·  () =  ·;

3. if  6= 0 and ∀ ∈ ,  () 6= 0, lim→0
()

()
= 


.

Proof. It follows from Proposition 502 and Proposition 418.

10.2 Continuous Functions

Definition 505 Given a metric space () and a set  ⊆ , an open neighborhood of  is an

open set containing  .

Remark 506 Sometimes, an open neighborhood is simply called a neighborhood.

Definition 507 Take  ⊆ ( )   ⊆ ( 0), 0 ∈  and  :  →  . Then,  is ( ) − ( 0)
continuous at 0 if

∀  0∃  0 such that  ∈ ¡() (0 ) ∩ ¢ ⇒  () ∈ (00) ( (0)  ) 

i.e.,

∀  0∃  0 such that  ∈  ∧  ( 0)   ⇒ 0 ( ()   (0))  

i.e.,

∀  0∃  0  ¡() (0 ) ∩ ¢ ⊆ (00) ( (0)  ) 

i.e.,

for any open neighborhood  of  (0),

there exists an open neighborhood  of 0 such that  ( ∩ ) ⊆ 

If  is continuous at 0 for every 0 in ,  is continuous on .

Remark 508 If 0 is an isolated point of ,  is continuos at 0. If 0 is an accumulation point

for ,  is continuous at 0 if and only if lim→0  () =  (0).
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Proposition 509 Suppose that  ⊆  00, where ( 000 00) is a metric space and

 :  →   : ⊇  ()→ 

 :  →   () =  ( ())

If  is continuous at 0 ∈  and  is continuous at  (0), then  is continuous at 0.

Proof. Exercise (see Apostol (1974), page 79) or Ok, page 206.

Proposition 510 Take   :  ⊆ R → R. If  and  are continuous, then

1.  +  is continuous;

2.  ·  is continuous;
3. if ∀ ∈ ,  () 6= 0, 


is continuous.

Proof. If 0 is an isolated point of , from Remark 508, we are done. If 0 is an accumulation

point for , the result follows from Remark 508 and Proposition 504.

Proposition 511 Let  :  ⊆  → R, and for any  ∈ {1 }  :  → R be such that

∀ ∈ ,

 () = ( ())


=1

Then,

h is continuousi⇔ h∀ ∈ {1 }   is continuousi

Proof. The proof follows the strategy used in Proposition 421.

Definition 512 Given for any  ∈ {1  }   ⊆ R,  : ×
=1 → R is continuous in each

variable separately if ∀ ∈ {1  } and ∀0 ∈ ,

0 : × 6= → R 0

³
() 6=

´
= 

¡
1  −1 0  +1  

¢
is continuous.

Proposition 513 Given for any  ∈ {1  } 
 : ×

=1 → R is continuous ⇒  is continuous in each variable separately

Proof. Exercise.

Remark 514 It is false that

 is continuous in each variable separately ⇒  is continuous

To see that consider  : R2 → R,

 ( ) =

⎧⎨⎩


2+2
 ( ) 6= 0

0  ( ) = 0

The following Proposition is useful to show continuity of functions using the results about

continuity of functions from R to R.

Proposition 515 For any  ∈ {1  }  take  ⊆ , and define  := ×
=1 ⊆ . Moreover,

take  ∈ {1  } and let
 :  →  :  7→  ()

be a continuous function and

 :  →  ()

=1 7→  () 

Then  is continuous.
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Example 516 An example of the objects described in the above Proposition is the following one.

 : [0 ]→ R  () = sin

 : [0 ]× [− 0]→ R  ( ) = sin

Proof. of Proposition 515. We want to show that

∀0 ∈ ∀  0 ∃  0 such that  ( 0)   ∧  ∈  ⇒  ( ()   (0))  

We know that

∀0 ∈ ∀  0 ∃0  0 such that  ( 0)  0 ∧  ∈  ⇒  ( ()   (0))  

Take  = 0. Then  ( 0)   ∧  ∈  ⇒  ( 0)  0 ∧  ∈  and    ( ()   (0)) =

 ( ()   (0)), as desired.

Exercise 517 Show that the following function is continuous.

 : R2 → R3  (12) =

⎛⎝ 1 + cos (1 · 2)
sin2 1
2

1 + 2

⎞⎠
From Proposition 511, it suffices to show that each component function is continuous. We are

going to show that 1 : R2 → R,

1 (12) = 1 + cos (1 · 2)

is continuous, leaving the proof of the continuity of the other component functions to the reader.

1. 11 : R2 → R 11 (1 2) = 1 is continuous from Proposition 515 and “Calculus 1”;

2. 1 : R2 → R 1 (1 2) = 1 is continuous from Proposition 515 and “Calculus 1”,

2 : R2 → R 2 (1 2) = 2 is continuous from Proposition 515 and “Calculus 1”,

 : R2 → R  (1 2) = 1 (1 2) · 2 (1 2) = 1 · 2 is continuous from Proposition 510.2,

 : R→ R,  () = cos is continuous from “Calculus 1”,

12 : R2 → R 12 (1 2) = ( ◦ ) (1 2) = cos (1 · 2) is continuous from Proposition 509

(continuity of composition).

3. 1 = 11 + 12 is continuous from Proposition 510.1.

The following Proposition is useful in the proofs of several results.

Proposition 518 Let   be arbitrary sets,  :  →  , {}=1 a family of subsets of  and

{}=1 a family of subsets of Then

1. “ inverse image preserves inclusions, unions, intersections and set differences”, i.e.,

a. 1 ⊆ 2 ⇒ −1 ()1 ⊆ 
¡−12¢,

b. −1 (∪=1) = ∪=1−1 () 

c. −1 (∩=1) = ∩=1−1 () 

d. −1 (1\2) = −1 (1) \−1 (2) 

2. “ image preserves inclusions, unions, only”, i.e.,

e. 1 ⊆ 2 ⇒  ()1 ⊆  (2),

f.  (∪=1) = ∪=1 () 

g.  (∩=1) ⊆ ∩=1 ()  and

if  is one-to-one, then  (∩=1) = ∩=1 () 

h.  (1\2) ⊇  (1) \ (2) and
if  is one-to-one and onto, then  (1\2) =  (1) \ (2) 

3. “relationship between image and inverse image”
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i. 1 ⊆ −1 ( (1))  and
if  is one-to-one, then 1 = −1 ( ()) 

l. 1 ⊇ 
¡
−1 (1)

¢
, and

if  is onto, then 1 = 
¡
−1 (1)

¢
.

Proof.

...

g.

()   ∈  (1 ∩2)⇔ ∃ ∈ 1 ∩2 such that  () = ;

()   ∈  (1) ∩  (2) ⇔  ∈  (1)∧  ∈  (2) ⇔ (∃1 ∈ 1 such that  (1) = ) ∧
(∃2 ∈ 2 such that  (2) = )

To show that ()⇒ () it is enough to take 1 =  and 2 = 

...

Proposition 519  :  →  is continuous ⇔

 ⊆  is open ⇒ −1 ( ) ⊆  is open.

Proof. [⇒]
Take a point 0 ∈ −1 ( ). We want to show that

∃  0 such that  (0 ) ⊆ −1 ( )

Define 0 =  (0) ∈  . Since  ⊆  is open,

∃  0 such that  (0 ) ⊆  (10.2)

Since  is continuous,

∀  0∃  0  ( (0 )) ⊆  ( (0)  ) =  (0 ) (10.3)

Then, taken  = , we have

 (0 ) =  (0 )
(1)

⊆ −1 ( ( (0 )))
(2)

⊆ −1 ( (0 ))
(3)

⊆ −1 ( )

where (1) follows from 3.i in Proposition 518,

(2) follows from 1.a in Proposition 518 and (103)

(3) follows from 1.a in Proposition 518 and (102).

[⇐]
Take 0 ∈  and define 0 =  (0); we want to show that  is continuous at 0.

Take   0, then  (0 ) is open and, by assumption,

−1 ( (0 )) ⊆  is open. (10.4)

Moreover, by definition of 0,

0 ∈ −1 ( (0 )) (10.5)

(104) and (105) imply that

∃  0 such that  (0 ) ⊆ −1 ( (0 )) (10.6)

Then

 ( (0 ))
(1)

⊆ 
¡
−1 ( (0 ))

¢ (2)⊆ ( (0 ))
where

(1) follows from 2.e in Proposition 518 and (106) 

(2) follows from 2.l in Proposition 518

Proposition 520  :  →  is continuous ⇔

 ⊆  closed ⇒ −1 ( ) ⊆  closed.
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Proof. [⇒]
 closed in  ⇒  \ open. Then

−1 ( \ ) = −1 ( ) \ −1 ( ) = \−1 ( ) (10.7)

where the first equality follows from 1.d in Proposition 518.

Since  is continuous and  \ openthen from (107) \−1 ( ) ⊆  is open and therefore

−1 ( ) is closed.
[⇐]
We want to show that for every open set  in  , −1 ( ) is open.

 open ⇒  \ closed ⇒ −1 ( \ ) closed⇔ \−1 ( ) closed⇔ −1 ( ) open.

Definition 521 A function  :  →  is open if

 ⊆  open ⇒  () open;

it is closed if

 ⊆  closed ⇒  () closed.

Exercise 522 Through simple examples show the relationship between open,closed and continuous

functions.

We can summarize our discussion on continuous function in the following Proposition.

Proposition 523 Let  be a function between metric spaces ( ) and ( 0). Then the following
statements are equivalent:

1.  is continuous;

2.  ⊆  is open ⇒ −1 ( ) ⊆  is open;

3.  ⊆  closed ⇒ −1 ( ) ⊆  closed;

4. ∀0 ∈  ∀ ()∈N ∈ ∞ such that lim→+∞  = 0, lim→+∞  () =  (0) 

10.3 Continuous functions on compact sets

Proposition 524 Given  :  →  if  is a compact subset of  and  is continuous, then  ()

is a compact subset (of  ).

Proof. Let F be an open covering of  (), so that

 () ⊆ ∪∈F (10.8)

We want to show that F admits an open subcover which covers  (). Since  is continuous,

∀ ∈ F  −1 () is open in 

Moreover,


(1)

⊆ −1 ( ())
(2)

⊆ −1 (∪∈F) (3)= ∪∈F−1 ()
where

(1) follows from 3.i in Proposition 518,

(2) follows from 1.a in Proposition 518 and (108),

(3) follows from 1.b in Proposition 518.

In other words
©
−1 ()

ª
∈F is an open cover of . Since  is compact there exists 1   ∈

 such that

 ⊆ ∪=1 −1 () 



10.3. CONTINUOUS FUNCTIONS ON COMPACT SETS 159

Then

 ()
(1)

⊆ 
¡∪=1 ¡ −1 ()¢¢ (2)= ∪=1 ¡−1 ()

¢ (3)⊆ ∪=1

where

(1) follows from 1.a in Proposition 518,

(2) follows from 2.f in Proposition 518,

(3) follows from 3.l in Proposition 518.

Proposition 525 (Extreme Value Theorem) If  a nonempty, compact subset of  and  :

 → R is continuous, then  admits global maximum and minimum on , i.e.,

∃min max ∈  such that ∀ ∈   (min) ≤  () ≤  (max) 

Proof. From the previous Proposition  () is closed and bounded. Therefore, since  () is

bounded, there exists  = sup  (). By definition of sup

∀  0  ( ) ∩  () 6= ∅

Then1, ∀ ∈ Ntake
 ∈ 

µ


1



¶
∩  () 

Then, ()∈N is such that ∀ ∈ N,  ∈  () and 0   ()  1

. Therefore,  →and

since  () is closed,  ∈  (). But  ∈  () means that ∃max ∈  such that  (max) = 

and the fact that  = sup  () implies that ∀ ∈   () ≤  (max). Similar reasoning holds

for min

We conclude the section showing a result useful in itself and needed to show the inverse function

theorem - see Section 15.3.

Proposition 526 Let  :  →  be a function from a metric space () to another metric space

( 0). Assume that  is one-to-one and onto. If  is compact and  is continuous, then the

inverse function −1 is continuous.

Proof. Exercise.

We are going to use the above result to show that a “ well behaved” consumer problem does

have a solution.

Let the following objects be given.

Price vector  ∈ R++ consumption vector  ∈ R, consumer’s wealth  ∈ R++, continuous
utility function  : R → R,  7→  (). The consumer solves the following problem. For given,

 ∈ R++, ∈ R++, find  which gives the maximum value to the utility function  under the

constraint  ∈  () defined as

{ = ()=1 ∈ R : ∀ ∈ {1  }   ≥ 0 and  ≤ } 

As an application of Propositions 525 and 444, we have to show that for any  ∈ R++, ∈ R++
1.  () 6= ∅
2.  () is bounded, and

3.  () is closed,

1. 0 ∈  () 

2. Clearly if  ⊆ Rthen  is bounded iff

 is bounded below, i.e., ∃ = ()

=1 ∈ Rsuch that ∀ = ()


=1 ∈ , we have that ∀ ∈

{1  },  ≥ , and

 is bounded above, i.e., ∃ = ()

=1 ∈ Rsuch that ∀ = ()


=1 ∈ , we have that ∀ ∈

{1  },  ≤ .

 () is bounded below by zero, i.e., we can take  = 0.  () is bounded above because

for every  ∈ {1  } 
 ≤

 −P0 6= 00


≤ 




1The fact that  ∈  () can be also proved as follows: from Proposition 485 ,  ∈ Cl  () =  (), where the

last equality follows from the fact that  () is closed.
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where the first inequality comes from the fact that  ≤  and the second inequality from the

fact that  ∈ R++ and  ∈ R+Then we can take  = ( ), where  = max
n



o
=1
.

3. Define

for  ∈ {1  }   : R → R  = ()

=1 7→ 

and

 : R → R  = ()

=1 7→  − 

All the above functions are continuous and clearly,

 () = { = ()=1 ∈ R : ∀ ∈ {1  }   () ≥ 0 and  () ≥ 0} 

Moreover,

 () = { = ()=1 ∈ R : ∀ ∈ {1  }   () ∈ [0+∞) and  () ∈ [0+∞)} =

= ∩=1−1 ([0+∞)) ∩ −1 ([0+∞)) 
[0+∞) is a closed set and since for any  is continuous and  is continuous, from Proposition

523.3,the following sets are closed

∀ ∈ {1  }  −1 ([0+∞)) and −1 ([0+∞)) 

Then the desired result follows from the fact that intersection of closed set is closed.

10.4 Exercises

From Lipschutz (1965), starting from page 61: 30, 32, 34; starting from page 106:19,20.



Chapter 11

Correspondence, maximum

theorem and a fixed point theorem

11.1 Continuous Correspondences

Definition 527 Consider1 two metric spaces ( ) and (  ). A correspondence  from 

to  is a rule which associates a subset of  with each element of , and it is described by the

notation

 :  →→   :  7→7→  () 

Remark 528 In other words, a correspondence  :  →→  can be identified with a function

from  to 2 (the set of all subsets of  ). If we identify  with {}, a function from  to  can

be thought as a particular correspondence.

Remark 529 Some authors make part of the Definition of correspondence the fact that  is not

empty valued, i.e., that ∀ ∈ ,  () 6= ∅.

In what follows, unless otherwise stated, ( ) and (  ) are assumed to be metric spaces

and are denoted by  and  , respectively.

Definition 530 Given  ⊆ ,  () = ∪∈ () = { ∈  : ∃ ∈  such that  ∈  ()}.

Definition 531 The graph of  :  →→  is

graph  := {( ) ∈  ×  :  ∈  ()} 

Definition 532 Consider  :  →→   is Upper Hemi-Continuous (UHC) at  ∈  if  () 6= ∅
and for every open neighborhood  of  ()  there exists an open neighborhood  of  such that for

every 0 ∈   (0) ⊆  (or  () ⊆  ).

 is UHC if it is UHC at every  ∈ 

Definition 533 Consider  :  →→   is Lower Hemi-Continuous (LHC) at  ∈  if  () 6= ∅
and for any open set  in  such that  () ∩  6= ∅ there exists an open neighborhood  of 

such that for every 0 ∈   (0) ∩  6= ∅
 is LHC if it is LHC at every  ∈ 

Example 534 Consider  = R+ and  = [0 1], and

1 () =

½
[0 1]   = 0

{0}    0

2 () =

½ {0}   = 0

[0 1]    0

1 is UHC and not LHC; 2 is LHC and not UHC.

1This chapter is based mainly on McLean (1985) and Hildebrand (1974).
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Some (partial) intuition about the above definitions can be given as follows.

Upper Hemi-Continuity does not allow ”explosions”. In other words,  is not UHC at  if there

exists a small enough open neighborhood of  such that  does “explode”, i.e., it becomes much

bigger in that neighborhood.

Lower Hemi-Continuity does not allow ”implosions”. In other words,  is not LHC at  if there

exists a small enough open neighborhood of  such that  does “implode”, i.e., it becomes much

smaller in that neighborhood.

In other words, “UHC⇒ no explosion” and “LHC⇒ no implosion”( or “explosion⇒ not UHC”

and “implosion ⇒ not LHC)”. On the other hand, opposite implications are false, i.e.,

it is false that “explosion ⇐ not UHC” and “implosion ⇐ not LHC”, or, in an equivalent

manner,

it is false that “no explosion ⇒ UHC” and “no implosion ⇒ LHC”.

An example of a correspondence which neither explodes nor explodes and which is not UHC

and not LHC is presented below.

 : R+ →→ R  :  7→7→
½
[1 2]   ∈ [0 1)
[3 4]   ∈ [1+∞)

 does not implode or explode if you move away from 1 (in a small open neighborhood of 1):

on the right of 1,  does not change; on the left, it changes completely. Clearly,  is neither UHC

nor LHC (in 1).

The following correspondence is both UHC and LHC:

 : R+ →→ R  :  7→7→ [ + 1]

A, maybe disturbing, example is the following one

 : R+ →→ R  :  7→7→ ( + 1) 

Observe that the graph of the correspondence under consideration “does not implode, does not

explode, does not jump”. In fact, the above correspondence is LHC, but it is not UHC in any

 ∈ R+, as verified below. We want to show that



*
for every neighborhood  of  () 

there exists a neighborhood  of  such that for every 0 ∈   (0) ⊆ 

+

i.e., *
there exists a neighborhood  ∗ of  () such that

for every neighborhood  of  there exists 0 ∈  such that  (0) * 

+

Just take  =  () = ( + 1); then for any open neighborhood  of  and, in fact, ∀0 ∈
\ {},  (0) *  .

Example 535 The correspondence below

 : R+ →→ R  :  7→7→
½
[1 2]   ∈ [0 1]
[3 4]   ∈ [1+∞)

is UHC, but not LHC.

Remark 536 Summarizing the above results, we can maybe say that a correspondence which is

both UHC and LHC, in fact a continuous correspondence, is a correspondence which agrees with

our intuition of a graph without explosions, implosions or jumps.

Proposition 537 1. If  :  →→  is either UHC or LHC and it is a function, then it is a

continuous function.

2. If  :  →→  is a continuous function, then it is a UHC and LHC correspondence.
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Proof.

1.

Case 1.  is UHC.

First proof. Use the fourth characterization of continuous function in Definition 507.

Second proof. Recall that a function  :  →  is continuous iff [ open in  ]⇒ £
−1 ( ) open in 

¤
.

Take  open in  . Consider  ∈ −1 ( ), i.e.,  such that  () ∈  . By assumption  is UHC and

therefore ∃ an open neighborhood  of  such that  () ⊆  . Then,  ⊆ −1 ◦  () ⊆ −1 ( ) 
Then, for any  ∈ −1 ( ), we have found an open set  which contains  and is contained in

−1 ( )  i.e., −1 ( ) is open.
Case 2.  is LHC.

See Remark 541 below.

2.

The results follows from the definitions and again from Remark 541 below.

Definition 538  :  →→  is a continuous correspondence if it is both UHC and LHC.

Very often, checking if a correspondence is UHC or LHC is not easy. We present some related

concepts which are more convenient to use.

Definition 539  :  →→  is “sequentially LHC” at  ∈  if

for every sequence ()∈N ∈ ∞ such that  → , and for every  ∈  () 

there exists a sequence ()∈N ∈ ∞ such that ∀  ∈ N,  ∈  () and  → 

 is ”sequentially LHC” if it is ”sequentially LHC” at every  ∈ .

Proposition 540 Consider  :  →→   is LHC at  ∈  ⇔  is LHC in terms of sequences

at  ∈ .

Proof.

[⇒]
Consider an arbitrary sequence ()∈N ⊆ ∞ such that  →  and an arbitrary  ∈  () 

For every  ∈ N consider  ¡ 1


¢
 Clearly 

¡
 1



¢∩ () 6= ∅ since  belongs to both sets. From
the fact that  is LHC, we have that

∀ ∈ N ∃ a neighborhood    such that ∀ ∈   () ∩
µ

1



¶
6= ∅ (1)

Since  → 

∀ ∈ N ∃  ∈ N such that  ≥  ⇒  ∈  (2) 

Consider {1   }  For any  ∈ N, if   +1, define 
0
 :=  and 0+1 := +1, i.e., “just

add a 0 to the name of those indices”. If  ≥ +1 define 
0
 :=  and 0+1 :=  + 1 Then,

∀ ∈ N 0+1  0 and condition (2) still hold, i.e.,

∀ ∃ 0 such that  ≥ 0 ⇒  ∈  and 0+1  0 (3)

We can now define the desired sequence ()∈N  For any  ∈ £0 0+1¢  observe that from (3),

 ∈   and, then, from (1)   () ∩
¡
 1



¢ 6= ∅. Then,
for any  for any  ∈ £0 0+1¢ ∩ N choose  ∈  () ∩

µ

1



¶
(4) 

We are left with showing that  →  i.e., ∀  0 ∃  such that  ≥ ⇒  ∈  ( ). Observe

that (4) just says that

for any  ∈ [01 02)   ∈  () ∩
¡
 1

1

¢


for any  ∈ [02 03)   ∈  () ∩
¡
 1

2

¢ ⊆  ( 1)

...

for any  ∈ £0 0+1¢   ∈  () ∩
¡
 1



¢ ⊆ 
³
 1

−1
´
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and so on. Then, for any   0 choose   1

(so that 1


 ) and  = 0 then from the above

observations,  ∈ £0+1
¢⇒  ∈ 

¡
 1



¢ ⊆  ( ) and for   0+1 a fortiori,  ∈ 
¡
 1



¢


[⇐]
Assume otherwise, i.e., ∃ an open set  such that

 () ∩  6= ∅ (5)

and such that ∀ open neighborhood  of  ∃  ∈  such that  ( ) ∩  = ∅
Consider the following family of open neighborhood of :½



µ

1



¶
:  ∈ N

¾


Then ∀ ∈ N ∃  ∈ 
¡
 1



¢
, and therefore  →  such that

 () ∩  = ∅ (6) 

From (5)  we can take  ∈  () ∩  By assumption, we know that there exists a sequence

()∈N ∈ ∞ such that ∀ ∈ N,  ∈  () and  →  Since  is open and  ∈  ∃  such
that   ⇒  ∈  Therefore,

 ∈  () ∩  (7) 

But (7) contradicts (6) 

Thanks to the above Proposition from now on we talk simply of Lower Hemi-Continuous corre-

spondences.

Remark 541 If  :  →→  is LHC and it is a function, then it is a continuous function. The

result follows from the characterization of Lower Hemi-Continuity in terms of sequences and from

the characterization of continuous functions presented in Proposition 523.

Definition 542  :  →→  is closed, or "sequentially UHC", at  ∈  if

for every sequence ()∈N ∈ ∞ such that  → , and for every sequence ()∈N ∈ ∞ such

that  ∈  () and  → 

it is the case that  ∈  () 

 is closed if it is closed at every  ∈ 

Proposition 543  is closed ⇔ graph  is a closed set in  ×  . 2

Proof. An equivalent way of stating of the above Definition is the following one: for every

sequence ( )∈N ∈ ( ×  )
∞
such that ∀ ∈ N, ( ) ∈ graph  and ( )→ ( ), it is

the case that ( ) ∈ graph . Then, from the characterization of closed sets in terms of sequences,

i.e., Proposition 425, the desired result follows.

Remark 544 Because of the above result, many author use the expression “ has closed graph” in

the place of “ is closed”.

Remark 545 The definition of closed correspondence does NOT reduce to continuity in the case

of functions, as the following example shows.

3 : R+ →→ R 3 () =
½ {0}   = 0©

1


ª
   0

 is a closed correspondence, but it is not a continuous function.

Definition 546 A set  ⊆ R is convex if ∀1, 2 ∈  and ∀ ∈ [0 1], (1− )1 + 2 ∈ .

Definition 547  :  →→  is closed (non-empty, convex, compact ...) valued if for every  ∈ ,

 () is a closed (non-empty, convex, compact ...) set.

2 (( ×  )  ∗) with ∗ (( 0)  ( 0)) = max { ( 0)  0 ( 0)} is a metric space.
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Proposition 548 Consider  :  →→   closed
⇒
:

 closed valued.

Proof.

[⇒]
We want to show that every sequence in  () which converges, in fact, converges in  ().

Choose  ∈  and a sequence ()∈N such that { :  ∈ N} ⊆  () and such that  →  Then

setting for any  ∈ N  =  we get  →   ∈  ()   → . Then, since  is closed,

 ∈  ()  This shows that  () is a closed set.

[:]
2 in Example 534 is closed valued, but not closed.

Remark 549 Consider  :  →→   is UHC
;
:

 is closed.

[;]
4 : R+ →→ R 4 () = [0 1) for every  ∈ R
is UHC and not closed.

[:]
3 in Remark 545 is closed and not UHC, simply because it is not a continuous “function”.

Proposition 550 Consider  :  →→  If  is UHC (at ) and closed valued (at ), then  is

closed (at ).

Proof.

Take an arbitrary  ∈ We want to show that  is closed at , i.e., assume that  →   ∈
 ()   → ; we want to show that  ∈  (). Since  () is a closed set, it suffices to show

that  ∈  (), i.e.,3 ∀  0  ( ) ∩  () 6= ∅.
Consider

©

¡
 

2

¢
:  ∈  ()

ª
. Then, ∪∈()

¡
 

2

¢
:=  is open and contains  ()  Since

 is  at , there exists an open neighborhood  of  such that

 () ⊆  (1)

Since  →  ∈  ∃b ∈ N such that ∀  b  ∈  and, from (1),  () ⊆  Since

 ∈  (),

∀  b  ∈  := ∪∈()
³




2

´
 (2)

From (2)  ∀  b ∃∗ ∈  () such that  ∈ 
¡
∗


2

¢
and then

 ( 
∗) 



2
 (3)

Since  →  ∃∗ such that ∀  ∗

 ( ) 


2
(4)

From (3) and (4) ∀  max {b ∗}  ∗ ∈  () and  ( ∗) ≤  ( ) +  ( 
∗)   i.e.,

∗ ∈  ( ) ∩  () 6= ∅

Proposition 551 Consider  :  →→  If  is closed and there exists a compact set  ⊆  such

that  () ⊆ , then  is UHC.

Therefore, in simpler terms, if  is closed (at )and  is compact, then  is UHC (at ).

Proof.

Assume that there exists  ∈  such that  is not UHC at  ∈ , i.e., there exist an open

neighborhood  of  () such that for every open neighborhood  of   () ∩   6= ∅ In
particular, ∀ ∈ N 

¡

¡
 1



¢¢∩  6= ∅ Therefore, we can construct a sequence ()∈N ∈ ∞

such that  →  and  () ∩   6= ∅. Now, take  ∈  () ∩   . Since  ∈  () ⊆  and

3See Corollary 485.
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 is compact, and therefore sequentially compact, up to a subsequence,  →  ∈ . Moreover,

since ∀ ∈ N  ∈   and   is closed,

 ∈   (1) 

Since  is closed and  →   ∈  ()   →  we have that  ∈  (). Since, by

assumption,  () ⊆  we have that

 ∈  (2) 

But (2) contradicts (1) 

None of the Assumptions of the above Proposition can be dispensed of. All the examples below

show correspondences which are not UHC.

Example 552 1.

 : R+ →→ R  () =
½ ©

1
2

ª
  ∈ [0 2]

{1}    2

 = [0 1]  but  is not closed.

2.

 : R+ →→ R  () =
½ {0}   = 0©

1


ª
   0

 is closed, but  () = R+which is closed, but not bounded.
3.

 : [0 1]→→ [0 1)   () =

½ {0}   ∈ [0 1)©
1
2

ª
  = 1

 is closed (in  ), but  = [0 1) is not compact. Observe that if you consider

 : [0 1]→→ [0 1
↓
]  () =

½ {0}   ∈ [0 1)©
1
2

ª
  = 1



then  is not closed.

Definition 553 Consider  :  →→   ⊆ 

The strong inverse image of  via  is

−1 ( ) := { ∈  :  () ⊆  } ;


The weak inverse image of  via  is

−1 ( ) := { ∈  :  () ∩  6= ∅} 

Remark 554 1. ∀  ⊆  −1 ( ) ⊆ −1 ( ) 
2. If  is a function, the usual definition of inverse image coincides with both above definitions.

Proposition 555 Consider  :  →→ 

1.1.  is UHC ⇔ for every open set  in  −1 ( ) is open in ;

1.2.  is UHC ⇔ for every closed set  in  −1 ( ) is closed in ;

2.1.  is LHC ⇔ for every open set  in  −1 ( ) is open in ;

2.2.  is LHC ⇔ for every closed set  in  −1 ( ) is closed in .4

Proof.

[11⇒] Consider  open in  . Take 0 ∈ −1 ( ); by definition of −1  (0) ⊆  By

definition of UHC correspondence, ∃ an open neighborhood  of 0 such that ∀ ∈   () ∈ 

Then 0 ∈  ⊆ −1 ( ) 
[11⇐] Take an arbitrary 0 ∈  and an open neighborhood  of  (0)  Then 0 ∈ −1 ( )

and −1 ( ) is open by assumption. Therefore (just identifying  with −1 ( )), we have proved
that  is UHC.

4Part 2.2 of the Proposition will be used in the proof of the Maximum Theorem.
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To show 12, preliminarily, observe that¡
−1 ( )

¢
= −1

¡
 
¢
 (11.1)

(To see that, simply observe that
¡
−1 ( )

¢
:= { ∈  :  () ∩  = ∅} and −1

¡
 
¢
:=©

 ∈  :  () ⊆  
ª
)

[12⇒]  closed ⇔   open
 (11)⇔ −1

¡
 
¢ (111)
=

¡
−1 ( )

¢
open ⇔ −1 ( )

closed.

[12⇐]
From (11)  it suffices to show that ∀ open set  in  −1 ( ) is open in  Then,

 open ⇔   closed
⇔



−1
¡
 
¢
closed ⇔ ¡

−1
¡
 
¢¢ (111)

= −1 ( ) open.

The proofs of parts 21 and 2.2. are similar to the above ones.

Remark 556 Observe that  is UHC
;
:

for every closed set  in  −1 ( ) is closed in 

[;]
Consider

 : R+ →→ R  () =

½
[0 2]   ∈ [0 1]
[0 1]    1

 is UHC and [0 1] is closed, but −1 ([0 1]) := { ∈ R+ :  () ⊆ [0 1]} = (1+∞) is not
closed.

[:]
Consider

 : R+ →→ R+  () =

½ £
0 1

2

¤ ∪ {1}   = 0

[0 1]    0

For any closed set in  := R+, −1 ( ) can be only one of the following set, and each of them
is closed: {0} R+∅ On the other hand,  is not UHC in 0

Definition 557 Let the vector spaces ( )  (  ) and ( ) and the correspondences  :

 →→   :  →→  be given. The composition of  with  is

 ◦  :  →→ 

(  ◦ ) () := ∪∈() () = { ∈  : ∃ ∈  such that  ∈  ( ())}

.

Proposition 558 Consider  :  →→   :  →→  If  and  are UHC, then  ◦  is UHC.

Proof.

Step 1.  ( ◦ )−1 ( ) = −1
¡
−1 ( )

¢


 ( ◦ )−1 ( ) = { ∈  :  ( ()) ⊆  } = { ∈  : ∀ ∈  ()   () ⊆  } =
=
©
 ∈  : ∀ ∈  ()   ∈ −1 ( )

ª
=
©
 ∈  :  () ⊆ −1 ( )

ª
= −1

¡
−1 ( )

¢


Step 2. Desired result.

Take  open in . From Theorem 555, we want to show that  ( ◦ ) ( ) is open in  From

step 1, we have that  ( ◦ )−1 ( ) = −1
¡
−1 ( )

¢
 Now, −1 ( ) is open because  is UHC,

and −1
¡
−1 ( )

¢
is open because  is UHC.

Proposition 559 Consider  :  →→  If  is UHC and compact valued, and  ⊆  is a

compact set, then  () is compact.
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Proof.

Consider an arbitrary open cover {}∈ for  ()  Since  () := ∪∈ () and  is compact
valued, there exists a finite set  ⊆  such that

 () ⊆ ∪∈
 :=  (11.2)

Since for every  ∈   is open, then  is open. Since  is UHC, −1 () is open.

Moreover,  ∈ −1 (): this is the case because, by definition,  ∈ −1 () iff  () ⊆ 

which is just (112)  Therefore,
©
−1 ()

ª
∈ is an open cover of  Since, by assumption,  is

compact, there exists a finite set {}=1 ⊆  such that  ⊆ ∪=1
¡
−1 ()

¢
 Finally,

 () ⊆ 
¡∪=1 ¡−1 ()

¢¢ (1)⊆ ∪=1 ¡−1 ()
¢ (2)⊆ ∪=1 = ∪=1 ∪∈



and
n
{}∈

o
=1

is a finite subcover of {}∈ . We are left with showing (1) and (2)
above.

(1)  In general, it is the case that  (∪=1) ⊆ ∪=1 () 
 ∈  (∪=1) ⇔ ∃ ∈ ∪=1 such that  ∈  () ⇒ ∃ such that  ∈  () ⊆  () ⇒  ∈

∪=1 () 
(2)  In general, it is the case that 

¡
−1 ()

¢ ⊆ 

 ∈ 
¡
−1 ()

¢ ⇒ ∃ ∈ −1 () such that  ∈  (). But, by definition of −1 ()  and
since  ∈ −1 ()  it follows that  () ⊆  and therefore  ∈ 

Remark 560 Observe that the assumptions in the above Proposition cannot be dispensed of, as

verified below.

Consider  : R+ →→ R   () = [0 1). Observe that  is  and bounded valued but not

closed valued , and  ([0 1]) = [0 1) is not compact.

Consider  : R+ →→ R   () = R+. Observe that  is  and closed valued, but not

bounded valued, and  ([0 1]) = R+ is not compact.

Consider  : R+ →→ R+  () =

½ {}   6= 1
{0}   = 1

Observe that  is not  and

 ([0 1]) = [0 1) is not compact.

Add Proposition 5, page 25 and Proposition 6, page 26, from Hildebrand (1974) ...

maybe as exercises ...

Remark 561 Below, we summarize some facts we showed in the present Section, in a somehow

informal manner.

h(if  is a fcn., it is cnt.i⇔ h is UHCi ;
:

h is sequentially UHC,i.e., closedi ;⇐ h(if  is a fcn., it is cnt.i

h(if  is a fcn, it is continuousi⇔ h is LHCi⇔ h is sequentially LHCi

h UHC and closed valued at i⇒ h is closed at i
h UHC at  i⇐ h is closed at  and Im compacti

11.2 The Maximum Theorem

Theorem 562 (Maximum Theorem) Let the metric spaces (Π Π)  ( ), the correspondence

 : Π→→  and a function  :  ×Π→ R be given.5 Define

 : Π→→ 

 () = { ∈  () : ∀ ∈  ()   ( ) ≥  ( )} = argmax∈()  ( ) 
5Obviously,  stands for “budget correspondence” and  for “utility function”.
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Assume that

 is non-empty valued, compact valued and continuous,

 is continuous.

Then

1.  is non-empty valued, compact valued, UHC and closed,and

2.

 : Π→ R  :  7→ max
∈()

 ( ) 

is continuous.

Proof.

 is non-empty valued.

It is a consequence of the fact that  is non-empty valued and compact valued and of the

Extreme Value Theorem - see Proposition 525.

 is compact valued.

We are going to show that for any  ∈ Π  () is a sequentially compact set. Consider a
sequence ()∈N ∈ ∞ such that { :  ∈ N} ⊆  ()  Since  () ⊆  () and  () is compact

by assumption, without loss of generality, up to a subsequence,  → 0 ∈  ()  We are left

with showing that 0 ∈  ()  Take an arbitrary  ∈  (). Since { :  ∈ N} ⊆  ()  we have

that  ( ) ≥  ( )  By continuity of  taking limits with respect to  of both sides, we get

 (0 ) ≥  ( )  i.e., 0 ∈  (), as desired.

 is UHC.

From Proposition 555, it suffices to show that given an arbitrary closed set  in  −1 ( ) :=
{ ∈ Π :  () ∩  6= ∅} is closed inΠ Consider an arbitrary sequence ()∈N such that { :  ∈ N} ⊆
−1 ( ) and such that  → 0. We have to show that 0 ∈ −1 ( ).
Take a sequence ()∈N ∈ ∞ such that for every ,  ∈  () ∩  6= ∅. Since  () ⊆

 ()  it follows that  ∈  (). We can now show the following

Claim. There exists a subsequence ()∈N of ()∈N such that  → 0 and 0 ∈  (0) 

Proof of the Claim.

Since { :  ∈ N} ∪ {0} is a compact set (Show it), and since, by assumption,  is UHC

and compact valued, from Proposition 559,  ({ :  ∈ N} ∪ {0}) is compact. Since {} ⊆
 ({} ∪ {0})  there exists a subsequence ()∈N of ()∈N which converges to some 0

Since  is compact valued, it is closed valued, too. Then,  is UHC and closed valued and from

Proposition 550,  is closed. Since

 → 0  ∈  ()   → 0

the fact that  is closed implies that 0 ∈  (0).

End of the Proof of the Claim.

Choose an arbitrary element 0 such that 0 ∈  (0). Since we assumed that  → 0 and

since  is LHC, there exists a sequence ()∈N ∈ ∞ such that  ∈  () and  → 0.

Summarizing, and taking the subsequences of ()∈N and ()∈N corresponding to ()∈N,
we have for any 

 → 0

 → 0  ∈  ()  0 ∈  (0) 

 → 0  ∈  ()  0 ∈  (0) 

Then for any  we have that  (  ) ≥  (  )  Since  is continuous, taking limits,

we get that  (0 0) ≥  (0 0) Since the choice of 0 in  (0) was arbitrary, we have then

0 ∈  (0) 

Finally, since ()∈N ∈ ∞  → 0 and  is closed, 0 ∈  Then 0 ∈  (0) ∩  and

0 ∈ { ∈ Π :  () ∩  6= ∅} := −1 ( )  which was the desired result.

 is closed.
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 is UHC and compact valued, and therefore closed valued. Then, from Proposition 550, it is

closed, too.

 is a continuous function.

The basic idea of the proof is that  is a function and “it is equal to” the composition of UHC

correspondences; therefore, it is a continuous function. A precise argument goes as follows.

Let the following correspondences be given:

( ) : Π→→  ×Π  7→  ()× {} 

 :  ×Π→→ R ( ) 7→ { ( )} 

Then, from Definition 557,

( ◦ ( )) () = ∪()∈()×{} { ( )} 

By definition of ,

∀ ∈ Π∀ ∈  ()  ∪()∈()×{} { ( )} = { ( )} 

and

∀ ∈ Π ( ◦ ( )) () = { ( )} = { ()}  (11.3)

Now, ( ) is UHC, and since  is a continuous function,  is UHC as well. From Proposition

558,  ◦ ( ) is UHC and, from 11.3,  is a continuous function.

A sometimes more useful version of the Maximum Theorem is one which does not use the fact

that  is UHC.

Theorem 563 (Maximum Theorem) Consider the correspondence  : Π →→  and the function

 :  ×Π→ R defined in Theorem 562 and Π Euclidean spaces.

Assume that

 is non-empty valued, compact valued, convex valued, closed and LHC.

 is continuous.

Then

1.  is a non-empty valued, compact valued, closed and UHC correspondence;

2.  is a continuous function.

Proof.

The desired result follows from next Proposition.

Proposition 564 Consider the correspondence  : Π→→  , with Π and  Euclidean spaces.

Assume that  is non-empty valued, compact valued, convex valued, closed and LHC. Then 

is UHC.

Proof.

See Hildenbrand (1974) Lemma 1 page 33. The proof requires also Theorem 1 in Hildenbrand

(1974).

The following result allows to substitute the requirement “ is LHC” with the easier to check

requirement “ is LHC”.

Proposition 565 Consider the correspondence  : Π→→   is LHC ⇔  is LHC.
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Proof.

Preliminary Claim.

 open set,   () ∩  6= ∅⇒  () ∩  6= ∅
Proof of the Preliminary Claim.

Take  ∈  () ∩  6= ∅. Since  is open, ∃  0 such that  ( ) ⊆  Since  ∈  () 

∃ {} ⊆  () such that  → . But then ∃ such that    ⇒  ∈  ( ) ⊆  . But  ∈ 

and  ∈  () implies that  () ∩  6= ∅
End of the Proof of the Preliminary Claim.

[⇒]
Take an open set  such that  ()∩  6= ∅ We want to show that there exists an open set

∗ such that  ∈ ∗ and ∀ ∈ ∗  () ∩  6= ∅ From the preliminary remark, it must be the

case that  () ∩  6= ∅ Then, since  is LHC, there exists an open set  such that  ∈  and

∀ ∈ ∗  () ∩  6= ∅ Since  () ⊇  ()  we also have  () ∩  6= ∅ Choosing ∗ = 

we are done.

[⇐]
Since  () ∩  6= ∅ then  () ∩  6= ∅ and, by assumption, ∃ open set  0 such that

 ∈  0 and ∀ ∈  0  ()∩ 6= ∅ Then, from the preliminary remark, it must be the case that

 () ∩  6= ∅

Remark 566 In some economic models, a convenient strategy to show that a correspondence  is

 is the following one. Introduce a correspondence b; show that b is LHC; show that Cl b = .

Then from the above Proposition 565, the desired result follows - see, for example, point 5 the proof

of Proposition 579 below.

11.3 Fixed point theorems

A thorough analysis of the many versions of fixed point theorems existing in the literature is outside

the scope of this notes. Below, we present a useful relatively general version of fixed point theorems

both in the case of functions and correspondences.

Theorem 567 (The Brouwer Fixed Point Theorem)

For any  ∈ N, let  be a nonempty, compact, convex subset of R. If  :  →  is a continuous

function, then ∃ ∈  such that  () = .

Proof. For a (not self-contained) proof, see Ok (2007), page 279.

Just to try to avoid having a Section without a proof, let’s show the following extremely simple

version of that theorem.

Proposition 568 If  : [0 1]→ [0 1] is a continuous function, then ∃ ∈ [0 1] such that  () = .

Proof. If  (0) = 0 or  (1) = 1, the result is true. Then suppose otherwise, i.e.,  (0) 6= 0 and
 (1) 6= 1, i.e., since the domain of  is [0 1], suppose that  (0)  0 and  (1)  1. Define

 : [0 1]→ R :  7→ −  () 

Clearly,  is continuous,  (0) = − (0)  0 and  (1) = 1 −  (1)  0. Then, from the

intermediate value for continuous functions, ∃ ∈ [0 1] such that  () =  −  () = 0, i.e.,

 =  (), as desired.

Theorem 569 (Kakutani’s Fixed Point Theorem)

For any  ∈ N, let  be a nonempty, compact, convex subset of R. If  :  →→  is a convex

valued, closed correspondence, then ∃ ∈  such that  () 3 .

Proof. For a proof, see Ok (2007), page 331.
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11.4 Application of the maximum theorem to the consumer

problem

Definition 570 (Mas Colell (1996), page 17) Commodities are goods and services available for

purchases in the market.

We assume the number of commodities is finite and equal to . Commodities are indexed by

superscript  = 1  

Definition 571 A commodity vector is an element of the commodity space R 

Definition 572 (almost Mas Colell(1996), page 18) A consumption set is a subset of the

commodity space R . It is denoted by . Its elements are the vector of commodities the individual
can conceivably consume given the physical or institutional constraints imposed by the environment.

Example 573 See Mas colell pages 18, 19.

Common assumptions on  are that it is convex,bounded below and unbounded. Unless other-

wise stated, we make the following stronger

Assumption 1  = R+ :=
©
 ∈ R :  ≥ 0ª 

Definition 574  ∈ R is the vector of commodity prices.

Households’ choices are limited also by an economic constraint: they cannot buy goods whose

value is bigger than their wealth, i.e., it must be the case that  ≤  where  is household’s

wealth.

Remark 575  can take different specifications. For example, we can have  =  where  ∈ R
is the vector of goods owned by the household i.e., her endowments.

Assumption 2 All commodities are traded in markets at publicly observable prices, expressed in

monetary unit terms.

Assumption 3 All commodities are assumed to be strictly goods (and not ”bad”), i.e.,  ∈ R++.
Assumption 4 Households behave as if they cannot influence prices.

Definition 576 The budget set is

 () :=
©
 ∈ R+ :  ≤ 

ª


With some abuse of notation we define the budget correspondence as

 : R++ ×R++ →→ R   () =
©
 ∈ R+ :  ≤ 

ª


Definition 577 The utility function is

 :  → R  7→  ()

Definition 578 The Utility Maximization Problem ( ) is

max∈R+  ()   ≤  or  ∈  () 

 : R++ ×R++ →→ R   () = argmax ( ) is the demand correspondence.

Theorem 579  is a non-empty valued, compact valued, closed and UHC correspondence and

 : R++ ×R++ → R  : () 7→ max ( ) 

i.e., the indirect utility function, is a continuous function.
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Proof.

As an application of the (second version of) the Maximum Theorem, i.e., Theorem 563, we have

to show that  is non-empty valued, compact valued, convex valued, closed and LHC.

1.  is non-empty valued.

 =
³




´
=1
∈  () (or, simpler, 0 ∈  ()).

2.  is compact valued.

 () is closed because is the intersection of the inverse image of closed sets via continuous

functions.

 () is bounded below by zero.

 () is bounded above because for every   ≤ −0 6= 
0

0


≤ 


 where the first inequal-

ity comes from the fact that  ≤  and the second inequality from the fact that  ∈ R++ and
 ∈ R+
3.  is convex valued.

To see that, simply, observe that (1− ) 0 + 00 ≤ (1− ) +  = 

4.  is closed.

We want to show that for every sequence {( )} ⊆ R++ ×R++ such that
( )→ ()   ∈  ( )   → 

it is the case that  ∈  () 

Since  ∈  ( ), we have that  ≤  and  ≥ 0 Taking limits of both sides of both
inequalities, we get  ≤  and  ≥ 0i.e.,  ∈  () 

5.  is LHC.

We proceed as follows: a.   is LHC; b.    = . Then, from Proposition 565 the

result follows.

a. Observe that   () :=
©
 ∈ R+ : À 0 and   

ª
and that   () 6= ∅ since

 =
³


2

´
=1
∈   () We want to show that the following is true.

For every sequence ( ) ∈
¡
R++ × R++

¢∞
such that ( ) → () and for any  ∈

 () 

there exists a sequence {} ⊆ R+ such that ∀  ∈   ( ) and  → 

− → −  0 (where the strict inequality follows from the fact that  ∈   () 

Then, ∃ such that  ≥  ⇒ −   0

For  ≤  choose an arbitrary  ∈   ( ) 6= ∅ Since −   0, for every   

there exists   0 such that  ∈  ( )⇒  −   0

For any    choose  = + 1√

min

©

2
 1


ª · 1. Then,
 ( ) =

Ã


µ
1√

min

½


2

1



¾¶2! 1
2

= min

½


2

1



¾
 

i.e.,  ∈  ( ) and therefore

 −   0 (1) 

Since  À  we also have

 À 0 (2) 

(1) and (2) imply that  ∈   ( ) Moreover, since  À  we have 0 5 lim→+∞ ( − ) =

lim→∞ 1√

·min©

2
 1


ª · 1 5 lim→∞ 1


1√

· 1 = 0 i.e., lim→+∞  = 6

b.

It follows from the fact that the budget correspondence is the intersection of the inverse images

of half spaces via continuous functions.

2.

It follows from Proposition 580, part (4), and the Maximum Theorem.

6Or simply

0 ≤ lim
→∞  ( ) ≤ lim

→∞
1


= 0
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Proposition 580 For every () ∈ R++ ×R++
(1) ∀ ∈ R++  ( ) =  () ;

(2) if  is LNS, ∀ ∈ R+  ∈  ()⇒  = ;

(3) if  is quasi-concave,  is convex valued;

(4) if  is strictly quasi-concave,  is single valued, i.e., it is a function.

Proof.

(1)

It simply follows from the fact that ∀ ∈ R++ () =  () 

(2)

Suppose otherwise, then ∃0 ∈ R+ such that 0 ∈  () and 0   Therefore,∃0  0 such

that  (0 0) ⊆  () (take 0 =  (0 ())). Then, from the fact that  is LNS, there exists
∗ such that ∗ ∈  (0 0) ⊆  () and  (∗)   (0), i.e., 0 ∈  ()  a contradiction.

(3)

Assume there exist 0 00 such that 0 00 ∈  (). We want to show that ∀ ∈ [0 1]   :=
(1− )0 + 00 ∈  ()  Observe that  (0) =  (00) := ∗. From the quasi-concavity of  we

have 
¡

¢ ≥ ∗ We are therefore left with showing that  ∈  ()  i.e.,  is convex valued.

To see that, simply, observe that  = (1− ) 0 + 00 ≤ (1− ) +  = 

(4) Assume otherwise. Following exactly the same argument as above we have 0 00 ∈  () 

and  ≤  Since  is strictly quasi concave, we also have that 
¡

¢
  (0) =  (00) := ∗

which contradicts the fact that 0 00 ∈  () 

Proposition 581 If  is a continuous LNS utility function, then the indirect utility function has

the following properties.

For every () ∈ R++ ×R++
(1) ∀ ∈ R++  ( ) =  () ;

(2) Strictly increasing in  and for every  non increasing in ;

(3) for every  ∈ R, {() :  () ≤ } is convex.
(4) continuous.

Proof.

(1) It follows from Proposition 580 (2) 

(2)

If  increases, say by∆, then, from Proposition 580 (2)   ()  +∆ Define  () :=

0. Then,∃0  0 such that  (0 0) ⊆  ( +∆) (take 0 =  (0 ( +∆))). Then, from

the fact that  is LNS, there exists ∗ such that ∗ ∈  (0 0) ⊆  ( +∆) and  (∗)   (0).
The result follows observing that  ( +∆) ≥  (∗) 
Similar proof applies to the case of a decrease in . Assume ∆

0
 0 Define ∆ := (∆)


=1 ∈ R

with ∆ = 0 iff  6= 0 and ∆0 = ∆
0
. Then,

 () = ⇒ (+∆) () =  () +

(≤0)
∆

0


0
() =

=  + ∆
0


0
() ≤  The remaining part of the proof is the same as in the case of an

increase of .

(3) Take (0 0)  (00 00) ∈ {() :  () ≤ } :=  ()  We want to show that ∀ ∈ [0 1] ¡
 

¢
:= (1− ) (0 0) +  (00 00) ∈  ()  i.e.,  ∈ 

¡
 

¢⇒  ()  

 ∈ 
¡
 

¢⇒  ≤  ⇔ (1− ) 0 + 00 ≤ (1− )0 + 00
Then, either 0 ≤ 0 or 00 ≤ 00 If 0 ≤ 0, then  () ≤  (0 0) ≤  Similarly, if

00 ≤ 00 .
(4)

It was proved in Theorem 579.
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Chapter 12

Partial derivatives and directional

derivatives

12.1 Partial Derivatives

The1 concept of partial derivative is not that different from the concept of “standard” derivative of

a function from R to R, in fact we are going to see that partial derivatives of a function  : R → R
are just standard derivatives of a naturally associated function from R to R
Recall that for any  ∈ {1  },  = (0  1  0) is the  −  vector in the canonical basis

of R.

Definition 582 Let a set  ⊆ R, a point 0 = (0)

=1 ∈   and a function  :  → R be

given. If the following limit exists and it is finite

lim
→0


¡
0 + 

¢−  (0)


= lim

→0


¡
0 + ( − 0) 




¢−  (0)

 − 0
(12.1)

then it is called the partial derivative of  with respect to the −  coordinate computed in 0 and

it is denoted by any of the following symbols

 (0)   (0) 



(0) 
()

 |=0


Remark 583 As said above, partial derivatives are not really a new concept. We are just treating

 as a function of one variable at the time, keeping the other variables fixed. In other words, for

simplicity taking  = R and using the notation of the above definition, we can define

 : R→ R  () = 
¡
0 + ( − 0) 




¢
a function of only one variable, and, by definition of ,

0 (0) = lim→0
(0+−0)−(0)

−0 =

= lim→0
(0+)−(0)


= lim→0

(0+)−(0)


=  (0) 

(12.2)

Example 584 Given  : R3 → R

 (1 2 3) =  cos+ sin 

we have ⎛⎝ 1 ()

2 ()

2 ()

⎞⎠ =

⎛⎝ − (sin)  +  (cos) 

 cos  +  (cos) 

 cos 

⎞⎠
1 In this Part, I follow closely Section 5.14 and chapters 12 and 13 in Apostol (1974).
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Remark 585 Loosely speaking, we can give the following geometrical interpretation of partial deriv-

atives. Given  : R2 → R admitting partial derivatives,
(0)

1
is the slope of the graph of the

function obtained cutting the graph of  with a plane which is

orthogonal to the 1 − 2 plane, and

going through the line parallel to the 1 axis and passing through the point 0, line to which we

have given the same orientation as the 1 axis.

picture to be added.

Definition 586 Given an open subset  in R and a function  :  → R if ∀ ∈ {1  }, the
limit in (121) exists, we call the gradient of  in 0 the following vector

( (0))

=1

and we denote it by

 (0)

Remark 587 The existence of the gradient for  in 0 does not imply continuity of the function

in 0, as the following example shows.

 : R2 → R  (1 2) =

⎧⎪⎪⎨⎪⎪⎩
1 + 2 

either 1 = 0 or 2 = 0

i.e., (1 2) ∈ ({0} ×R) ∪ (R× {0})

1 otherwise

5
2.5

0
-2.5

-5

5
2.5

0
-2.5

-5

5

2.5

0

-2.5

-5

xy

z

xy

z

1 (0) = lim
1→0

 (1 0)−  (0 0)

1 − 0 = lim
1→0

1

1 − 0 = 1

and similarly

2 (0) = 1

 is not continuous in 0: we want to show that ∃  0 such that ∀  0 there exists (1 2) ∈
R2such that (1 2) ∈  (0 ) and | (1 2)−  (0 0)| ≥ . Take  = 1

2
and any (1 2) ∈  (0 )

such that 1 6= 0 and 2 6= 0. Then | (1 2)−  (0 0)| = 1  .

12.2 Directional Derivatives

A first generalization of the concept of partial derivative of a function is presented in Definition 589

below.



12.2. DIRECTIONAL DERIVATIVES 179

Definition 588 Given

 :  ⊆ R → R  7→  () 

∀ ∈ {1  }, the function

 :  ⊆ R → R  7→ −  component of  () 

is called the −  component function of  .

Therefore,

∀ ∈   () = ( ())

=1  (12.3)

Definition 589 Given  ∈ N, a set  ⊆ R, 0 ∈    ∈ R,  ∈ R such that 0+ ∈ ,

 :  → R, we call the directional derivative of  at 0 in the direction , denoted by the symbol

 0 (0;) 

the limit

lim
→0

 (0 + )−  (0)


(12.4)

if it exists and it is finite.

Remark 590 Assume that the limit in (124) exists and it is finite. Then, from (123) and using

Proposition 421,

 0 (0;) = lim
→0

 (0 + )−  (0)


=

µ
lim
→0

 (0 + )−  (0)



¶
=1

= ( 0 (0;))


=1 

If  = , the  −  element of the canonical basis in R, we then have

 0
¡
0; 




¢
=

Ã
lim
→0


¡
0 + 

¢−  (0)



!

=1

=
¡
 0
¡
0; 




¢¢
=1

(∗)
=
¡
 (0)

¢
=1

:=  (0)

(12.5)

where equality (∗) follows from (122).

We can then construct a matrix whose  columns are the above vectors, a matrix which involves

all partial derivative of all component functions of  . That matrix is formally defined below.

Definition 591 Assume that  = ()

=1 :  ⊆ R → R admits all partial derivatives in 0. The

Jacobian matrix of  at 0 is denoted by  (0) and is the following ×  matrix:⎡⎢⎢⎢⎢⎣
11 (0)  1 (0)  1 (0)

  

1 (0)   (0)   (0)

  

1 (0)   (0)   (0)

⎤⎥⎥⎥⎥⎦ =

=
£
1 (0)   (0)   (0)

¤
=

=
£
 0
¡
0; 

1


¢
  0

¡
0; 




¢
  0 (0; )

¤




Remark 592 How to easily write the Jacobian matrix of a function.

To compute the Jacobian of  is convenient to construct a table as follows.

1. In the first column, write the  vector component functions 1     of  .

2. In the first row, write the subvectors 1      of .

3. For each  and , write the partial Jacobian matrix  () in the entry at the intersection

of the −  row and  −  column.
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We then obtain the following table,

1    

1 d 11 () 1 () 1 () e
 | |
 | 1 ()  ()  () |
 | |
 b 1 ()  ()  () c

where the Jacobian matrix is the part of the table between square brackets.

Example 593 Given  : R4 → R5

 (   ) =

⎛⎜⎜⎜⎜⎝


2+1
+





+  +  + 

2 + 2

⎞⎟⎟⎟⎟⎠
its Jacobian matrix is⎡⎢⎢⎢⎢⎣


2+1

− 22 

(2+1)2


2+1
0 0

1

− 1


(+ ) 





0

 


 


 


 

−  



1 1 1 1

2 0 0 2

⎤⎥⎥⎥⎥⎦
5×4

Remark 594 From Remark 590,

∀ ∈ R,  0 (0;) exists ⇒  (0) exists (12.6)

On the other hand, the opposite implication does not hold true. Consider the example in Remark

587. There, we have seen that

 (0) =  (0) = 1

But if  = (1 2) with 1 6= 0 and 2 6= 0, we have

lim
→0

 (0 + )−  (0)


= lim

→0
1− 0


=∞

Remark 595 Again loosely speaking, we can give the following geometrical interpretation of direc-

tional derivatives. Take  : R2 → R admitting directional derivatives.  (0;) with kk = 1 is the
slope the graph of the function obtained cutting the graph of  with a plane which is

orthogonal to the 1 − 2 plane, and

going through the line going through the points 0 and 0 + , line to which we have given the

same orientation as .

picture to be added.

Example 596 Take

 : R → R  7→  ·  = kk2

Then, the existence of  0 (0;) can be checked computing the following limit.

lim→0
(0+)−(0)


= lim→0

(0+)(0+)−00


=

= lim→0 00+0+0+
2−00


=

= lim→0 20+
2


= lim→0 20+  = 20
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Exercise 597 Verify that

 0 (0;−) = − 0 (0;) 
Solution:

 0 (0;−) = lim→0
(0+(−))−(0)


= lim→0

(0−)−(0)


=

= − lim→0
(0+(−))−(0)

−
:=−
= − lim→0

(0+)−(0)


= − 0 (0;) 

Remark 598 It is not the case that

∀ ∈ R,  0 (0;) exists ⇒  is continuous in 0 (12.7)

as the following example shows. Consider

 : R2 → R  ( ) =

⎧⎨⎩
2

2+4
  6= 0

0   = 0  ( ) ∈ {0} ×R

25

20

15

10

5

0

-5

5

2.5

0

-2.5

-5

0.50.250-0.25-0.5

x

y

z

x

y

z

Let’s compute  0 (0;). If 1 6= 0

lim
→0

 (0 + )−  (0)


= lim

→0
1 · 222

(221 + 442)
= lim

→0
1 · 22

21 + 242
=

22
1

If 1 = 0we have

lim
→0

 (0 + )−  (0)


= lim

→0
 (0 2)−  (0)


= lim

→0
0


= 0

On the other hand, if  = 2 and   6= 0, i.e., along the graph of the parabola  = 2 except

the origin, we have

 ( ) = 
¡
2 

¢
=

4

4 + 4
=
1

2

while

 (0 0) = 0

Roughly speaking, the existence of partial derivatives in a given point in all directions implies

“continuity along straight lines” through that point; it does not imply “ continuity along all possible

curves through that point”, as in the case of the parabola in the picture above.

Remark 599 We are now left with two problems:

1. Is there a definition of derivative whose existence implies continuity?

2. Is there any “easy” way to compute the directional derivative?
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Appendix (to be corrected)

There are other definitions of directional derivatives used in the literature.

Let the following objects be given:  ∈ N, a set  ⊆ R, 0 ∈    ∈ R,  ∈ R such
that 0 +  ∈ ,  :  → R,

Definition 600 (our definition following Apostol (1974)) We call the directional derivative of 

at 0 in the direction  according to Apostol, denoted by the symbol

 0 (0;) 

the limit

lim
→0

 (0 + )−  (0)


(12.8)

if it exists and it is finite.

Definition 601 (Girsanov (1972)) We call the directional derivative of  at 0 in the direction 

according to Girsanov, denoted by the symbol

 0 (0;) 

the limit

lim
→0+

 (0 + )−  (0)


(12.9)

if it exists and it is finite.

Definition 602 (Wikipedia) Take  ∈ Rsuch that kk = 1.We call the directional derivative of 
at 0 in the direction  according to Wikipedia, denoted by the symbol

 0 (0;) 

the limit

lim
→0+

 (0 + )−  (0)


(12.10)

if it exists and it is finite.

Fact 1. For given 0 ∈   ∈ R
⇒ ⇒

while the opposite implications do not hold true. In particular, to see way  : , just take

 : R→ R

 () =

⎧⎨⎩ 0    0

1   ≥ 0


and observe that while the right derivative in 0 is

lim
→0+

 ()−  (0)


= lim

→0−
1− 1


= 0

while the left derivative is

lim
→0−

 ()−  (0)


= lim

→0−
0− 1


= +∞

Fact 2. For given 0 ∈ 

 0 ( ) exists ⇒  0 ( ) exists for any  =  and  ∈ R++.

Proof.

 0 ( ) = lim→0+
(0+)−(0)


=  lim→0+

(0+)−(0)


=0
=

=  lim→0+
(0+)−(0)


=  0 ( ) 
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Fact 3. Assume that  6= 0 and 0 ∈ R. Then the following implications are true:

∀ ∈ R,  0 ( ) exists ⇔ ∀ ∈ R,  0 ( ) exists ⇔ ∀ ∈ R such that kk = 1,  0 ( ) exists.

Proof.

From Fact 1, we are left with showing just two implications.

⇒ .

We want to show that

∀ ∈ R lim
→0+

 (0 + )−  (0)


∈ R⇒∀ ∈ R lim

→0
 (0 + )−  (0)


∈ R

Therefore, it suffices to show that  := lim→0−
(0+)−(0)


∈ RTake  = −. Then,

 = lim
→0−

 (0 − )−  (0)


= − lim

→0−
 (0 − )−  (0)

−
=−
= − lim

→0+
 (0 + )−  (0)


∈ R

 ⇒ .

The proof of this implication is basically the proof of Fact 2.We want to show that

∀ ∈ R such that kk = 1 lim
→0+

 (0 + )−  (0)


∈ R⇒∀ ∈ R\ {0}   := lim

→0+
 (0 + )−  (0)


∈ R

In fact,

 := lim
→0+


³
0 +  kk 

kk
´
−  (0)


∈ R

simply because
°°° 
kk

°°° = 1.
Remark 603 We can give the following geometrical interpretation of directional derivatives. First

of all observe that from Proposition 606,

 0 (0;) := lim
→0

 (0 + )−  (0)


= 0 () 

If  : R→ R, we then have
 0 (0;) =  0 (0) · 

Therefore, if  = 1 we have

 0 (0;) =  0 (0) 

and if   0, we have

  0 (0;) =   0 (0) 

Take now  : R2 → R admitting directional derivatives. Then,

 0 (0;) =  (0) ·  with kk = 1

is the slope the graph of the function obtained cutting the graph of  with a plane which is

orthogonal to the 1 − 2 plane, and

along the line going through the points 0 and 0 + , in the direction from 0 to 0 + .
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Chapter 13

Differentiability

13.1 Total Derivative and Differentiability

If  : R→ R, we say that  is differentiable in 0, if the following limit exists and it is finite

lim
→0

 (0 + )−  (0)



and we write

 0 (0) = lim
→0

 (0 + )−  (0)



or, in equivalent manner,

lim
→0

 (0 + )−  (0)−  0 (0) · 


= 0

and

 (0 + )− ( (0) +  0 (0) · ) =  ()

where

lim
→0

 ()


= 0

or

 (0 + ) =  (0) +  0 (0) · +  () 

or using what said in Section 7.5, and more specifically using definition 7.8,

 (0 + ) =  (0) +  0(0) () +  ()

where  0(0) ∈ L (RR)

and lim→0
()


= 0

Definition 604 Given a set  ⊆ R, 0 ∈    :  → R we say that  is differentiable at
0 if

there exists

a linear function 0 : R
 → R

such that for any  ∈ R, 6= 0, such that 0 +  ∈ 

lim
→0

 (0 + )−  (0)− 0 ()

kk = 0 (13.1)

In that case, the linear function 0 is called the total derivative or the differential or simply

the derivative of  at 0.
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Remark 605 Obviously, given the condition of the previous Definition, we can say that  is dif-

ferentiable at 0 if there exists a linear function 0 : R
 → R such that ∀ ∈ R such that

0 +  ∈ 

 (0 + ) =  (0) + 0 () +  ()  with lim
→0

 ()

kk = 0 (13.2)

or

 (0 + ) =  (0) + 0 () + kk ·0 ()  with lim
→0

0 () = 0 (13.3)

The above equations are called the first-order Taylor formula (of  at 0 in the direction ).

Condition (133) is the most convenient one to use in many instances.

Proposition 606 Assume that  :  → R is differentiable at 0 , then

∀ ∈ R  0 (0;) = 0 () 

Proof.

 0 (0;) := lim
→0

 (0 + )−  (0)



(1)
=

= lim
→0

 (0) + 0 () + kk ·0 ()−  (0)



(2)
= lim

→0
0 () + || kk ·0 ()



(3)
=

= lim
→0

0 () + lim
→0

 () · kk ·0 ()
(4)
= 0 () + kk lim

→0
 () ·0 ()

(5)
= 0 () 

where

(1) follows from (133) with  in the place of ,

(2) from the fact that 0 is linear and therefore (Exercise) continuous, and from a property of

a norm,

(3) from the fact that
||

=  (), 1

(4) from the fact that → 0 implies that → 0,

(5) from the assumption that  is differentiable in 0.

Remark 607 The above Proposition implies that if the differential exists, then it is unique - from

the fact that the limit is unique, if it exists.

Proposition 608 If  :  → R is differentiable at 0, then  is continuous at 0.

Proof. We have to prove that

lim
→0

 (0 + )−  (0) = 0

i.e., from (133), it suffices to show that

lim
→0

0 () + kk ·0 () = 0 (0) + lim
→0

kk ·0 () = 0

where the first equality follows from the fact that 0 is linear and therefore continuous, and the

second equality from the fact again that 0 is linear, and therefore  (0) = 0, and from (132) 

Remark 609 The above Proposition is the answer to Question 1 in Remark 599. We still do not

have a answer to Question 2 and another question naturally arises at this point:

3. Is there an “easy” way of checking differentiability?

1 is the function defined as follows:

 : R→ {−1 0 + 1}   7→
 −1    0

0   = 0

+1    0
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13.2 Total Derivatives in terms of Partial Derivatives.

In Remark 611 below, we answer question 2 in Remark 599: Is there any “easy” way to compute

the directional derivative?

Proposition 610 Assume that  = ()


=1
:  ⊆ R → R is differentiable in 0. The matrix

associated with 0 with respect to the canonical bases of R
 and R is the Jacobian matrix  (0),

i.e., using the notation of Section 7.5,

[0 ] =  (0) 

i.e.,

∀ ∈ R 0 () =  (0) ·  (13.4)

Proof. From (76) in Section 7.5

[0 ] =
£
0

¡
1
¢

 0
¡

¢

 0 (

)
¤
×

From Proposition 606,

∀ ∈ {1  }  0
¡

¢
=  0

¡
0; 


¢


and from (125)

 0
¡
0; 


¢
= ( (0))



=1


Then

[0 ] =
£
(1 (0))



=1
 ( (0))



=1
 (1 (0))



=1

¤
× 

as desired.

Remark 611 From Proposition 606, part 1, and the above Proposition 610, we have that if  is

differentiable in 0, then ∀ ∈ R

∀ ∈ R  0 (0;) =  (0) · 
Remark 612 From (134), we get

k0 ()k = k[ (0)] k
(1)

≤
X
=1

| (0) · |
(2)

≤
X
=1

k (0)k · kk

where (1) follows from Remark 56, (2) from Cauchy-Schwarz inequality in (53) Therefore, de-

fined  :=
P

=1 k (0)k we have that
k0 ()k ≤  · kk

and

lim
→0

k0 ()k = 0

Remark 613 We have seen that

 differentiable in 0 ⇒  admits directional derivative in 0 ⇒
:

 (0) exists

⇓ ( ⇓) ( ⇓)
 continuous in   continuous in   continuous in 

Therefore

 differentiable in 0 :  (0) exists

and

 differentiable in 0 :  admits directional derivative in 0

We still do not have an answer to question 3 in Remark 609: Is there an easy way of checking

differentiability? We will provide an answer in Proposition 641.
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Chapter 14

Some Theorems

We first introduce some needed definitions.

Definition 614 Given an open  ⊆ R,

 :  → R  := ()


=1
7→  () = ( ())


=1

 ⊆ {1 } and  ⊆ {1  } 
the partial Jacobian of ()∈ with respect to ()∈ in 0 ∈  is the following (#) × (#)

submatrix of  (0) ∙
 (0)



¸
∈ ∈



and it is denoted by

()∈
()∈ (0)

Example 615 Take:

 an open subset of R1 , with generic element 0 = ()
1
=1
,

 an open subset of R2 , with generic element 00 = ()
2
=1 and

 :  ×  → R (0 00) 7→  (0 00)

Then, defined  = 1 + 1 we have

0 (0) =

⎡⎢⎢⎢⎢⎣
11 (0)  1

1 (0)

 

1 (0)  1
 (0)

 

1 (0)  1
 (0)

⎤⎥⎥⎥⎥⎦
×1

and, similarly,

 (0) :=

⎡⎢⎢⎢⎢⎣
1+1

1 (0)  1 (0)

 

1+1
 (0)   (0)

 

1+1
 (0)   (0)

⎤⎥⎥⎥⎥⎦
×2

and therefore

 (0) :=
£
0 (0) 00 (0)

¤
×

Definition 616 Given an open set  ⊆ R and  :  → R, assume that ∀ ∈ ,  () :=³
()



´
=1

exists. Then, ∀ ∈ {1  }, we define the  −  partial derivative function as




:  → R  7→  ()
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Assuming that the above function has partial derivative with respect to  for  ∈ {1  }, we
define it as the mixed second order partial derivative of  with respect to  and  and we write

2 ()


:=


()





Definition 617 Given  :  ⊆ R → R the Hessian matrix of  at 0 is the ×  matrix

2 (0) :=

∙
2


(0)

¸
=1

Remark 618 2 (0) is the Jacobian matrix of the gradient function of  .

Example 619 Compute the Hessian function of  : R3++ → R,

 (  ) =
¡
 cos  + 2 + 2 log  + log + log  + 2 log 

¢
We first compute the gradient: ⎛⎜⎜⎝

2 ln  + (cos )  + 1


− (sin )  + 2



2 + 1


2 ln + 2

⎞⎟⎟⎠
and then the Hessian matrix⎡⎢⎢⎣

2 ln  + (cos )  − 1
2
− (sin )  + 2


0 0

− (sin )  + 2


− (cos )  − 2

2
0 0

0 0 − 1
2
+ 2 0

0 0 0 2


⎤⎥⎥⎦
14.1 The chain rule

Proposition 620 (Chain Rule) Given  ⊆ R,  ⊆ R

 :  ⊆ R → R

such that Im  ⊆  , and

 :  ⊆ R → R

assume that  and  are differentiable in 0 and 0 =  (0), respectively. Then

 :  ⊆ R → R  () = ( ◦ ) ()

is differentiable in 0 and

0 = (0) ◦ 0 

Proof. We want to show that there exists a linear function 0 : R
 → R such that

 (0 + ) =  (0) + 0 () + kk ·∗0 ()  with lim
→0

∗0 () = 0

and 0 = (0) ◦ 0 .
Taking  sufficiently small (in order to have 0 +  ∈ ), we have

 (0 + )−  (0) =  [ (0 + )]−  [ (0)] =  [ (0 + )]−  (0)

and defined

 =  (0 + )− 0

we get

 (0 + )−  (0) =  (0 + )−  (0) 
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Since  is differentiable in 0, we get

 = 0 () + kk ·0 ()  with lim
→0

0 () = 0 (14.1)

Since  is differentiable in 0 =  (0), we get

 (0 + )−  (0) = 0 () + kk ·0 ()  with lim
→0

0 () = 0 (14.2)

Inserting (141) in (142), we get

 (0 + )− (0) = 0 (0 () + kk ·0 ())+kk·0 () = 0 (0 ())+kk·0 (0 ())+kk·0 ()

Defined

0 () :=

⎧⎨⎩
0 if  = 0

0 (0 ()) +
kk
kk ·0 () if  6= 0



we are left with showing that

lim
→0

0 () = 0

Observe that

lim
→0

0 (0 ()) = 0

since linear functions are continuous and from (141). Moreover, since lim→0  = lim→0 ( (0 + )− 0) =

0, from (142), we get

lim
→0

0 () = 0

Finally, we have to show that lim→0
kk
kk is bounded. Now, from the definition of  and from

(612), defined  :=
P

=1 k (0)k,

kk = k0 () + kk ·0 ()k ≤ k0 ()k+ kk k0 ()k ≤ (+ k0 ()k) · kk

and

lim
→0

kk
kk ≤ lim

→0
(+ k0 ()k) = 

as desired.

Remark 621 From Proposition 610 and Proposition 292, or simply (710), we also have

 (0)× =  ( (0))× · (0)× 

Observe that  ( (0)) is obtained computing  () and then substituting  (0) in the place

of . We therefore also write  ( (0)) =  ()|=(0)

Exercise 622 Compute 0 , if  = 1  = 1.

Definition 623 Given  :  ⊆ R → R1 ,  :  ⊆ R → R2 

( ) : R → R1+2  ( ) () = ( ()   ())

Remark 624 Clearly,

 ( ) (0) =

∙
 (0)

 (0)

¸
Example 625 Given

 : R→ R2 :  7→ (sin cos)

 : R2 → R2 : (1 2) 7→ (1 + 2 1 · 2)
 =  ◦  : R→ R2 :  7→ (sin+ cos sin · cos)
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verify the conclusion of the Chain Rule Proposition.

 () =

∙
cos

− sin
¸

 () =

∙
1 1

2 1

¸
 ( ()) =

∙
1 1

cos sin

¸
 ( ()) · () =

∙
1 1

cos sin

¸ ∙
cos

− sin
¸
=

∙
cos− sin
cos2 − sin2 

¸
=  ()

Example 626 Take

 : R → R :  7→  ()

 : R ×R → R : ( ) 7→  ( )

 : R → R :  7→  ( ()  )

Then e := ( R) : R → R ×R  7→ ( ()  )

and

 =  ◦ e =  ◦ ( R  )
Therefore, assuming that    are differentiable,

[ (0)]× = [ ( (0)  0)]×(+) ·
∙
 (0)



¸
(+)×

=

=
£
[ ( (0)  0)]× | [ ( (0)  0)]×

¤ · ∙ [ (0)]×
×

¸
=

[ ( (0)  0)]× · [ (0)]× + [ ( (0)  0)]×

In the case  =  =  = 1, the above expression

 ( =  ()  )


=

 ( ()  )



 ()


+

 ( ()  )



or
 ( ()  )


=

 ( )

 |=()
·  ()


+

 ( )

 |=()

14.2 Mean value theorem

Proposition 627 (Mean Value Theorem) Let  be an open subset of R and  :  → R a

differentiable function. Let   ∈  be such that the line segment joining them is contained in ,

i.e.,

 ( ) := { ∈ R : ∃ ∈ [0 1] such that  = (1− )+ } ⊆ 

Then

∀ ∈ R ∃  ∈  ( ) such that  · [ ()−  ()] =  · [ () · ( − )]

Remark 628 Under the assumptions of the above theorem, the following conclusion is false:

∃  ∈  ( ) such that  ()−  () =  () · ( − )

But if  :  → R=1, then setting  ∈ R=1 equal to 1, we get that the above statement is
indeed true.
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Proof. of Proposition 627

Define  =  − . Since  is open and  ( ) ⊆ , ∃  0 such that ∀ ∈ (− 1 + ) such that

+  = (1− )+  ∈ . Taken  ∈ R, define
 : (− 1 + )→ R :  7→  ·  (+ ) =

P
+1  ·  (+ )

Then

 0 () =
X
+1

 · [ (+ )]
1× · ×1 = 1× · [ (+ )]× · ×1

and  is continuous on [0 1] and differentiable on (0 1); then, we can apply “Calculus 1” Mean

Value Theorem and conclude that

∃ ∈ (0 1) such that  (1)−  (0) =  0 () 

and by definition of  and ,

∃ ∈ (0 1) such that  ()−  () =  · (+ ) · ( − )

which choosing  = +  gives the desired result.

Remark 629 Using the results we have seen on directional derivatives, the conclusion of the above

theorem can be rewritten as follows.

∃  ∈  ( ) such that  ()−  () =  0(  − )

As in the case of real functions of real variables, the Mean Value Theorem allows to give a simple

relationship between sign of the derivative and monotonicity.

Definition 630 A set  ⊆ R is convex if ∀1, 2 ∈  and ∀ ∈ [0 1], (1− )1 + 2 ∈ .

Proposition 631 Let  be an open and convex subset of R and  :  → R a differentiable

function. If ∀ ∈ ,  = 0, then  is constant on .

Proof. Take arbitrary   ∈ . Then since  is convex and  is differential, from the Mean

Value Theorem, we have that

∀ ∈ R ∃  ∈  ( ) such that  [ ()−  ()] =  [ () · ( − )] = 0

Taken  =  ()−  (), we get that

k ()−  ()k = 0

and therefore

 () =  () 

as desired.

Definition 632 Given  := ()

=1   := ()


=1 ∈ R

 ≥  means ∀ ∈ {1  }   ≥ ;

   means  ≥  ∧  6= ;

À  means ∀ ∈ {1  }    

Definition 633  :  ⊆ R → R is increasing if ∀  ∈ ,    ⇒  () ≥  ().

 is strictly increasing if ∀  ∈ ,    ⇒  ()   () 

Proposition 634 Take an open, convex subset  of R, and  :  → R differentiable.
1. If ∀ ∈ ,  () ≥ 0, then  is increasing;

2. If ∀ ∈ ,  ()  0, then  is strictly increasing.
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Proof. 1. Take  ≥ . Since  is convex,  ( ) ⊆ . Then from the Mean Value Theorem,

∃  ∈  ( ) such that  ()−  () =  () · ( − )

Since  −  ≥ 0 and  () ≥ 0, the result follows.
2. Take   . Since  is convex,  ( ) ⊆ . Then from the Mean Value Theorem,

∃  ∈  ( ) such that  ()−  () =  () · ( − )

Since  −   0 and  ()  0, the result follows.

Exercise 635 Is the following statement correct: “If ∀ ∈ ,  ()  0, then  is strictly

increasing” ?.

Corollary 636 Take an open, convex subset  of R, and  ∈ 1 (R). If ∃0 ∈  and  ∈
R\ {0} such that  0 (0 )  0, then ∃  ∈ R++ such that ∀ ∈

£
0 
¢
,

 (0 + ) ≥  (0) 

Proof. Since  is 1 and  0 (0 ) =  (0) ·   0, ∃  0 such that
∀ ∈  (0 )   0 ( )  0

Then ∀ ∈ (− ),
°°°0 + 1

kk − 0

°°° =   , and therefore

 0
µ
0 +



kk 
¶
 0

Then, from the Mean Value Theorem, ∀ ∈ £0 
2

¤
,

 (0 + )−  (0) =  0 (0 +  ) ≥ 0

Definition 637 Given a function  :  ⊆ R → R, 0 ∈  is a point of local maximum for  if

∃  0 such that ∀ ∈  (0 )   (0) ≥  () ;

0 is a point of global maximum for  if

∀ ∈   (0) ≥  () 

0 ∈  is a point of strict local maximum for  if

∃  0 such that ∀ ∈  (0 )   (0)   () ;

0 is a point of strict global maximum for  if

∀ ∈   (0)   () 

Local, global, strict minima are defined in obvious manner

Proposition 638 If  ⊆ R,  :  → R admits all partial derivatives in 0 ∈   and 0 is a

point of local maximum or minimum, then  (0) = 0.

Proof. Since 0 is a point of local maximum, ∃  0 such that ∀ ∈  (0 ),  (0) ≥  ().

As in Remark 583, for any  ∈ {1  }, define
 : R→ R  () = 

¡
0 + ( − 0) 




¢


Then  has a local maximum point at 0. Then from Calculus 1,

0(0) = 0

Since, again from Remark 583, we have

 (0) = 0 (0) 

the result follows.
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14.3 A sufficient condition for differentiability

Definition 639  = ()

=1 :  ⊆ R → R is continuously differentiable on  ⊆ , or  is 1

on , or  ∈ C (R) if ∀ ∈ {1 }   ∈ {1  } 

 : → R  7→  () is continuous.

Definition 640  :  ⊆ R → R is twice continuously differentiable on  ⊆ , or  is 2 on ,

or  ∈ C2 (R) if ∀  ∈ {1  } 

2


: → R  7→ 2


() is continuous.

Proposition 641 If  is 1 in an open neighborhood of 0, then it is differentiable in 0.

Proof. See Apostol (1974), page 357 or Section "Existence of derivative", page 232, in Bartle

(1964), where the significant case  : R → R=1 is presented using Cauchy-Schwarz inequality.
See also,Theorem 1, page 197, in Taylor and Mann (1984), for the case  : R2 → R.
The above result is the answer to Question 3 in Remark 609. To show that  : R → R is

differentiable, it is enough to verify that all its partial derivatives, i.e., the entries of the Jacobian

matrix, are continuous functions.

14.4 A sufficient condition for equality of mixed partial deriv-

atives

Proposition 642 If  :  ⊆ R → R1 is 2 in an open neighborhood of 0, then ∀

 



(0) =

 



(0)

or
2


(0) =

2


(0)

Proof. See Apostol (1974), Section 12.13, page 358.

14.5 Taylor’s theorem for real valued functions

To get Taylor’s theorem for functions  : R → R, we introduce some notation in line with the
definition of directional derivative:

 0 ( ) =
X
=1

 () · 

Definition 643 Assume  is an open subset of R and the function  :  → R admits partial

derivatives at least up to order , and  ∈   ∈ R. Then

 00 ( ) :=
X
=1

X
=1

 () ·  ·  

 000 ( ) :=
X
=1

X
=1

X
=1

 () ·  ·  · 

and similar definition applies to  () ( ).
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Proposition 644 (Taylor’s formula) Assume  is an open subset of R and the function  :  →
R admits partial derivatives at least up to order , and  ∈   ∈ R. Assume also that all its
partial derivative of order   are differentiable. If  and  are such that  ( ) ⊆ , then there

exists  ∈  ( ) such that

 () =  () +

−1X
=1

1

!
 () (  − ) +

1

!
 () (  − ) 

Proof. . Since  is open and  ( ) ⊆ , ∃  0 such that ∀ ∈ (− 1 + ) such that

+  ( − ) ∈ . Define  : (− 1 + )→ R

 () =  (+  ( − )) 

From standard “Calculus 1” Taylor’s theorem, we have that ∃ ∈ (0 1) such that

 ()−  () =  (1)−  (0) =

−1X
=1

1

!
() (0) +

1

!
() () 

Then

0 () =  (+  ( − )) · ( − ) =

X
=1

 (+  ( − )) · ( − ) =  0 (+  ( − )   − ) 

00 () =
X
=1

X
=1

 (+  ( − )) · ( − ) · ( − ) =  00 (+  ( − )   − )

and similarly

() () =  0() (+  ( − )   − )

Then the desired result follow substituting 0 in the place of  where needed and choosing  =

+  ( − ).



Chapter 15

Implicit function theorem

15.1 Some intuition

Below, we present an informal discussion of the Implicit Function Theorem. Assume that

 : R2 → R ( ) 7→  ( )

is at least 1. The basic goal is to study the nonlinear equation

 ( ) = 0

where  can be interpreted as an endogenous variable and  as a parameter (or an exogenous

variable). Assume that

∃ ¡0 0¢ ∈ R2 such that  ¡0 0¢ = 0
and for some   0

∃ a 1 function  :
¡
0 −  0 + 

¢→ R  7→  ()

such that

 ( ()  ) = 0 (15.1)

We can then say that  describes the solution to the equation

 ( ) = 0

in the unknown variable  and parameter , in an open neighborhood of 0. Therefore, using

the Chain Rule - and in fact, Remark 626 - applied to both sides of (151), we get

 ( )

 |=()
·  ()


+

 ( )

 |=()
= 0

and

assuming that
 ( )

 |=()
6= 0

we have

 ()


= −

()

 |=()
()

 |=()
(15.2)

The above expression is the derivative of the function implicitly defined by (151) close to the

value 0. In other words, it is the slope of the level curve  ( ) = 0 at the point (  ()).

For example, taken

 : R2 → R, ( ) 7→ 2 + 2 − 1
 ( ) = 0 describes the circle with center in the origin and radius equal to 1. Putting  on the

horizontal axis and  on the vertical axis, we have the following picture.

197
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10.50-0.5-1

1

0.5

0

-0.5

-1

t

x

t

x

Clearly

 ((0 1)) = 0

As long as  ∈ (−1 1)   () = √1− 2 is such that

 ( ()  ) = 0 (15.3)

Observe that


¡√
1− 2

¢


= − √
1− 2

and

−
()

 |=()
()

 |=()
= − 2

2 |=()
= − √

1− 2

For example for  = 1√
2
, 0 () = −

1√
2√
1− 1

2

= −1
Let’s try to present a more detailed geometrical interpretation1. Consider the set

©
( ) ∈ R2 :  ( ) = 0ª

presented in the following picture.

Insert picture a., page 80.

In this case, does equation

 ( ) = 0 (15.4)

define  as a function of ? Certainly, the curve presented in the picture is not the graph of a

function with  as dependent variable and  as an independent variable for all values of  in R. In
fact,

1. if  ∈ (−∞ 1], there is only one value of  which satisfies equation (154);

2. if  ∈ (1 2), there are two values of  for which  ( ) = 0;

3. if  ∈ (2+∞), there are no values satisfying the equation.
If we consider  belonging to an interval contained in (1 2), we have to to restrict the admissible

range of variation of  in order to conclude that equation (154) defines  as a function of  in that

interval. For example, we see that if the rectangle  is as indicated in the picture , the given

equation defines  as a function of , for well chosen domain and codomain - naturally associated

with . The graph of that function is indicated in the figure below.

Insert picture b., page 80.

1This discussion is taken from Sydsaeter (1981), page 80-81.
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The size of  is limited by the fact that we need to define a function and therefore one and only

one value has to be associated with  Similar rectangles and associated solutions to the equation

can be constructed for all other points on the curve, except one: (2 2). Irrespectively of how

small we choose the rectangle around that point, there will be values of  close to 2, say 0, such
that there are two values of , say 0 and 00, with the property that both (0 0) and (0 00) satisfy
the equation and lie inside the rectangle. Therefore, equation (154) does not define  as a function

of  in an open neighborhood of the point (2 2). In fact, there the slope of the tangent to the

curve is infinite. If you try to use expression (152) to compute the slope of the curve defined by

2 + 2 = 1 in the point (1 0), you get an expression with  in the denominator.

On the basis of the above discussion, we see that it is crucial to require the condition

 ( )

 |=()
6= 0

to insure the possibility of locally writing  as a solution (to (154)) function of .

We can informally, summarize what we said as follow.

If  is 1  (0 0) = 0 and
()

 |()=(00) 6= 0, then  ( ) = 0 define  as a 1 function

 of  in an open neighborhood of 0, and 0 () = −
()


()

 |=()
.

Next sections provide a formal statement and proof of the Implicit Function Theorem. Some

work is needed.

15.2 Functions with full rank square Jacobian

Proposition 645 Taken  ∈ R,  ∈ R++ assume that
1.  := ()


=1 : R

 → R is continuous on Cl ( ( )) ;
2. ∀ ∈  ( )  [ ()]× exists and det () 6= 0;
3. ∀ ∈ F ( ( ))   () 6=  () 

Then, ∃ ∈ R++ such that
 ( ( )) ⊇  ( ()  ) 

Proof. Define  :=  ( ) and

 : F ()→ R  7→ k ()−  ()k 
From Assumption 3, ∀ ∈ F (),  ()  0. Moreover, since  is continuos and F () is compact,

 attains a global minimum value   0 on F (). Take  = 
2
; to prove the desired result, it is

enough to show that  :=  ( ()  ) ⊆  (), i.e., ∀ ∈  ,  ∈  ()  Define

 : Cl ()→ R  7→ k ()− k 

since  is continuos and Cl  is compact,  attains a global minimum in a point  ∈ . We

now want to show that  ∈ . Observe that, since  ∈  = 
¡
 ()   = 

2

¢
,

 () = k ()− k  

2
(15.5)

Therefore, since  is a global minimum point for , it must be the case that  ()  
2
. Now

take  ∈ F (); then

 () = k ()− k = k ()−  ()− ( −  ())k
(1)

≥ k ()−  ()k−k −  ()k
(2)

≥  ()−
2

(3)

≥ 

2


where (1) follows from Remark 54, (2) from (155) and (3) from the fact that  has minimum

value equal to . Therefore, ∀ ∈ F (),  ()   () and  does not attain its minimum on

F (). Then  and 2 get their minimum at  ∈  2 . Since

 () := 2 () = k ()− k2 =
X
=1

( ()− )
2

2∀ ∈ ,  () ≥ 0 and  () ≥  (). Therefore, 2 () ≥ 2 ().
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from Proposition 638,  () = 0, i.e.,

∀ ∈ {1  }  2

X
=1

 () · ( ()− ) = 0

i.e.,

[ ()]× ( ()− )×1 = 0

Then, from assumption 2,

 () = 

i.e., since  ∈   ∈  (), ad desired.

Proposition 646 (1st sufficient condition for openness of a function)

Let an open set  ⊆ R and a function  : → R be given. If
1.  is continuous,

2.  is one-to-one,

3. ∀ ∈ ,  () exists and det () 6= 0,

then  is open.

Proof. Taken  ∈  (), there exists  ∈  such that  () = . Since  is open, there exists

 ∈ R++ such that  ( ) ⊆ . Moreover, since  is one-to-one and since  ∈ F (), ∀ ∈ F (),
 () 6=  () Then3, for sufficiently small , Cl ( ( )) ⊆ , and the assumptions of Proposition

645 are satisfied and there exists  ∈ R++ such that

 () ⊇  (Cl ( ( ))) ⊇  ( ()  ) 

as desired.

Definition 647 Given  :  →  , and  ⊆ , the function | is defined as follows

| : →  ()  | () =  () 

Proposition 648 Let an open set  ⊆ R and a function  : → R be given. If
1.  is 1,

2. ∃ ∈  such that det () 6= 0,
then ∃ ∈ R++ such that  is one-to-one on  ( ), and, therefore, |() is invertible.

Proof. Consider (R) with generic element  :=
¡

¢
=1
, where ∀ ∈ {1  }   ∈ R, and

define

 : R
2 → R :

¡

¢
=1

7→ det

⎡⎢⎢⎢⎢⎣
1 (1)




¡

¢



 (
)

⎤⎥⎥⎥⎥⎦ 

Observe that  is continuous because  is 1 and the determinant function is continuous in its

entries. Moreover, from Assumption 2,

 (    ) = det () 6= 0

Therefore, ∃ ∈ R++ such that

∀ ¡¢
=1
∈  ((    )  0)  

³¡

¢
=1

´
6= 0

Observe that∗ :=  ((    )  )∩ 6= ∅, where  :=
n¡


¢
=1
∈ R2 : ∀ ∈ {1  }   = 1

o
.

Define

 : (R) → R  :
¡

¢
=1

7→ 1

3 Simply observe that ∀ ∈ R++, 

 

2

 ⊆  ( ).
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and observe that  (∗) =  ( ) ⊆ R and ∀ ∈ {1  } ∀ ∈  ( ),
¡
1   

¢ ∈
∗ and therefore 

¡
1   

¢ 6= 0or, summarizing,
∃ ∈ R++ such that ∀ ∈ {1  } ∀ ∈  ( )  

¡
1   

¢ 6= 0
We now want to show that  is one-to-one on  ( ). Suppose otherwise, i.e., given   ∈

 ( ),  () =  (), but  6= . We can now apply the Mean Value Theorem (see Remark 628) to

  for any  ∈  {1  } on the segment  ( ) ⊆  ( ). Therefore ∀ ∈ {1  }, ∃ ∈  ( )

such that

∀ ∈ {1  } ∃ ∈  ( ) such that 0 =  ()−  () = 
¡

¢
( − )

i.e., ⎡⎢⎢⎢⎢⎣
1 (1)




¡

¢



 (
)

⎤⎥⎥⎥⎥⎦ ( − ) = 0

Observe that ∀  ∈  ( ) and therefore
¡

¢
=1
∈  ((    )  00) and therefore

det

⎡⎢⎢⎢⎢⎣
1 (1)




¡

¢



 (
)

⎤⎥⎥⎥⎥⎦ = 
³¡

¢
=1

´
6= 0

and therefore  = , a contradiction.

Remark 649 The above result is not a global result, i.e., it is false that if  is 1 and its Jacobian

has full rank everywhere in the domain, then  is one to one. Just take the function tan.

The next result gives a global property.

Proposition 650 (2nd sufficient condition for openness of a function) Let an open set  ⊆ R
and a function  : → R be given. If
1.  is 1,

2. ∀ ∈ , det () 6= 0,
then  is an open function.
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Proof. Take an open set  ⊆ . From Proposition 648,∀ ∈  there exists  ∈ R++ such that
 is one-to-one on  ( ). Then, from Proposition 646,  ( ( )) is open in R. We can then
write  = ∪∈ ( ) and

 () =  (∪∈ ( )) = ∪∈ ( ( ))

where the second equality follows from Proposition 518.2..f1, and then  () is an open set.

15.3 The inverse function theorem

Proposition 646 shows that a 1 function with full rank square Jacobian in a point  has a local

inverse in an open neighborhood of . The inverse function theorem give local differentiability

properties of that local inverse function.

Lemma 651 If  is the inverse function of  :  →  and  ⊆ , then |() is the inverse of
|, and
if  is the inverse function of  :  →  and  ⊆  , then | is the inverse of |().

Proof. Exercise.

Proposition 652 Let an open set  ⊆ R and a function  :  → R be given. If
1.  is 1, and

2. ∃ ∈ , det () 6= 0,
then there exist two open sets  ⊆  and  ⊆  () and a unique function  such that

1.  ∈  and  () ∈  ,

2.  =  (),

3.  is one-to-one on ,

4.  is the inverse of  ,

5.  is 1.

Proof. Since  is 1, ∃1 ∈ R++ such that ∀ ∈  ( 1)  det () 6= 0. Then, from

Proposition 648,  is one-to-one on  ( 1). Then take 2 ∈ (0 1), and define  :=  ( 2) 

Observe that Cl () ( 2) ⊆  ( 1) Using the fact that  is one-to-one on  ( 1) and therefore

on  ( 2), we get that Assumption 3 in Proposition 645 is satisfied - while the other two are

trivially satisfied. Then, ∃ ∈ R++ such that

 ( ( 2)) ⊇  ( ()  ) := 

Define also

 := −1 ( ) ∩ (15.6)

an open set because  and  are open sets and  is continuous. Since  is one-to-one and

continuous on the compact set Cl () , from Proposition 526, there exists a unique continuous

inverse function b :  (Cl ())→ Cl () of |Cl (). From definition of  ,

 ⊆  () ⊆  (Cl ())  (15.7)

From definition of ,

 () =  ∩  () = 

Then, from Lemma 651,

 = b is the inverse of | .
The above shows conclusions 1-4 of the Proposition. (About conclusion 1, observe that  ∈

−1 ( ( ( ))) ∩ ( 2) =  and  () ∈  () =  .)

We are then left with proving condition 5.
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Following what said in the proof of Proposition 648, we can define

 : R
2 → R :

¡

¢
=1

7→ det

⎡⎢⎢⎢⎢⎣
1 (1)




¡

¢



 (
)

⎤⎥⎥⎥⎥⎦ 

and get that, from Assumption 2,

 (    ) = det () 6= 0

and, see the proof of Proposition 648 for details,

∃ ∈ R++ such that ∀ ∈ {1  } ∀ ∈  ( )  
¡
1   

¢ 6= 0 (15.8)

and trivially also

∃ ∈ R++ such that ∀ ∈  ( )   (   ) = det () 6= 0 (15.9)

Assuming, without loss of generality that we took 1  , we have that

Cl () := Cl () ( 2) ⊆  ( 1) ⊆  ( ) 

Then ∀1   ∈ Cl ()   ¡1   ¢ 6= 0 Writing  = ¡¢
=1
, we want to prove that

∀ ∈ {1  },  is 1. We go through the following two steps: 1. ∀ ∈  ∀  ∈ {1  } 


 () exists, and 2it is continuous.

Step 1.

We want to show that the following limit exists and it is finite:

lim
→0


¡
 + 

¢−  ()




Define
 = ()


=1 =  () ⊆  ⊆ Cl ()

0 = (0)


=1 = 
¡
 + 

¢ ⊆  ⊆ Cl () (15.10)

Then

 (0)−  () =
¡
 + 

¢−  = 

We can now apply the Mean Value Theorem to   for  ∈ {1  }: ∃ ∈  ( 0) ⊆ Cl () ,
where the inclusion follows from the fact that  0 ∈ Cl () a convex set, such that

∀ ∈ {1  }    (0)−   ()


=

 
¡

¢
(0 − )



and therefore ⎡⎢⎢⎢⎢⎣
1 (1)




¡

¢



 (
)

⎤⎥⎥⎥⎥⎦ 1 (0 − ) = 

Define

 =

⎡⎢⎢⎢⎢⎣
1 (1)




¡

¢



 (
)

⎤⎥⎥⎥⎥⎦
Then, from (158), the above system admits a unique solution, i.e., using (1510),


¡
 + 

¢−  ()


=
1


(0 − )
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and, using Cramer theorem (i.e., Theorem 328),


¡
 + 

¢−  ()


=


¡
1  

¢
 (1  )

where  takes values which are determinants of a matrix involving entries of . We are left with

showing that

lim
→0


¡
1  

¢
 (1  )

exists and it is finite, i.e., the limit of the numerator exists and its finite and the limit of the

denominator exists is finite and nonzero.

Then, if → 0,  +  → , and, being  continuous, 0 →  and, since  ∈  ( 0),  → 

for any . Then, 
¡
1  

¢ →  (  ) 6= 0because, from 15.10,  ∈ Cl () and from (159).

Moreover, 
¡
1  

¢→  (  ).

Step 2.

Since

lim
→0


¡
 + 

¢−  ()


=

 (  )

 (  )

and  and  are continuous functions, the desired result follows.

15.4 The implicit function theorem

Theorem 653 Given   open subsets of R and R respectively and a function

 :  ×  → R : ( ) 7→  ( ) 

assume that

1.  is 1,

there exists (0 0) ∈  ×  such that

2. (0 0) = 0,

3.  (0 0)× is invertible.

Then there exist (0) ⊆  open neighborhood of 0, (0) ⊆  open neighborhood of 0 and a

unique function

 : (0)→ (0)

such that

1.  is 1,

2. {( ) ∈ (0)×(0) : ( ) = 0} = {( ) ∈ (0)×(0) :  = ()} :=  .4

Proof. See Apostol (1974). proof to be added.

Remark 654 Conclusion 2. above can be rewritten as

∀ ∈  (0)   ( ()  ) = 0 (15.11)

Computing the Jacobian of both sides of (1511), using Remark 626, we get

∀ ∈  (0) , 0 = [ ( ()  )]× · [ ()]× + [ ( ()  )]× (15.12)

and using Assumption 3 of the Implicit Function Theorem, we get

∀ ∈  (0) , [ ()]× = − [ ( ()  )]
−1
× · [ ( ()  )]×

Observe that (1512) can be rewritten as the following  systems of equations: ∀ ∈ {1  },
[ ( ()  )]× · [ ()]×1 = − [ ( ()  )]×1

4Then  (0) = 0.
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Exercise 655 5Discuss the application of the Implicit Function Theorem to  : R5 → R2

 (1 2 1 2 3) 7→
µ
21 + 21 − 42 + 3
2 cos1 − 61 + 21 − 3

¶
at
¡
0 0

¢
= (0 1 3 2 7) 

Let’s check that each assumption of the Theorem is verified.

1. (0 0) = 0 . Obvious.

2.  is 1

We have to compute the Jacobian of the function and check that each entry is a continuous

function.

1 2 1 2 3

21 + 21 − 42 + 3 21 1 2 −4 0

2 cos1 − 61 + 21 − 3 −2 sin1 − 6 cos1 2 0 −1
3. [ (0 0)]× is invertible.

[ (0 0)] =

∙
21 1
−2 sin1 − 6 cos1

¸
|(01327)

=

∙
2 3

−6 1

¸
whose determinant is 20.

Therefore, we can apply the Implicit Function Theorem and compute the Jacobian of  :  (0) ⊆
R2 →  (0) ⊆ R3:

 () = −
∙
21 1
−2 sin1 − 6 cos1

¸−1 ∙
2 −4 0

2 0 −1
¸
=

=
1

61 + 2 (cos1) 1 + 12 sin1

∙
21 − 2 cos1 4 cos1 −1

−62 − 41 − 22 sin1 42 sin1 + 24 21

¸
Exercise 656 Given the utility function  : R2++ → R++ ( ) 7→  ( ) satisfying the following

properties

i.  is 2, ii. ∀ ( ) ∈ R2++  ( )  0iii. ∀ ( ) ∈ R2++  ( )  0 ( ) 

0 ( )  0

compute the Marginal Rate of Substitution in (0 0) and say if the graph of each indifference

curve is concave.

53.752.51.250

5

3.75

2.5

1.25

0

x

y

x

y

5The example is taken from Rudin (1976), pages 227-228.
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15.5 Some geometrical remarks on the gradient

In what follows we make some geometrical, not rigorous remarks on the meaning of the gradient,

using the implicit function theorem. Consider an open subset  of R2, a 1 function

 :  → R : ( ) 7→  ( )

where  ∈ R. Assume that set

 () := {( ) ∈  :  ( ) = }

is such that ∀ ( ) ∈ ,
()


6= 0 and ()


6= 0 , then

1.  () is the graph of a 1 function from a subset of R to R;

2. (∗ ∗) ∈  ()⇒ the line going through the origin and the point  (∗ ∗) is orthogonal
to the line going through the origin and parallel to the tangent line to  () at (∗ ∗) ;or
the line tangent to the curve  () in (∗ ∗) is orthogonal to the line to which the gradient
belongs to.

3. (∗ ∗) ∈  () ⇒ the directional derivative of  at (∗ ∗) in the the direction  such that

kk = 1 is the largest one if  = (∗∗)
k(∗∗)k .

1. It follows from the Implicit Function Theorem.

2. The slope of the line going through the origin and the vector  (∗ ∗) is

(∗∗)


(∗∗)


(15.13)

Again from the Implicit Function Theorem, the slope of the tangent line to  () in (∗ ∗) is

−
(∗∗)


(∗∗)



(15.14)

The product between the expressions in (1513) and (1514) is equal to −1.
3. the directional derivative of  at (∗ ∗) in the the direction  is

 0 ( (∗ ∗) ;) =  (∗ ∗) ·  = k (∗ ∗)k · kk · cos 

where  is an angle in between the two vectors. Then the above quantity is the greatest possible iff

cos  = 1, i.e.,  is colinear with  (∗ ∗), i.e.,  = (∗∗)
k(∗∗)k .

15.6 Extremum problems with equality constraints.

Given the open set  ⊆ R, consider the 1 functions

 :  → R  :  7→  () 

 :  → R  :  7→  () := ( ())


=1

with  ≤  Consider also the following “maximization problem”:

( ) max∈  () subject to  () = 0 (15.15)

The set

 := { ∈  :  () = 0}
is called the constraint set associated with problem (1515).
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Definition 657 The solution set to problem (1515) is the set

{∗ ∈  : ∀ ∈   (∗) ≥  ()} 

and it is denoted by argmax (1515).

The function

L :  ×R → R L : ( ) 7→  () +   ()

is called Lagrange function associated with problem (1515).

Theorem 658 Given the open set  ⊆ R and the 1 functions

 :  → R  :  7→  ()   :  → R  :  7→  () := ( ())


=1


assume that

1.  and  are 1functions,

2. 0 is a solution to problem (1515),6 and

3. rank [ (0)]× = 

Then, there exists 0 ∈ R such that, L (0 0) = 0, i.e.,½
 (0) + 0 (0) = 0

 (0) = 0
(15.16)

Proof. Define 0 := ()

=1 ∈ R and  = (+)

−
=1 ∈ R− and therefore  = (0 ). From

Assumption 3, without loss of generality,

det [0 (0)]× 6= 0 (15.17)

We want to show that there exists 0 ∈ R which is a solution to the system

[ (0)]1× + 1× [ (0)]× = 0 (15.18)

We can rewrite (1518) as follows£
0 (0)1× |  (0)1×(−)

¤
+ 1×

£
0 (0)× |  (0)×(−)

¤
= 0

or ⎧⎨⎩
£
0 (0)1×

¤
+ 1×

£
0 (0)×

¤
= 0 (1)£

 (0)1×(−)
¤
+ 1×

£
 (0)×(−)

¤
= 0 (2)

(15.19)

From (1517), there exists a unique solution 0 to subsystem (1) in (1519). If  = , we are

done. Assume now that   . We have now to verify that 0 is a solution to subsystem (2)

in (1519), as well. To get the desired result, we are going to use the Implicit Function Theorem.

Summarizing, we hat that

1.  is 1, 2. (00 0) = 0, 3. det [0 (
0
0 0)]× 6= 0

i.e., all the assumption of the Implicit Function Theorem are verified. Then we can conclude

that there exist (0) ⊆ R open neighborhood of 00, (0) ⊆ R− open neighborhood of 0
and a unique function  : (0)→ (0) such that

1.  is 1, 2.  (0) = 00 , 3. ∀ ∈  (0)   ( ()  ) = 0 (15.20)

Define now

 : (0) ⊆ R− → R :  7→  ( ()  ) 

and

 : (0) ⊆ R− → R :  7→  ( ()  ) 

6The result does apply in the case in which 0 is a local maximum for Problem (1515). Obviously the result

apply to the case of (local) minima, as well.
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Then, from (1520) and from Remark 654, we have that ∀ ∈  (0),

0 = [ ()]×(−) = [0 ( ()  )]× · [ ()]×(−) + [ ( ()  )]×(−)  (15.21)

Since7, from (1520), ∀ ∈  (0)   ( ()  ) = 0 and since

0 := (
0
0 0)

(1520)
= ( (0)  0) (15.22)

is a solution to problem (1515), we have that  (0) =  (0) ≥  (), i.e., briefly,

∀ ∈  (0)   (0) ≥  () 

Then, from Proposition 638,  (0) = 0. Then, from the definition of  and the Chain Rule,

we have

[0 ( (0)  0)]1× · [ (0)]×(−) + [ ( (0)  0)]1×(−) = 0 (15.23)

Premultiplying (1521) by , we get

1× · [0 ( ()  )]× · [ ()]×(−) + 1× · [ ( ()  )]×(−) = 0 (15.24)

Adding up (1523) and (1524) ,computed at  = 0,we get

([0 ( (0)  0)] +  · [0 ( (0)  0)]) · [ (0)]+ [ ( (0)  0)]++ · [ ( (0)  0)] = 0

and from (1522),

([0 (0)] +  · [0 (0)]) · [ (0)] + [ (0)] +  · [ (0)] = 0 (15.25)

Then, from the definition of 0 as the unique solution to (1) in (1519) we have that [0 (0)]+

0 · [0 (0)] = 0, and then from (1525) computed at  = 0, we have

[ (0)] + 0 · [ (0)] = 0

i.e., (2) in (1519), the desired result.

15.7 Exercises on part III

Problem sets: all of the problems on part III.

See Tito Pietra’s file (available on line): Exercises 1 → 14 (excluding exercises 3, 5, 15).

7The only place where the proof has to be sligtgly changed to get the result for local maxima is here.
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Chapter 16

Convex sets

16.1 Definition

Definition 659 A set  ⊆ R is convex if ∀1, 2 ∈  and ∀ ∈ [0 1], (1− )1 + 2 ∈ .

Definition 660 A set  ⊆ R is strictly convex if ∀1, 2 ∈  such that 1 6= 2, and ∀ ∈ (0 1),
(1− )1 + 2 ∈  .

Remark 661 If  is strictly convex, then  is convex, but not vice-versa.

Proposition 662 The intersection of an arbitrary family of convex sets is convex.

Proof. We want to show that given a family {}∈ of convex sets, if   ∈  := ∩∈

then (1− ) +  ∈ .   ∈  implies that   ∈ , ∀ ∈ . Since  is convex, ∀ ∈ ,

∀ ∈ [0 1] (1− )+  ∈ , and ∀ ∈ [0 1] (1− )+  ∈ .

Exercise 663 ∀ ∈ N∀ ∈ {1  }   is an interval in R, then

×
=1

is a convex set.

16.2 Separation of convex sets

Definition 664 Let  and  be subsets of R, and let  := { ∈ R : 0 +  ·  = 0} be a hyper-
plane in R.1 Then,  is said to

1. separate  and  if

 ⊆ − := { ∈ R : 0 +  ·  ≤ 0} and  ⊆ + := { ∈ R : 0 +  ·  ≥ 0} 

i.e.,

∀ ∈  ∀ ∈  0 +  ·  ≤ 0 ≤ 0 +  · 
i.e.,

∀ ∈  ∀ ∈   ·  ≤ −0 ≤  · ;

2. separate  and  properly if it separates them and  ∪ * ;

3. separate  and  strictly if

 ⊆ { ∈ R : 0 +  ·   0} and  ⊆ { ∈ R : 0 +  ·   0} 
1When we introduce a hyperplane by equation 0 +  = 0, consistently with the definition of hyperplane, we

assume  6= 0.

211
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Example 665 The convex sets
©
( ) ∈ R2 :  ≤ 0ª and ©( ) ∈ R2 :   0   1



ª
in R2 cannot

be strictly separated, but they are properly separated by the -axis.

Clearly, it is not always possible to separate two convex sets by a hyperplane. For instance, there

is no line in R2 separating the set {0} and the closed unit disc ©( ) ∈ R2 : 2 + 2 ≤ 1ª.
Remark 666 Let  be two sets in R such that at least one of them is nonempty. If they can

be strictly separated, then they can also be properly separated.

Remark 667 Let  be a hyperplane in R, and let  and  be two subsets of . Then, 

separates  and , but does not separate them properly.

Proposition 668 Let a hyperplane  := { ∈ R : 0 +  ·  = 0} be given. Then,2.

h  separates properly  and  i⇔ h  separates properly Cl () and Cl () i 

Proof. [⇐]
Obvious.

[⇒]
We first present two proofs of the fact  separates Cl () and Cl (), and then we show that

the separation is proper.

1st proof.

h  ⊆ − i⇒ h Cl () ⊆ Cl (−) = −i 
where we used the fact that − is closed.
Similarly,  ⊆ + ⇒ Cl (+)  ⊆ +

2nd proof.

Take (∗ ∗) ∈ Cl ()× Cl (). Then there exists sequences ()∈N ∈ ∞ and ()∈N ∈ ∞

such that  → ∗ and  → ∗. By assumption,

∀ ∈ N 0 +  ·  ≤ 0 ≤ 0 +  · 

Taking limits for → +∞, we get

0 +  · ∗ ≤ 0 ≤ 0 +  · ∗

as desired.

We now show that the separation is proper:,

 ∪ *  ⇒  ∪ ∩ 6= ∅
⊆Cl()

⇒ Cl () ∪Cl () ∩ 6= ∅

The following three Propositions are presented without proof. Detailed, self-contained proofs

of those results are contained, for example, in Villanacci, A., (in progress), Basic Convex Analysis,

mimeo, Università degli Studi di Firenze.

Proposition 669 Let  be a closed nonempty convex set in R such that 0 ∈ . Then, there exists

a hyperplane in R that strictly separates  and {0}.

Corollary 670 Let  be a closed nonempty convex set in R such that  ∈ . Then, there exists

a hyperplane in R that strictly separates  and {}.

Proof. Exercise.

Proposition 671 Let  be a nonempty convex set in R such that 0 ∈ . Then, there exists a

hyperplane  in R such that  ⊆ − and {0} ⊆ +.

Proposition 672 Let  be a nonempty convex set in R such that 0 ∈ Int (). Then, there exists
a hyperplane  in R such that  ⊆ − and {0} ⊆ +.

Proposition 673 Let  and  be nonempty convex sets in R. If one of the following conditions
holds, then there exists a hyperplane  such that  ⊆ − and  ⊆ +:
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1. 0 ∈ −;

2. 0 ∈ Int (−);

3. Int 6= ∅ and 0 ∈ − Int ().
Proof. 1.

Since  and  are convex, we show that − is convex. Let   ∈ − where  = 1 − 1,

 = 2 − 2, and 1 2 ∈  1 2 ∈ . Let  ∈ [0 1] Then,
(1− )+  = (1− )(1 − 1) + (2 − 2) = [(1− )1 + 2]− [(1− )1 + 2] ∈ −

by convexity of  and 

Hence, from our assumption and Lemma ??, there exists a hyperplane  = { ∈ R :  ·  = 0}
that separates {0} and  − . Without loss of generality,  −  ⊆ + and 0 = 0. Then,

∀ ∈   ∈ ,

 · (− ) ≥ 0⇔  ·  ≥  · 
Hence, there must exists  0 = {0 ∈ R :  · 0 = 1} such that

 ·  ≥ 1 ≥  · 
i.e., such that  ⊆  0

− and  ⊆  0
+.

2.

From our assumption and 672, there exists a hyperplane that separates {0} and −, whence,

following the Proof of point 1 above, we are done.

3.

From our assumption and point 1 above, there exists a hyperplane  that separates  and

Int (). From Remark 668,  separates Cl () and Cl (Int ()) = Cl (), where last equality

follows from the Assumption that Int () 6= ∅ and Proposition 662.7. Then since the closure of a
set contains the set, the desired result follows.

Proposition 674 Let  and  be subsets of R. Then

0 ∈ − ⇔  ∩ = ∅

Proof.
0 ∈ − ⇔

¬ (0 ∈ −) ⇔

¬ (∃ ∈ ∃ ∈  such that −  = 0) ⇔

∀ ∈ ∀ ∈   6=  ⇔

 ∩ = ∅

Proposition 675 Let  and  be nonempty convex sets in R. If one of the following conditions
holds true, then there exists a hyperplane  such that  ⊆ − and  ⊆ +.

1.  ∩ = ∅;
2. Int 6= ∅ and ∩Int() = ∅.

16.3 Farkas’ Lemma

Proposition 676 If2

1. 1    ∈ R, and
2. 1 ≤ 0   ≤ 0 ⇒  ≤ 0,
then

∃ := ()=1 ∈ R+ such that  =

X
=1



2 In this Section, I follow very closely Section 8.1.2 in Montrucchio (1998).
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Proof. Define

 =

(
 ∈ R :

X
=1

 with ()

=1 ∈ R+

)


Observe that since 0 ∈ R+ , then
0 ∈  (16.1)

and

∀ ∈ R+ and ∀ ∈ , we have  ∈  (16.2)

We want to show that  ∈ .

Claim 1.  is a convex, nonempty and closed set.

Proof of Claim 1.

The fact that  is a convex and nonempty is obvious. Let’s check closedness. Take ()∈N ∈ ∞

such that  → . We want to show that  ∈ . Indeed,  ∈  means that there exists ()

=1

such that

 =

X
=1

 →  (16.3)

Then

∀  0 ∃ ∈ N such that ∀  

°°°°°
X
=1

 − 

°°°°°  

Now, in general, we have that kk = k−  + k ≤ k− k+ kk, i.e.,

kk− kk ≤ k− k 

Therefore, °°°°°
X
=1



°°°°°− kk ≤
°°°°°

X
=1

 − 

°°°°°   (16.4)

and

0 ≤
°°°°°

X
=1



°°°°°  kk+  (16.5)

Then, as verified below, (()

=1)∈N is a bounded sequence. Suppose otherwise; then, since by

assumption, for any  ∈ {1 } and any  ∈ N,  ≥ 0, we have that there exists ∗ ∈ {1 }
such that ∗ → +∞. Then,

lim
→+∞

°°°°°
X
=1



°°°°° = lim
→+∞

X
=1

 kk = +∞

violating (165).

Then, up to a subsequence,

 := ()

=1 → e ∈ R+  (16.6)

Then,
X
=1


 →

X
=1

e (163)= 

and, then, from (166),  ∈ , as desired.

End of the Proof of Claim 1.

Suppose now our Claim is false, i.e.,  ∈ . We can then apply Corollary 669 to conclude that

there exist  ∈ R\ {0} and  ∈ R such that

∀ ∈       (16.7)

From (161), 0 ∈  and then from (167), we have

∀ ∈      0 (16.8)
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Claim 2.

∀ ∈   ≤ 0
Proof of Claim 2.

Suppose otherwise, i.e., ∃∗ ∈  such that

∗  0

From (162), and the fact that ∗ ∈ , we have that for any  ≥ 0, ∗ ∈ . Then, from (167),

we get

∀ ≥ 0   ∗ =
(≥0)


(0)

(∗)  0

which is clearly false: if  = 2 
∗  0, we get   2 

∗ 
∗, i.e., 1  2.

End of the Proof of Claim 2.

Summarizing, we have shown that

∃ ∈ R\ {0} such that ∀ ∈   ≤ 0 and   0

Since 1 2   ∈ , we have that

1 ≤ 0   ≤ 0 and   0

contradicting the assumption.

Proposition 677 (A version of Farkas Lemma) Given  ∈M(),  ∈ R,
either 1. ∃ ∈ R such that  ≤ 0 and   0,

or 2. ∃ ∈ R such that  =  and  ≥ 0
but not both.

Proof. We want to show that either

1. ⎧⎨⎩  ≤ 0

  0

(16.9)

has a solution, or

2. ⎧⎨⎩  = 

 ≥ 0
(16.10)

has a solution, but not both.

Claim. It suffices to show

a. (¬1)⇒ 2

b. 2⇒ (¬1) 
Proof of the Claim.

Indeed, a. ⇔ (¬2)⇒ 1 and b. ⇔ 1⇒ (¬2)  Therefore, showing a. and b. implies showing
(¬1)⇔ 2, and (¬2)⇔ 1 (16.11)

Observe also that we have that 1∨2. Suppose otherwise, i.e., (¬1)∧ (¬2). But (¬1) and (1611)
imply 2, a contradiction.

End of the proof of the Claim.

We are now left with showing a. and b.

a. Suppose that (169) has a no solution. Then  ≤ 0 implies that  ≤ 0. Then from

Proposition 676, identifying  with  (), the −  row of , and  with , we have that

∃ := ()=1 ∈ R+ such that  = 

i.e.,  is a solution to (1610).

b. By assumption, there exists  ∈ R+ such that  = . Then, taken  ∈ R, we also have
 = . Now if   0, since  ≥ 0, we have that ∃ ∈ {1 } such that  () ·   0, and

therefore (169) has no solution.
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Chapter 17

Concave functions

Consider1 a set  ⊆ R, a set Π ⊆ R and the functions  :  × Π → R  :  × Π → R  :
 ×Π→ R The goal of this Chapter is to study the problem:
for given    and for given  ∈ Π,

max
∈

 ( )   ( ) ≥ 0   ( ) = 0

under suitable assumptions. The role of concavity (and differentiability) of the functions  ,

and  is crucial.

In what follows, unless needed, we omit the depends on .

17.1 Different Kinds of Concave Functions

Maintained Assumptions in this Chapter. Unless otherwise stated,

 is an open and convex subset of R.

 is a function such that

 :  → R :  7→  () 

For each type of concavity we study, we present

1. the definition in the case in which  is 0 (i.e., continuous),

2. an attempt of a “partial characterization” of that definition in the case in which  is 1 and

2; by partial characterization, we mean a statement which is either sufficient or necessary for the

concept presented in the case of continuous  ;

3. the relationship between the different partial characterizations;

4. the relationship between the type of concavity and critical points and local or global extrema

of  .

Finally, we study the relationship between different kinds of concavities.

The following pictures are taken from David Cass’s Microeconomic Course I followed at the

University of Pennsylvania (in 1985) and summarize points 1., 2. and 3. above.

1This part is based on Cass (1991).
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17.1.1 Concave Functions.

Definition 678 Consider a 0 function  .  is concave iff ∀ 0 00 ∈  ∀  ∈ [0 1],
((1− )0 + 00) ≥ (1− ) (0) + (00)

Proposition 679 Consider a 0 function  .

 is concave

⇔
 = {( ) ∈  ×R :  ≤ () } is convex.
Proof.

[⇒]
Take (0 0)  (00 00) ∈ We want to show that

∀  ∈ [0 1]  ((1− )0 + 00 (1− ) 0 + 00) ∈

But, from the definition of  we get that

(1− )0 + 00 ≤ (1− )(0) + (00) ≤ ((1− )0 + 00)

[⇐]
From the definition of  ∀0 00 ∈   (0  (0)) ∈ and (00 (00)) ∈

Since  is convex,

((1− )0 + 00 (1− )  (0) + (00)) ∈

and from the definition of 

(1− )  (0) + (00) ≤ (0 + (1− )00)

as desired.

Proposition 680 (Some properties of concave functions).

1. If   :  → R are concave functions and   ∈ R+, then the function  +  :  → R
 +  :  7→  () +  () is a concave function.

2. If  :  → R is a concave function and  : → R , with  ⊇   , is nondecreasing and

concave, then  ◦  is a concave function.
Proof.

1. This result follows by a direct application of the definition.

2. Let 0 00 ∈  and  ∈ [0 1]  Then

( ◦ ) ((1− )0 + 00)
(1)

≥  ((1− )  (0) +  (00))
(2)

≥ (1− ) · ( ◦ ) (0) +  · ( ◦ ) (00) 
where (1) comes from the fact that  is concave and  is non decreasing, and

(2) comes from the fact that  is concave.

Remark 681 (from Sydsæter (1981)). With the notation of part 2 of the above Proposition, the

assumption that  is concave cannot be dropped, as the following example shows. Take   :

R++ → R++,  () =
√
 and  () = 3 Then  is concave and  is strictly increasing, but

 ◦  () = 
3
2 and its second derivative is 3

4
−

1
2  0. Then, from Calculus I, we know that  ◦ 

is strictly convex and therefore it is not concave.

Of course, the monotonicity assumption cannot be dispensed either. Consider  () = −2 and
 () = −Then, ( ◦ ) () = 2, which is not concave.

Proposition 682 Consider a differentiable function  .

 is concave

⇔
∀0 00 ∈  (00)− (0) ≤ (0)(00 − 0)
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Proof.

[⇒]
From the definition of concavity, we have that for  ∈ (0 1) 

(1− ) (0) + (00) ≤ (0 +  (00 − 0)) ⇒

 ( (00)−  (0)) ≤  (0 +  (00 − 0))− (0) ⇒

(00)− (0) ≤ (0+(00−0))−(0)




Taking limits of both sides of the lasts inequality for → 0 we get the desired result.

[⇐]
Consider 0 00 ∈  and  ∈ (0 1). For  ∈ {0 1}  the desired result is clearly true. Since  is

convex  := (1− )0 + 00 ∈ . By assumption,

(00)− (


) ≤ ()(00 − ) and

(0)− () ≤ ()(
0 − )

Multiplying the first expression by , the second one by (1− ) and summing up, we get

((00)− ()) + (1− )((0)− ()) ≤ ()((00 − ) + (1− )(0 − ))

Since

(00 − ) + (1− ) (0 − ) =  −  = 0

we get

(00) + (1− ) (0) ≤ ()

i.e., the desired result.

Definition 683 Given a symmetric matrix ×,  is negative semidefinite if ∀ ∈ R,  ≤ 0.
 is negative definite if ∀ ∈ R\ {0},   0.

Proposition 684 Consider a 2 function  .

 is concave

⇔
∀ ∈  2() is negative semidefinite.

Proof.

[⇒]
We want to show that ∀ ∈ R ∀0 ∈ , it is the case that 2(0) ≤ 0 Since  is open,

∀ 0 ∈  ∃  ∈ R++ such that ||  ⇒ (0 + ) ∈  . Taken  := (− ) ⊆ R, define

 :  → R  :  7→ (0 + )− (0)−(0)

Observe that

0 () = (0 + ) · +(0) · 
and

00 () =  ·2(0 + ) · 
Since  is a concave function, from Proposition 682, we have that ∀  ∈  () ≤ 0 Since

(0) = 0  = 0 is a maximum point. Then, 
0
(0) = 0 and

00(0) ≤ 0 (1) 

Moreover, ∀ ∈  
0
() = (0 + )−(0) and 00() = 2(0 + ) Then,

00(0) =  ·2(0) ·  (2) 
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(1) and (2) give the desired result.

[⇐]
Consider  0 ∈  From Taylor’s Theorem (see Proposition 644), we get

() = (0) +(0)(− 0) +
1

2

¡
− 0

¢
2()(− 0)

where  = 0+(−0) for some  ∈ (0 1)  Since, by assumption, ¡− 0
¢

2()(−0) ≤ 0
we have that

()− (0) ≤ (0)(− 0)

the desired result.

Some Properties.

Proposition 685 Consider a concave function  . If 0 is a local maximum point, then it is a

global maximum point.

Proof.

By definition of local maximum point, we know that ∃  0 such that ∀ ∈  (0 )   (0) ≥
 ()  Take  ∈ ; we want to show that 

¡
0
¢ ≥  () 

Since  is convex,

∀ ∈ [0 1]  (1− )0 +  ∈ 

Take 0  0 and sufficiently small to have
¡
1− 0

¢
0 + 0 ∈ (0 ) To find such 0 just solve

the inequality
°°¡1− 0

¢
0 + 0 − 0

°° = °°0 ¡ − 0
¢°° = ¯̄

0
¯̄ °°¡ − 0

¢°°   where, without

loss of generality,  6= 0.

Then,


¡
0
¢ ≥ 

¡¡
1− 0

¢
0 + 0

¢  concave≥ ¡
1− 0

¢
(0) + 0()

or 0(0) ≥ 0() Dividing both sides of the inequality by 0  0 we get (0) ≥ ()

Proposition 686 Consider a differentiable and concave function  . If (0) = 0, then 0 is a

global maximum point.

Proof.

From Proposition 682, if (0) = 0 we get that ∀  ∈  
¡
0
¢ ≥ (), the desired result.

17.1.2 Strictly Concave Functions.

Definition 687 Consider a 0 function  .  is strictly concave iff ∀ 0 00 ∈  such that

0 6= 00 ∀  ∈ (0 1),
((1− )0 + 00)  (1− ) (0) + (00)

Proposition 688 Consider a 1 function  .

 is strictly concave

⇔ ∀0 00 ∈  such that 0 6= 00

(00)− (0)  (0)(00 − 0)

Proof.

[⇒]
Since strict concavity implies concavity, it is the case that

∀0 00 ∈   (00)− (0) ≤ (0)(00 − 0) (17.1)

By contradiction, suppose  is not strictly concave. Then, from 17.1, we have that
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∃ 0 00 ∈  0 6= 00 such that (00) = (0) +(0)(00 − 0) (17.2)

From the definition of strict concavity and 17.2, for  ∈ (0 1) 

((1− )0 + 00)  (1− ) (0) + (0) + (0)(00 − 0)

or

((1− )0 + 00)  (0) + (0)(00 − 0) (17.3)

Applying 17.1 to the points  () := (1− )0 + 00 and 0 we get that for  ∈ (0 1) 

((1− )0 + 00) ≤ (0) +(0)((1− )0 + 00 − 0)

or

((1− )0 + 00) ≤ (0) + (0)(00 − 0) (17.4)

And 17.4 contradicts 17.3.

[⇐] The proof is very similar to that one in Proposition 679.

Proposition 689 Consider a 2 function  . If

∀ ∈  2() is negative definite,

then  is strictly concave.

Proof.

The proof is similar to that of Proposition 684.

Remark 690 In the above Proposition, the opposite implication does not hold. The standard coun-

terexample is  : R→ R  :  7→ −4

Some Properties.

Proposition 691 Consider a strictly concave, 0 function  If 0 is a local maximum point, then

it is a strict global maximum point, i.e., the unique global maximum point.

Proof.

First, we show that a. it is a global maximum point, and then b. the desired result.

a. It follows from the fact that strict concavity is stronger than concavity and from Proposition

685.

b. Suppose otherwise, i.e., ∃0 0 ∈  such that 0 6= 0 and both of them are global maximum

points. Then, ∀ ∈ (0 1)  (1− )0 + 0 ∈  since  is convex, and


¡
(1− )0 + 0

¢
 (1− )  (0) + 

¡
0
¢
=  (0) = 

¡
0
¢


a contradiction.

Proposition 692 Consider a strictly concave, differentiable function  . If 
¡
0
¢
= 0 then 0

is a strict global maximum point.

Proof.

Take an arbitrary  ∈  such that  6= 0 Then from Proposition 688, we have that () 

(0) +(0)(− 0) = 
¡
0
¢
 the desired result.
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17.1.3 Quasi-Concave Functions.

Definitions.

Definition 693 Consider a 0 function  .  is quasi-concave iff ∀0 00 ∈  ∀  ∈ [0 1],

((1− )0 + 00) ≥ min { (0)  (00)} 

Proposition 694 If  :  → R is a quasi-concave function and  : R → R is non decreasing,

then  ◦  is a quasi-concave function.

Proof.

Without loss of generality, assume

 (00) ≥  (0) (1) 

Then, since  is quasi-concave, we have

((1− )0 + 00) ≥  (0) (2) 

Then,

 ( ((1− )0 + 00))
()

≥  ( (0))
()
= min { ( (0))   ( (00))} 

where () comes from (2) and the fact that  is nondecreasing, and

() comes from (1) and the fact that  is nondecreasing.

Proposition 695 Consider a 0 function  .  is quasi-concave ⇔
∀ ∈ R  () := { ∈  : () ≥  } is convex.

Proof.

[⇒] [Strategy: write what you want to show].
We want to show that ∀ ∈ R and ∀ ∈ [0 1], we have that

h0 00 ∈  ()i⇒ h(1− )0 + 00 ∈  ()i 
i.e.,

h (0) ≥  and  (00) ≥ i⇒ h ((1− )0 + 00) ≥ i 
But by Assumption,

((1− )0 + 00) ≥ min { (0)  (00)}
def 000

≥ 

[⇐]
Consider arbitrary 0 00 ∈ . Define  := min { (0)  (00)}. Then 0 00 ∈  ()  By

assumption, ∀  ∈ [0 1], (1− )0 + 00 ∈  ()  i.e.,

((1− )0 + 00) ≥  := min { (0)  (00)} 

Proposition 696 Consider a differentiable function  .  is quasi-concave ⇔ ∀0 00 ∈ 

(00)− (0) ≥ 0 ⇒ (0)(00 − 0) ≥ 0
Proof.

[⇒] [Strategy: Use the definition of directional derivative.]
Take 0 00 such that  (00) ≥  (0)  By assumption,

 ((1− )0 + 00) ≥ min { (0)  (00)} =  (0)
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and

 ((1− )0 + 00)−  (0) ≥ 0
Dividing both sides of the above inequality by   0, and taking limits for → 0+ we get

lim
→0+

 (0 +  (00 − 0))−  (0)


= (0)(00 − 0) ≥ 0

[⇐]
Without loss of generality, take

 (0) = min { (0)   (00)} (1) 

Define

 : [0 1]→ R  :  7→  ((1− )0 + 00) 

We want to show that

∀ ∈ [0 1]   () ≥  (0) 

Suppose otherwise, i.e., ∃ ∗ ∈ [0 1] such that  (∗)   (0). Observe that in fact it cannot be

∗ ∈ {0 1}: if ∗ = 0, we would have  (0)   (0), and if ∗ = 1, we would have  (1)   (0), i.e.,

 (00)   (0), contradicting (1). Then, we have that

∃∗ ∈ (0 1) such that  (∗)   (0) (2) 

Observe that from (1)  we also have that

 (1) ≥  (0) (3) 

Therefore, see Lemma 697, ∃ ∗∗  ∗ such that

0 (∗∗)  0 (4)  and

 (∗∗)   (0) (5) 

From (4)  and using the definition of 0, and the Chain Rule,2 we get

0  0 (∗∗) = [ ((1− ∗∗)0 + ∗∗00)] (00 − 0) (6) 

Define ∗∗ := (1− ∗∗)0 + ∗∗00 From (5)  and the assumption, we get that

 (∗∗)   (0) 

Therefore, by assumption,

0 ≤  (∗∗) (0 − ∗∗) =  (∗∗) (−∗∗) (00 − 0) 

i.e.,

[ (∗∗)] (00 − 0) ≤ 0 (7) 

But (7) contradicts (6) 

Lemma 697 Consider a function  : [ ]→ R with the following properties:

1.  is differentiable on ( ) ;

2. there exists  ∈ ( ) such that  () ≥  ()   () 

Then, ∃  ∈ ( ) such that 0 ()  0 and  ()   () 

2Defined  : [0 1] →  ⊆ R  7→ (1− )0 + 00, we have that  =  ◦ . Therefore, 0 (∗) =  ( (∗)) ·
 (∗).
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Proof.

Without loss of generality and to simplify notation, assume  () = 0Define := { ∈ [ ] :  () = 0} 
Observe that  = [ ] ∩ −1 (0) is closed; and it is non empty, because  is continuous and by

assumption  ()  0 and  () ≥ 0
Therefore,  is compact, and we can define  := min

Claim.  ∈ [ )⇒  ()  0

Suppose not, i.e., ∃ ∈ ( ) such that  () ≥ 0 If  () = 0  could not be min If  ()  0
since  ()  0 and  is continuous, there exists 0 ∈ ( ) ⊆ ( )  again contradicting the definition
of  End of the proof of the Claim.

Finally, applying Lagrange Theorem to  on [ ], we have that ∃ ∈ ( ) such that 0 () =
()−()

− . Since  () = 0 and  ()  0, we have that 0 ()  0 From the above Claim, the desired

result then follows.

Proposition 698 Consider a 2 function  . If  is quasi-concave then

∀ ∈ ∀∆ ∈ R such that  () ·∆ = 0 ∆2()∆ ≤ 0

Proof.

for another proof- see Laura’ s file

Suppose otherwise, i.e., ∃  ∈  and ∃∆ ∈ Rn such that ()·∆ = 0 and∆2
¡
0
¢
∆  0

Since the function  :  → ,  :  7→ ∆2()∆ is continuous and  is open, ∀ ∈
[0 1]  ∃  0 such that if k − 0 k   then

∆ ·2
¡
+ (1− )0

¢ ·∆  0 (1) 

Define  := 0 +  ∆
k∆k  with 0      Then,

k− 0k = k ∆k∆kk =   

and  satisfies (1). Observe that

∆ =
k ∆ k


(− 0)

Then, we can rewrite (1) as¡
− 0

¢
2

¡
+ (1− )0

¢ ¡
− 0

¢
 0

From Taylor Theorem, ∃ ∈ (0 1) such that

() = (0) + (− 0)
¡
0
¢
+
1

2
(− 0)2(+ (1− )0)(− 0)

Since (0)∆ = 0 and from (1)  we have

()  (0) (2)

Letting e = 0 + (−∆k∆ k) using the same procedure as above, we can conclude that

(e)  (0) (3)

But, since 0 = 1
2
(+ e) (2) and (3) contradict the Definition of quasi-concavity.

Remark 699 In the above Proposition, the opposite implication does not hold. Consider  : R→
R  :  7→ 4From Proposition 695, that function is clearly not quasi-concave. Take   0. Then

 () =
©
 ∈ R : 4 ≥ 

ª
= (−∞−√) ∪ (√+∞) which is not convex.

On the other hand observe the following.  0 () = 43 and 43∆ = 0 if either  = 0 or ∆ = 0
In both cases ∆122∆ = 0 (This is example is taken from Avriel M. and others (1988), page 91).
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Some Properties.

Remark 700 Consider a quasi concave function  . It is NOT the case that

if 0 is a local maximum point , then it is a global maximum point. To see that, consider the

following function.

 : R→ R  :  7→
½ −2 + 1    1

0   ≥ 1

2.51.250-1.25-2.5

1.25

0

-1.25

-2.5

x

y

x

y

Proposition 701 Consider a 0 quasi-concave function  . If 0 is a strict local maximum point,

then it is a strict global maximum point.

Proof.

By assumption, ∃  0 such that if  ∈  (0 ) ∩ and 0 6=  then  (0)   () 

Suppose the conclusion of the Proposition is false; then ∃0 ∈  such that  (0) ≥  (0) 

Since  is quasi-concave,

∀ ∈ [0 1]   ((1− )0 + 0) ≥  (0)  (1)

For sufficiently small  (1− )0 + 0 ∈  (0 ) and (1) above holds, contradicting the fact

that 0 is the strict local maximum point.

Proposition 702 Consider  : ( )→ R  monotone ⇒  quasi-concave.

Proof.

Without loss of generality, take 00 ≥ 0.
Case 1.  is increasing. Then  (00) ≥  (0)  If  ∈ [0 1], then (1− )0 + 00 = 0 +

 (00 − 0) ≥ 0 and therefore  ((1− )0 + 00) ≥  (0).
Case 2.  is decreasing. Then  (00) ≤  (0)  If  ∈ [0 1], then (1− )0 + 00 = (1− )0 −

(1− )00 + 00 = 00 − (1− ) (00 − 0) ≤ 00and therefore  ((1− )0 + 00) ≥  (00) 

Remark 703 The following statement is false: If 1 and 2 are quasi-concave and   ∈ R+, then
1 + 2 is quasi-concave.

It is enough to consider 1 2 : R→ R, 1 () = 3 + , and 2 () = −4. Since  01  0, then
1 and, of course, 2 are monotone and then, from Proposition 702, they are quasi-concave. On the

other hand,  () = 1 () + 2 () = 3 −  has a strict local maximum in  = −1which is not a
strict global maximum, and therefore, from Proposition 701,  is not quasi-concave.

3 − 3
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2.51.250-1.25-2.5

20

10

0

-10

-20

x

y

x

y

Remark 704 Consider a differentiable quasi-concave function  . It is NOT the case that

if (0) = 0, then 0 is a global maximum point.

Just consider  : R→ R  :  7→ 3 and 0 = 0 and use Proposition 702.

17.1.4 Strictly Quasi-concave Functions.

Definitions.

Definition 705 Consider a 0 function  .  is strictly quasi-concave

iff ∀ 0 00 ∈  such that 0 6= 00 and ∀  ∈ (0 1), we have that

((1− )0 + 00)  min { (0)  (00)} 

Proposition 706 Consider a 0 function  .  is strictly quasi-concave ⇒ ∀ ∈ R  () :=

{ ∈  : () ≥  } is strictly convex.

Proof.

Taken an arbitrary  and 0 00 ∈ (), with 0 6= 00, we want to show that ∀ ∈ (0 1), we
have that

 := (1− )0 + 00 ∈   ()

Since  is strictly quasi-concave,


¡

¢
 min { (0)  (00)} ≥ 

Since  is 0, there exists   0 such that ∀ ∈ 
¡
 

¢
 ()  

i.e., 
¡
 

¢ ⊆  (), as desired. Of course, we are using the fact that { ∈  : ()   } ⊆
 ().

Remark 707 Observe that in Proposition 706, the opposite implication does not hold true: just

consider  : R→ R  :  7→ 1.

Observe that ∀ ≤ 1,  () = R, and ∀  1,  () = ∅ On the other hand,  is not strictly
quasi-concave.
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Definition 708 Consider a differentiable function  .  is differentiable-strictly-quasi-concave iff

∀ 0 00 ∈  such that 0 6= 00 we have that

(00)− (0) ≥ 0 ⇒ (0)(00 − 0)  0

Proposition 709 Consider a differentiable function  .

If  is differentiable-strictly-quasi-concave, then  is strictly quasi-concave.

Proof.

The proof is analogous to the case of quasi concave functions.

Remark 710 Given a differentiable function, it is not the case that strict-quasi-concavity implies

differentiable-strict-quasi-concavity.

 : R → R  :  7→ 3 a. is differentiable and strictly quasi concave and b. it is not

differentiable-strictly-quasi-concave.

a.  is strictly increasing and therefore strictly quasi concave - see Fact below.

b. Take 0 = 0 and 00 = 1 Then  (1) = 1  0 =  (0)  But  (0) (00 − 0) = 0 · 1 = 0 ≯ 0

Remark 711 If we restrict the class of differentiable functions to whose with non-zero gradients

everywhere in the domain, then differentiable-strict-quasi-concavity and strict-quasi-concavity are

equivalent (see Balasko (1988), Math. 7.2.).

Fact. Consider  : ( )→ R.  strictly monotone ⇒  strictly quasi concave.

Proof.

By assumption, 0 6= 00, say 0  00 implies that  (0)   (00) (or  (0)   (00)). If
 ∈ (0 1), then (1− )0 + 00  0 and therefore  ((1− )0 + 00)  min { (0)   (00)} 

Proposition 712 Consider a 2 function  . If

∀ ∈ ∀∆ ∈ R\ {0} we have that  ()∆ = 0⇒ ∆2()∆  0
®


then  is differentiable-strictly-quasi-concave.

Proof.

Suppose otherwise, i.e., there exist 0 00 ∈  such that

0 6= 00  (00) ≥  (0) and  (0) (00 − 0) ≤ 0

Since  is an open set, ∃ ∈ R++ such the following function is well defined:

 : [− 1]→ R  :  7→  ((1− )0 + 00) 

Since  is continuous, there exists  ∈ [0 1] which is a global minimum. We now proceed as
follows. Step 1.  ∈ {0 1}  Step 2.  is a strict local maximum point, a contradiction.

Preliminary observe that

0 () =  (0 +  (00 − 0)) · (00 − 0)

and

00 () = (00 − 0) ·2 (0 +  (00 − 0)) · (00 − 0) 

Step 1. If  (0) (00 − 0) = 0 then, by assumption,

(00 − 0) ·2 (0 +  (00 − 0)) · (00 − 0)  0

Therefore,  is a strict local maximum (see, for example, Theorem 13.10, page 378, in Apostol

(1974) ). Therefore, there exists ∗ ∈ R such that  (∗) =  (0 + ∗ (00 − 0))   (0) =  (0) 
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If

0 (0) =  (0) (00 − 0)  0

then there exists ∗∗ ∈ R such that

 (∗∗) =  (0 + ∗ (00 − 0))   (0) =  (0) 

Moreover,  (1) =  (00) ≥  (0)  In conclusion, neither  nor  can be global minimum
points for  on [0 1] 

Step 2. Since the global minimum point  ∈ (0 1)  we have that

0 = 0 () =  (0 +  (
00 − 0)) (00 − 0) 

Then, by assumption,

00 (0) = (00 − 0) ·2 (0 +  (
00 − 0)) · (00 − 0)  0

but then  is a strict local maximum point, a contradiction.

Remark 713 Differentiable-strict-quasi-concavity does not imply the condition presented in Propo-

sition 712.  : R → R  :  7→ −4 is differentiable-strictly-quasi-concave (in next section
we will show that strict-concavity implies differentiable-strict-quasi-concavity). On the other hand,

take ∗ = 0 Then  (∗) = 0 Therefore, for any ∆ ∈ R\ {0}  we have  (∗)∆ = 0 but

∆2 (∗)∆ = 0 ≮ 0

Some Properties.

Proposition 714 Consider a differentiable-strictly-quasi-concave function  .

∗ is a strict global maximum point ⇔  (∗) = 0

Proof.

[⇒] Obvious.
[⇐] From the contropositive of the definition of differentiable-strictly-quasi-concave function,

we have:

∀ ∗ 00 ∈  such that ∗ 6= 00 it is the case that (∗)(00−∗) ≤ 0⇒  (00)−  (∗)  0
or  (∗)   (00)  Since  (∗) = 0 then the desired result follows.

Remark 715 Obviously, we also have that if  is differentaible-strictly-quasi-concave, it is the case

that:

∗ local maximum point ⇒ ∗ is a strict maximum point.

Remark 716 The above implication is true also for continuous strictly quasi concave functions.

(Suppose otherwise, i.e., ∃ 0 ∈  such that  (0) ≥  (∗). Since  is strictly quasi-concave,

∀ ∈ (0 1),  ((1− )∗ + 0)   (∗), which for sufficiently small  contradicts the fact that ∗

is a local maximum point.

Is there a definition of ?−concavity weaker than concavity and such that:
If  is a ?−concave function, then
∗ is a global maximum point iff  (∗) = 0
The answer is given in the next section.

17.1.5 Pseudo-concave Functions.

Definition 717 Consider a differentiable function  .  is pseudo-concave iff

∀0 00 ∈   (00)   (0)⇒  (0) (00 − 0)  0

or

∀0 00 ∈   (0) (00 − 0) ≤ 0⇒  (00) ≤  (0) 
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Proposition 718 If  is a pseudo-concave function, then

∗ is a global maximum point ⇔  (∗) = 0

Proof.

[⇒] Obvious.
[⇐]  (∗) = 0⇒ ∀ ∈   (∗) (− ∗) ≤ 0⇒  () ≤  (∗) 

Remark 719 Observe that the following “definition of pseudo-concavity” will not be useful:

∀0 00 ∈   (0) (00 − 0) ≥ 0⇒  (00) ≤  (0) (17.5)

For such a definition the above Proposition would still apply, but it is not weaker than concavity.

Simply consider the function  : R → R  :  7→ −2. That function is concave, but it does not
satisfy condition (17.5). Take 0 = −2 and 00 = −1. Then,  0 (0) (00 − 0) = 4 (−1− (−2)) =
4  0, but  (00) = −1   (0) = −4.
We summarize some of the results of this subsection in the following tables.

Class of function Fundamental properties

C ⇒ G max L max ⇒ G max
Uniqueness

of G. max

Strictly concave Yes Yes Yes

Concave Yes Yes No

Diff.ble-str.-q.-conc. Yes Yes Yes

Pseudoconcave Yes Yes No

Quasiconcave No No No

where C stands for property of being a critical point, and L and G stand for local and global,

respectively. Observe that the first, the second and the last row of the second column apply to the

case of 0 and not necessarily differentiable functions.

17.2 Relationships among Different Kinds of Concavity

The relationships among different definitions of concavity in the case of differentiable functions are

summarized in the following table.

strict concavity

⇓ &
linearity ⇒ affinity ⇒ concavity

⇓
pseudo-concavity ⇐ differentiable-strict-quasi-concavity

⇓
quasi-concavity

All the implications which are not implied by those explicitly written do not hold true.

In what follows, we prove the truth of each implication described in the table and we explain

why the other implications do no hold.

Recall that

1.  : R → R is a linear function iff ∀0 00 ∈ R ∀  ∈ R  (0 + 00) =  (0)+  (00);
2.  : R → R is an affine function iff there exists a linear function  : R → R and  ∈ R

such that ∀ ∈ R,  () =  () + .

 ⇒ 

Obvious (“  ⇒  ≥ ”).
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 ⇒ 

From the assumption and from Proposition 682, we have that  (00)− (0) ≤  (0) (00 − 0) 
Then  (00)−  (0)  0⇒  (0) (00 − 0)  0

 ⇒ 

Suppose otherwise, i.e., ∃ 0 00 ∈  and ∃∗ [0 1] such that
 ((1− ∗)0 + ∗00)  min { (0)   (00)} 

Define  () := (1− )0 + 00 Consider the segment  (0 00) joining 0 to 00 Take  ∈
argmin  ( ())   ∈ [0 1]   is well defined from the Extreme Value Theorem. Observe that

 6= 0 1 because  ( (∗))  min { ( (0)) =  (0)   ( (1)) =  (00)} 
Therefore, ∀ ∈ [0 1] and ∀ ∈ (0 1) 

¡

¡

¢¢ ≤ 

¡
(1− )

¡

¢
+  ()

¢


(1− )
¡

¢
+  ()

↓
· · · · ·
↑ ↑ ↑ ↑
0  () 

¡

¢

00

Then,

∀ ∈ [0 1]  0 ≤ lim
→0+


¡
(1− )

¡

¢
+  ()

¢− 
¡

¡

¢¢


= 

¡

¡

¢¢ ¡

 ()− 
¡

¢¢


Taking  = 0 1 in the above expression, we get:


¡

¡

¢¢ ¡

0 − 
¡

¢¢ ≥ 0 (1)

and


¡

¡

¢¢ ¡

00 − 
¡

¢¢ ≥ 0 (2) 

Since

0 − 
¡

¢
= 0 − ¡1− 

¢
0 − 00 = − (00 − 0) (3) 

and

00 − 
¡

¢
= 00 − ¡1− 

¢
0 − 00 =

¡
1− 

¢
(00 − 0) (4) 

substituting (3) in (1)  and (4) in (2)  we get

(−)
− · £

¡

¡

¢¢ · (00 − 0)

¤ ≥ 0
and

(+)¡
1− 

¢ · £
¡

¡

¢¢ · (00 − 0)

¤ ≥ 0
Therefore,

0 = 
¡

¡

¢¢ · (00 − 0) = 

¡

¡

¢¢ · ¡1− 

¢ · (00 − 0)
(4)
=

= 
¡

¡

¢¢ · ¡00 − 

¡

¢¢


Then, by pseudo-concavity,

 (00) ≤ 
¡

¡

¢¢

(5) 

By assumption,

 ( (∗))   (00) (6) 
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(5) and (6) contradict the definition of 

 ⇒ 

Obvious.

 ⇒ 

Obvious.

 ⇒ 

Obvious.

 ; 

 : R→ R  :  7→ 

 ; 

 : R→ R  :  7→
½

0   ≤ 0
−

1

2    0

420-2-4

1

0.75

0.5

0.25

0

x

y

x

y

 is clearly nondecreasing and therefore, from Lemma 702, quasi-concave.

 is not pseudo-concave: 0   (−1)   (1) = 0 but

 0 (1) (−1− 1) = 0 · (−2) = 0

 ;  ,  ;  and  ; 

Take  : (1+∞)→ R  :  7→ 3

Take 0  00 Then  (00)   (0) Moreover,
(0)

 (0)
(0)

(00 − 0)  0 Therefore,  is  and

therefore . Since  00 ()  0  is strictly convex and therefore it is not concave and, a fortiori,
it is not strictly concave.

 ;  ,  ; 

Consider  : R→ R  :  7→ 1.  is clearly concave and , as well ( ∀0 00 ∈ R,  (0) (00 − 0) ≥
0). Moreover, any point in R is a critical point, but it is not the unique global maximum point.

Therefore, from Proposition 714,  is not differentiable - strictly - quasi - concave.

 ; 

If so, we would have  ⇒  ⇒ , contradicting the fact that  ; 

 ;  and  ; 

 : R→ R  :  7→ −2
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17.2.1 Hessians and Concavity.

In this subsection, we study the relation between submatrices of a matrix involving the Hessian

matrix of a 2 function and the concavity of that function.

Definition 720 Consider a matrix × Let 1 ≤  ≤ 

A −  order principal submatrix (minor) of  is the (determinant of the) square submatrix of

 obtained deleting (− ) rows and (− ) columns in the same position. Denote these matrices

by e


The  −  order leading principal submatrix (minor) of  is the (determinant of the) square

submatrix of  obtained deleting the last (− ) rows and the last (− ) columns. Denote these

matrices by 

Example 721 Consider

 =

⎡⎣ 11 12 13
21 22 23
31 32 33

⎤⎦ 
Then

e1
1 = 11 e2

1 = 22 e3
1 = 33 1 = e1

1 = 11;

e1
2 =

∙
11 12
21 22

¸
 e2

2 =

∙
11 13
31 33

¸
 e3

2 =

∙
22 23
32 33

¸


2 = e1
2 =

∙
11 12
21 22

¸
;

3 = e1
3 = 

Definition 722 Consider a 2 function  :  ⊆ R → R. The bordered Hessian of  is the

following matrix

 () =

∙
0  ()

[ ()]


2 ()

¸
(+1)×(+1)



Theorem 723 (Simon, (1985), Theorem 1.9.c, page 79 and Sydsaeter (1981), Theorem 5.17, page

259). Consider a 2 function  :  → R.
1. If ∀ ∈  ∀ ∈ {1  } 


¡
 − leading principal minor of 2 ()

¢
=  (−1) 

then  is strictly concave.

2. ∀ ∈  ∀ ∈ {1  } 


¡
non zero  − principal minor of 2 ()

¢
=  (−1) 

iff  is concave.

3. If  ≥ 2 and ∀ ∈  ∀ ∈ {3  + 1} 
 ( − leading principal minor of  ()) =  (−1)−1 
then  is pseudo concave and, therefore, quasi-concave.

4. If  is quasi-concave, then ∀ ∈  ∀ ∈ {2  + 1} 
 (non zero  − leading principal minors of  ()) =  (−1)−1

Remark 724 It can be proved that Conditions in part 1 and 2 of the above Theorem are sufficient

for 2 () being negative definite and equivalent to 2 () being negative semidefinite, respec-

tively.

Remark 725 (From Sydsaetter (1981), page 239) It is tempting to conjecture that a function  is

concave iff

∀ ∈ ∀ ∈ {1  }   ¡non zero  − leading principal minor of 2 ()
¢
=  (−1) 

(17.6)
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That conjecture is false. Consider

 : R3 → R  : (1 2 3) 7→ −22 + 23

Then  () = (0−22 23) and

2 () =

⎡⎣ 0 0 0

0 −2 0

0 0 2

⎤⎦
All the leading principal minors of the above matrix are , and therefore Condition 17.6 is

satisfied, but  is not a concave function. Take 0 = (0 0 0) and 00 (0 0 1). Then

∀ ∈ (0 1)   ((1− )0 + 00) = 2  (1− )  (0) +  (00) = 

Example 726 Consider  : R2++ → R  : ( ) 7→   with   ∈ R++. Observe that ∀ ( ) ∈
R2++  ( )  0. Verify that

1. if +   1, then  is strictly concave;

2. ∀  ∈ R++,  is quasi-concave;
3. +  ≤ 1 if and only if  is concave.

1.

 ( ) = −1 = 

 ( ) ;

 ( ) = −1 = 

 ( ) ;

2
 ( ) =  (− 1)−2 = (−1)

2
 ( ) ;

2
 ( ) =  ( − 1)−2 = (−1)

2
 ( ) ;

2
 ( ) = −1−1 = 




 ( ) 

2 ( ) =  ( )

"
(−1)

2










(−1)
2

#


a.
(−1)

2
 0⇔  ∈ (0 1).

b.
(−1)(−1)−22

22
= 1

22

¡
 ( − −  + 1)− 22

¢
=

= 1
22

 (1− − )  0
0⇔ +   1

In conclusion, if   ∈ (0 1) and +   1, then  is strictly concave.

2.

Observe that

 ( ) =  ( ( ))

where

 : R2++ → R ( ) 7→  ln+  ln 

 : R→ R  7→ 

Since  is strictly concave (why?) and therefore quasi-concave and  is strictly increasing, the

desired result follows from Proposition 694.

3.

Obvious from above results.
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Chapter 18

Maximization Problems

Let the following objects be given:

1. an open convex set  ⊆ R,  ∈ N;
2.  :  → R  :  → R,  :  → R,   ∈ N, with    at least differentiable.

The goal of this Chapter is to study the problem.

max∈  ()

  () ≥ 0 (1)

 () = 0 (2)

(18.1)

 is called objective function;  choice variable vector; (1) and (2) in (18.1) constraints; 

and  constraint functions;

 := { ∈  :  () ≥ 0 and  () = 0}
is the constraint set.

To solve the problem (18.1) means to describe the following set

{∗ ∈  : ∀ ∈   (∗) ≥  ()}
which is called solution set to problem (18.1) and it is also denoted by argmax (18.1). We will

proceed as follows.

1. We will analyze in detail the problem with inequality constraints, i.e.,

max∈  ()

  () ≥ 0 (1)

2. We will analyze in detail the problem with equality constraints, i.e.,

max∈  ()

  () = 0 (2)

3. We will describe how to solve the problem with both equality and inequality constraints, i.e.,

max∈  ()

  () ≥ 0 (1)

 () = 0 (2)

18.1 The case of inequality constraints: Kuhn-Tucker theo-

rems

Consider the open and convex set  ⊆ R and the differentiable functions  :  → R  :=¡

¢
=1

:  → R The problem we want to study is

max∈  ()   () ≥ 0 (18.2)

235
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Definition 727 The Kuhn-Tucker system (or conditions) associated with problem 18.2 is⎧⎪⎪⎨⎪⎪⎩
 () +  () = 0 (1)

 ≥ 0 (2)

 () ≥ 0 (3)

 () = 0 (4)

(18.3)

Equations (1) are called first order conditions; equations (2)  (3) and (4) are called complemen-

tary slackness conditions.

Remark 728 ( ) ∈  × R is a solution to Kuhn-Tucker system iff it is a solution to any of

the following systems:

1. ⎧⎪⎪⎨⎪⎪⎩
()


+
P

=1 
()


= 0   = 1   (1)

 ≥ 0   = 1  (2)

 () ≥ 0   = 1  (3)

 () = 0   = 1  (4)

2. ½
 () +  () = 0 (1)

min {   ()} = 0   = 1  (2)

Moreover, ( ) ∈  ×R is a solution to Kuhn-Tucker system iff it is a solution to

 () +  () = 0 (1)

and for each  = 1 , to one of the following conditions

either (   0 and  () = 0 )

or (  = 0  ()  0 )

or (  = 0  () = 0 )

Definition 729 Given ∗ ∈  we say that  is a binding constraint at ∗ if  (∗) = 0 Let

∗ (∗) := { ∈ {1 } :  (∗) = 0} 

∗ := ()∈∗(∗)  b := () ∈∗(∗)
and

∗ = #∗ (∗) 

Definition 730 ∗ ∈ R satisfies the constraint qualifications associated with problem 18.2 if it is

a solution to

max∈R  (∗)  ∗ (∗) (− ∗) ≥ 0 (18.4)

The above problem is obtained from 18.2

1. replacing  with ∗;

2. linearizing  and ∗ around ∗, i.e., substituting  and ∗ with  (∗)+ (∗) (− ∗) and
 (∗) + (∗) (− ∗), respectively;

3. dropping redundant terms, i.e., the term  (∗) in the objective function, and the term
∗ (∗) = 0 in the constraint.

Theorem 731 Suppose ∗ is a solution to problem 18.2 and to problem 18.4, then there exists

∗ ∈ R such that (∗ ∗) satisfies Kuhn-Tucker conditions.

The proof of the above theorem requires the following lemma.
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Lemma 732 (Farkas) Given a matrix × and a vector  ∈ R,
either 1. there exists  ∈ R+ such that  = ,

or 2. there exists  ∈ R such that  ≥ 0 and   0,
but not both.

Proof. It follows immediately from Proposition 677.

Proof. of Theorem 731

(main steps: 1. use the fact ∗ is a solution to problem 18.4; 2. apply Farkas Lemma; 3. choose

∗ = ( from Farkas  0)).

Since ∗ is a solution to problem 18.4, for any  ∈ R such that ∗ (∗) (− ∗) ≥ 0 it is the
case that  (∗)∗ ≥  (∗) or

∗ (∗) (− ∗) ≥ 0⇒ [− (∗)] (− ∗) ≥ 0 (18.5)

Applying Farkas Lemma identifying

 with − (∗)

and

 with ∗ (∗)

we have that either

1. there exists  ∈ R+ such that

− (∗) = ∗ (∗) (18.6)

or 2. there exists  ∈ R such that

∗ (∗)  ≥ 0 and − (∗)   0 (18.7)

but not both 1 and 2.

Choose  =  + ∗ and therefore you have  = − ∗. Then, 18.7 contradicts 18.5. Therefore,
1. above holds.

Now, choose ∗ := ( 0) ∈ R∗ ×R−∗ , we have that

 (∗) + ∗ (∗) =  (∗) + ( 0)
µ

∗ (∗)
b (∗)

¶
=  (∗) +  (∗) = 0

where the last equality follows from 18.6;

∗ ≥ 0 by Farkas Lemma;
 (∗) ≥ 0 from the assumption that ∗ solves problem 18.2;

∗ (∗) = ( 0)
µ

∗ (∗)b (∗)
¶
= ∗ () = 0, where the last equality follows from the definition

of ∗.

Theorem 733 If ∗ is a solution to problem (182) and

either for  = 1 ,  is pseudo-concave and ∃++ ∈  such that  (++)À 0,

or  ∗ (∗) = ∗ := #∗ (∗),
then ∗ solves problem (184) 

Proof. We prove the conclusion of the theorem under the first set of conditions.

Main steps: 1. suppose otherwise: ∃ e ... ; 2. use the two assumptions; 3. move from ∗ in the
direction  := (1− ) e+ ++.

Suppose that the conclusion of the theorem is false. Then there exists e ∈ R such that
∗ (∗) (e− ∗) ≥ 0 and  (∗) (e− ∗)  0 (18.8)

Moreover, from the definition of ∗ and ++, we have that

∗
¡
++

¢
 0 = ∗ (∗)
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Since for  = 1 ,  is pseudo-concave we have that

∗ (∗)
¡
++ − ∗

¢À 0 (18.9)

Define

 := (1− ) e+ ++

with  ∈ (0 1). Observe that

 − ∗ = (1− ) e+ ++ − (1− )∗ − ∗ = (1− ) (e− ∗) + 
¡
++ − ∗

¢
Therefore,

∗ (∗)
¡
 − ∗

¢
= (1− )∗ (∗) (e− ∗) + ∗ (∗)

¡
++ − ∗

¢À 0 (18.10)

where the last equality come from 18.8 and 18.9.

Moreover,

 (∗)
¡
 − ∗

¢
= (1− ) (∗) (e− ∗) +  (∗)

¡
++ − ∗

¢À 0 (18.11)

where the last equality come from 18.8 and a choice of  sufficiently small.1

Observe that from Remark 611, 18.10 and 18.11 we have that

(∗)0
¡
∗ 

¢À 0

and

 0
¡
∗ 

¢
 0

Therefore, using the fact that  is open, and that b (∗)À 0, there exists  such that

∗ + 
¡
 − ∗

¢ ∈ 

∗
¡
∗ + 

¡
 − ∗

¢¢À ∗ (∗) = 0
∗
¡
∗ + 

¡
 − ∗

¢¢
  (∗)b ¡∗ + 

¡
 − ∗

¢¢À 0

(18.12)

But then 18.12 contradicts the fact that ∗ solves problem (182).

From Theorems 731 and 733, we then get the following corollary.

Theorem 734 Suppose ∗ is a solution to problem 18.2, and one of the following constraint qual-

ifications hold:

a. for  = 1   is pseudo-concave and there exists 
++ ∈  such that  (++)À 0

b. rank∗ (∗) = #∗
Then there exists ∗ ∈ R such that (∗ ∗) solves the system 18.3.

Theorem 735 If  is pseudo-concave, and for  = 1   is quasi-concave, and (
∗ ∗) solves

the system 18.3, then ∗ solves problem 18.2.

Proof. Main steps: 1. suppose otherwise and use the fact that  is pseudo-concave; 2. for

 ∈ ∗ (∗), use the quasi-concavity of  ; 3. for  ∈ ∗ (∗), use (second part of) kuhn-Tucker
conditions; 4. Observe that 2. and 3. above contradict the first part of Kuhn-Tucker conditions.)

Suppose otherwise, i.e., there exists b ∈  such that

 (b) ≥ 0 and  (b)   (∗) (18.13)

1Assume that  ∈ (0 1),  ∈ R++ and  ∈ R. We want to show that there exist ∗ ∈ (0 1) such that
(1− )+   0

i.e.,

   (− )

If (− ) = 0, the claim is true.

If (− )  0, any   
− will work (observe that


−  0).

If (− )  0, the claim is clearly true because 0   and  (− )  0.
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From 18.13 and the fact that  pseudo-concave, we get

 (∗) (b− ∗)  0 (18.14)

From 18.13, the fact that ∗ (∗) = 0 and that  is quasi-concave, we get that

for  ∈ ∗ (∗)   (∗) (b− ∗) ≥ 0

and since ∗ ≥ 0,
for  ∈ ∗ (∗)  ∗ (∗) (b− ∗) ≥ 0 (18.15)

For  ∈ b (∗), from Kuhn-Tucker conditions, we have that  (∗)  0 and ∗ = 0, and therefore
for  ∈ b (∗)  ∗ (∗) (b− ∗) = 0 (18.16)

But then from 18.14, 18.15 and 18.16, we have

 (∗) (b− ∗) + ∗ (∗) (b− ∗)  0

contradicting Kuhn-Tucker conditions.

We can summarize the above results as follows. Call () the problem

max∈  ()   () ≥ 0 (18.17)

and define

 := argmax () (18.18)

 := { ∈  : ∃ ∈ R such that ( ) is a solution to Kuhn-Tucker system (183)} (18.19)

1. Assume that one of the following conditions hold:

(a) for  = 1   is pseudo-concave and there exists 
++ ∈  such that  (++)À 0

(b) rank∗ (∗) = #∗.
Then

∗ ∈ ⇒ ∗ ∈ 

2. Assume that both the following conditions hold:

(a)  is pseudo-concave, and

(b) for  = 1   is quasi-concave.

Then

∗ ∈  ⇒ ∗ ∈

18.1.1 On uniqueness of the solution

The following proposition is a useful tool to show uniqueness.

Proposition 736 The solution to problem

max∈  () s.t.  () ≥ 0 ( )

either does not exist or it is unique if one of the following conditions holds

1.  is strictly quasi-concave, and

for  ∈ {1 },  is quasi-concave;
2.  is quasi-concave and locally non-satiated (i.e., ∀ ∈ ∀  0 there exists 0 ∈  ( )

such that  (0)   () ), and

for  ∈ {1 },  is strictly quasi-concave.
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Proof. 1.

Since  is quasi concave 
 := { ∈  :  () ≥ 0} is convex. Since the intersection of convex

sets is convex  = ∩=1  is convex.

Suppose that both 0 and 00 are solutions to problem ( ) and 0 6= 00. Then for any  ∈ (0 1),

(1− )0 + 00 ∈  (18.20)

because  is convex, and

 ((1− )0 + 00)  min { (0)   (00)} =  (0) =  (00) (18.21)

because  is strictly-quasi-concave.

But (18.20) and (18.21) contradict the fact that 0 and 00 are solutions to problem ( ).

2.

Observe that  is strictly convex because each   is strictly convex. Suppose that both 0 and
00 are solutions to problem ( ) and 0 6= 00. Then for any  ∈ (0 1),

 () := (1− )0 + 00 ∈  

i.e., ∃  0 such that  ( ()  ) ⊆  . Since  is locally non-satiated, there exists 0 ∈
 ( ()  ) ⊆  such that

 (b)   ( ()) (18.22)

Since  is quasi-concave,

 ( ()) ≥  (0) =  (00) (18.23)

(18.22) and (18.23) contradict the fact that 0 and 00 are solutions to problem ( ).

Remark 737 1. If  is strictly increasing (i.e., ∀0 00 ∈  such that 0  00, we have that
 (0)   (00) ) or strictly decreasing, then  is locally non-satiated.

2. If  is affine and not constant, then  is quasi-concave and Locally NonSatiated.

Proof of 2.

 : R → R affine and not constant means that there exists  ∈ R and  ∈ R\ {0} such that
 :  7→ + . Take an arbitrary  and   0. For  ∈ {1  }, define  := 


· ( ) ande := + ()


=1, with  6= 0 and which will be computed below. Then

 (e) = + +
P

=1


||   ();

ke− k =
°° 

· (( ) · )=1

°° = 

·
°°°°qP

=1 ()
2

°°°° = 

· kk   if   1

kk 

Remark 738 In part 2 of the statement of the Proposition  has to be both quasi-concave and

Locally NonSatiated.

a. Example of  quasi-concave (and  strictly-quasi-concave) with more than one solution:

max
∈R

1  + 1 ≥ 0 1−  ≥ 0

The set of solution is [−1+1]
a. Example of  Locally NonSatiated (and  strictly-quasi-concave) with more than one solution:

max
∈R

2  + 1 ≥ 0 1−  ≥ 0

The set of solutions is {−1+1}.

18.2 The Case of Equality Constraints: Lagrange Theorem.

Consider the 1 functions

 :  → R  :  7→  () 

 :  → R  :  7→  () := ( ())


=1
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with  ≤  Consider also the following “”maximization problem:

( ) max∈  ()   () = 0 (18.24)

L :  ×R → R L : ( ) 7→  () +  ()

is called Lagrange function associated with problem (15.15).

We recall below the statement of Theorem 658.

Theorem 739 (Necessary Conditions)

Assume that rank [ (∗)] = 

Under the above condition, we have that

∗ is a local maximum for ( )

⇒
there exists ∗ ∈ R such that½

 (∗) + ∗ (∗) = 0
 (∗) = 0

(18.25)

Remark 740 The full rank condition in the above Theorem cannot be dispensed. The following

example shows a case in which ∗ is a solution to maximization problem (18.24),  (∗) does not
have full rank and there exists no ∗ satisfying Condition 18.25. Consider

max()∈R2   3 −  = 0

3 +  = 0

The constraint set is {(0 0)} and therefore the solution is just (∗ ∗) = (0 0). The Jacobian
matrix of the constraint function is∙

32 −1
32 1

¸
|(∗∗)

=

∙
0 −1
0 1

¸
which does have full rank.

(0 0) =  (∗ ∗) + (1 2) (∗ ∗) =

= (1 0) + (1 2)

∙
0 −1
0 1

¸
= (1−1 + 2) 

from which it follows that there exists no ∗ solving the above system.

Theorem 741 (Sufficient Conditions)

Assume that

1.  is pseudo-concave,

2. for  = 1   is quasi concave.

Under the above conditions, we have what follows.

[there exist (∗ ∗) ∈  ×R such that

3. ∗ ≥ 0
4.  (∗) + ∗ (∗) = 0 and
5.  (∗) = 0 ]
⇒
∗ solves ( ) 

Proof.

Suppose otherwise, i.e., there exists b ∈  such that

  = 1   (b) =  (
∗) = 0 (1)  and

 (b)   (∗) (2) 

Quasi-concavity of  and (1) imply that
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 (∗) (b− ∗) ≥ 0 (3) 

Pseudo concavity of  and (2) imply that

 (∗) (b− ∗)  0 (4) 

But then

0


= [ (∗) +  (∗)] (b− ∗) =
(0)

 (∗) (b− ∗) +
(≥0)


(≥0)
 (∗) (b− ∗)  0

a contradiction.

18.3 The Case of Both Equality and Inequality Constraints.

Consider

the open and convex set  ⊆ R and the differentiable functions  :  → R  :  → R  :
 → R
Consider the problem

max∈  ()   () ≥ 0

 () = 0
(18.26)

Observe that

 () = 0⇔

⇔ for  = 1    () = 0⇔

⇔ for  = 1   1 () :=  () ≥ 0 and 2 () := − () ≥ 0
Defined 1 () :=

¡
1 ()

¢
=1

and 2 () :=
¡
2 ()

¢
=1

 problem 18.26 with associated

multipliers can be rewritten as

max∈  ()   () ≥ 0 

1 () ≥ 0 1
2 () ≥ 0 2

(18.27)

The Lagrangian function of the above problem is

L (; 1 2) =  () +   () + (1 − 2)

 () =

=  () +

X
=1

 () +

X
=1

¡
1 − 2

¢
 () 

and the Kuhn-Tucker Conditions are:

 () +  () + (1 − 2)

 () = 0

 () ≥ 0  ≥ 0  () = 0 for  = 1 

 () = 0
¡
1 − 2

¢
:=  T 0 for  = 1  

(18.28)

Theorem 742 Assume that   and  are 2 functions and that

either 

∙
∗ (∗)
 (∗)

¸
= ∗ + 

or for  = 1  − is pseudoconcave, and ∀,  and − are pseudoconcave
Under the above conditions,

if ∗ solves 18.26, then ∃ (∗ ∗ ∗) ∈  ×R×R which satisfies the associated Kuhn-Tucker
conditions.



18.3. THE CASE OF BOTH EQUALITY AND INEQUALITY CONSTRAINTS. 243

Proof. The above conditions are called “Weak reverse convex constraint qualification” (Man-

gasarian (1969)) or “Reverse constraint qualification” (Bazaraa and Shetty (1976)). The needed

result is presented and proved in

Mangasarian2,- see 4, page 172 and Theorem 6, page 173, and Bazaraa and Shetty (1976) - see

7 page 148, and theorems 6.2.3, page 148 and Theorem 6.2.4, page 150.

See also El-Hodiri (1991), Theorem 1, page 48 and Simon (1985), Theorem 4.4. (iii), page 104.

Remark 743 For other conditions, see Theorem 5.8, page 124, in Jahn (1996).

Theorem 744 Assume that

 is pseudo-concave, and

for  = 1   is quasi-concave, and for  = 1    is quasi-concave and − is
quasi-concave.

Under the above conditions,

if (∗ ∗ ∗) ∈  × R × R satisfies the Kuhn-Tucker conditions associated with 18.26, then
∗ solves 18.26.

Proof.

This follows from Theorems proved in the case of inequality constraints.

Similarly, to what we have done in previous sections, we can summarize what said above as

follows.

Call (2) the problem

max∈  ()   () ≥ 0

 () = 0
(18.29)

and define

2 := argmax (2)

2 := { ∈  : ∃ ∈ R such that ( ) is a solution to Kuhn-Tucker system (1828)}

1. Assume that one of the following conditions hold:

(a) 

∙
∗ (∗)
 (∗)

¸
= ∗ + or

(b) for  = 1   is linear, and  () is affine.

Then

2 ⊆ 2

2. Assume that both the following conditions hold:

(a)  is pseudo-concave, and

(b) for  = 1   is quasi-concave, and for  = 1    is quasi-concave and − is
quasi-concave.

Then

2 ⊇ 2

2What Mangasarian calls a linear function is what we call an affine function.
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18.4 Main Steps to Solve a (Nice) Maximization Problem

We have studied the problem

max∈  ()   () ≥ 0 ()

which we call a maximization problem in the “canonical form”, i.e., a maximization problem

with constraints in the form of “≥”, and we have defined

 := argmax ()

 := { ∈  :  () ≥ 0}

 := { ∈  : ∃ ∈ R such that ( ) satisfies Kuhn-Tucker Conditions (183)}

Recall that  is an open, convex subset of R,  :  → R, ∀ ∈ {1 },  :  → R and
 := ()



=1
:  → R.

In many cases, we have to study the following problem

max


 ()   () ≥ 0 ( 0)

in which the set  is not specified.

We list the main steps to try to solve ( 0).
1. Canonical form.

Write the problem in the (in fact, our definition of) canonical form. Sometimes the problem

contains a parameter  ∈ Π an open subset of R. Then we should write: for given  ∈ Π

max


 ( )   ( ) ≥ 0

2. The set  and the functions  and .

a. Define the functions e , e naturally arising from the problem with domain equal to their

definition set, where the definition set of a function  is the largest set D which can be the domain

of that function.

b. Determine . A possible choice for  is the intersection of the “definition set” of each

function, , i.e.,

 = D ∩D1 ∩  ∩D

c. Check if  is open and convex.

d. To apply the analysis described in the previous sections, show, if possible, that  and  are

of class 2 or at least 1.

3. Existence.

Try to apply the Extreme Value Theorem. If  is at least 1, then  is continuous and therefore

we have to check if the constraint set  is non-empty and compact. Recall that a set  in R is
compact if and only if  is closed (in R) and bounded.
Boundedness has to be shown “brute force”, i.e., using the specific form of the maximization

problem.

If  = R, then  := { ∈  :  () ≥ 0} is closed, because of the following well-known argu-
ment:

 = ∩=1−1 ([0+∞)) ; since  is 2 (or at least 1) and therefore continuous, and [0+∞)
closed, −1 ([0+∞)) is closed in  = R; then  is closed because intersection of closed sets.

A problem may arise if  is an open proper subset of R. In that case the above argument
shows that  is a closed set in  6= R and therefore it is not necessarily closed in R. A possible
way out is the following one.

Verify that while the definition set of  is , the definition set of  is R If D = R, then from
the above argument e := { ∈ R : e () ≥ 0}
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is closed (in R). Observe that

 = e ∩

Then, we are left with showing that e ⊆  and therefore e ∩ = e and then

 = e
If e is compact,  is compact as well.3

4. Number of solutions.

See subsection 18.1.1. In fact, summarizing what said there, we know that the solution to (),

if any, is unique if

1.  is strictly-quasi-concave, and for  ∈ {1 },  is quasi-concave; or
2. for  ∈ {1 },  is strictly-quasi-concave and
either a.  is quasi-concave and locally non-satiated,

or b.  is affine and non-costant,

or c.  is quasi-concave and strictly monotone,

or d.  is quasi-concave and ∀ ∈ ,  ()  0,

or e.  is quasi-concave and ∀ ∈ ,  ()  0.

5. Necessity of K-T conditions.

Check if the conditions which insure that  ⊆  hold, i.e.,

either a. for  = 1   is pseudo-concave and there exists 
++ ∈  such that  (++)À 0,

or b. rank∗ (∗) = #∗.
If those conditions holds, each property we show it holds for elements of  does hold a fortiori

for elements of  .

6. Sufficiency of K-T conditions.

Check if the conditions which insure that  ⊇  hold, i.e., that

 is pseudo-concave and for  = 1   is quasi-concave.

If those conditions holds, each property we show it does not hold for elements of  does not

hold a fortiori for elements of  .

7. K-T conditions.

Write the Lagrangian function and then the Kuhn-Tucker conditions.

8. Solve the K-T conditions.

Try to solve the system of Kuhn-Tucker conditions in the unknown variables ( )  To do that;

either, analyze all cases,

or, try to get a “good conjecture” and check if the conjecture is correct.

Example 745 Discuss the problem

max(12)
1
2
log (1 + 1) +

1
3
log (1 + 2)  1 ≥ 0

2 ≥ 0

1 + 2 ≤ 

with   0

1. Canonical form.

For given  ∈ R++,

max(12)
1
2
log (1 + 1) +

1
3
log (1 + 2)  1 ≥ 0

2 ≥ 0

 − 1 − 2 ≥ 0

(18.30)

2. The set  and the functions  and .

3Observe that the above argument does not apply to che case in which

 =

 ∈ R2++ :  − 1 − 2 ≥ 0


:

in that case,

 =

 ∈ R2 :  − 1 − 2 ≥ 0


* R2++



246 CHAPTER 18. MAXIMIZATION PROBLEMS

a. e : (−1+∞)2 → R (1 2) 7→ 1
2
log (1 + 1) +

1
3
log (1 + 2)e1 : R2 → R (1 2) 7→ 1e2 : R2 → R (1 2) 7→ 2e3 : R2 → R (1 2) 7→  − 1 − 2

b.

 = (−1+∞)2

and therefore  and  are just e and e restricted to .

c.  is open and convex because Cartesian product of open intervals which are open, convex

sets.

d. Let’s try to compute the Hessian matrices of  1 2 3. Gradients are

 (1 2)  =
³

1
2(1+1)

 1
3(2+1)

´
e1 (1 2) = (1 0)

e2 (1 2) = (0 1)

e3 (1 2) = (−1−1)
Hessian matrices are

2 (1 2)  =

"
− 1
2(1+1)

2 0

0 − 1
3(2+1)

2

#
2e1 (1 2) = 0

2e2 (1 2) = 0

2e3 (1 2) = 0

In fact, 1 2 3 are affine functions. In conclusion,  and 1 2 3 are 
2. In fact, 1 and 2

are linear and 3 is affine.

3. Existence.

 is clearly bounded: ∀ ∈ ,

(0 0) ≤ (1 2) ≤ ()
In fact, the first two constraint simply say that (1 2) ≥ (0 0). Moreover, from the third constraint
1 ≤  − 2 ≤ , simply because 2 ≥ 0; similar argument can be used to show that 2 ≤ .

To show closedness, use the strategy proposed above.e := { ∈ R :  () ≥ 0}
is obviously closed. Since e ⊆ R2+, because of the first two constraints, e ⊆  := (−1+∞)2

and therefore  = e ∩ = e is closed.

We can then conclude that  is compact and therefore argmax (1830) 6= ∅.
4. Number of solutions.

From the analysis of the Hessian and using Theorem 723, parts 1 ad 2, we have that  is strictly

concave:

− 1

2 (1 + 1)
2
 0

det

"
− 1
2(1+1)

2 0

0 − 1
3(2+1)

2

#
=

1

2 (1 + 1)
2
· 1

3 (2 + 1)
2
 0

Moreover 1 2 3 are affine and therefore concave. From Proposition 736, part 1, the solution

is unique.

5. Necessity of K-T conditions.

Since each  is affine and therefore pseudo-concave, we are left with showing that there exists

++ ∈  such that  (++)  0. Just take
¡
++1  ++2

¢
= 

4
(1 1) :


4

 0

4

 0

 − 
4
− 

4
= 

2
 0
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Therefore

 ⊆ 

6. Sufficiency of K-T conditions.

 is strictly concave and therefore pseudo-concave, and each  is linear and therefore quasi-

concave. Therefore

 ⊇ 

7. K-T conditions.

L (1 2 1 2 ;) = 1

2
log (1 + 1) +

1

3
log (1 + 2) + 11 + 22 +  ( − 1 − 2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2(1+1)

+ 1 −  = 0
1

3(2+1)
+ 2 −  = 0

min {1 1} = 0

min {2 2} = 0

min { − 1 − 2 } = 0

8. Solve the K-T conditions.

Conjecture: 1  0 and therefore 1 = 0; 2  0 and therefore 2 = 0;  − 1 − 2 = 0The

Kuhn-Tucker system becomes: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2(1+1)

−  = 0
1

3(2+1)
−  = 0

 − 1 − 2 = 0

 ≥ 0

1  0 2  0

1 = 0 2 = 0

Then, ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2(1+1)

= 
1

3(2+1)
= 

 − 1 − 2 = 0

  0

1  0 2  0

1 = 0 2 = 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 = 1
2
− 1

2 = 1
3
− 1

 −
³
1
2
− 1
´
−
³
1
3
− 1
´

= 0

  0

1  0 2  0

1 = 0 2 = 0

0 =  −
³
1
2
− 1
´
−
³
1
3
− 1
´
=  − 5

6
+ 2; and  = 5

6(+2)
 0. Then 1 =

1
2
− 1 =

6(+2)

2·5 − 1 = 3+6−5
5

= 3+1
5

and 2 =
1
3
− 1 = 6(+2)

3·5 − 1 = 2+4−5
5

= 2−1
5
.

Summarizing ⎧⎪⎪⎨⎪⎪⎩
1 = 3+1

5
 0

2 = 2−1
5

 0

 = 5
6(+2)

 0

1 = 0 2 = 0

Observe that while 1  0 for any value of , 2  0iff   1
2
. Therefore, for  ∈ ¡0 1

2

¤
, the

above one is not a solution, and we have to come up with another conjecture;
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1 =  and therefore 1 = 0; 2 = 0 and 2 ≥ 0;  − 1 − 2 = 0 and  ≥ 0The Kuhn-Tucker
conditions become ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2(+1)

−  = 0
1
3
+ 2 −  = 0

1 = 0

2 = 0

2 ≥ 0

1 = 

 ≥ 0

and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

 = 1
2(+1)

 0

2 = 1
2(+1)

− 1
3
= 3−2−2

6(+1)
= 1−2

6(+1)

1 = 0

2 = 0

2 ≥ 0

1 = 

2 =
1−2
6(+1)

= 0 if  = 1
2
and .2 =

1−2
6(+1)

 0 if  ∈ ¡0 1
2

¢
Summarizing, the unique solution ∗ to the maximization problem is

if  ∈ ¡0 1
2

¢
 then ∗1 = , ∗1 = 0 and ∗2 = 0 ∗2  0

if  = 1
2
 then ∗1 = , ∗1 = 0 ∗2 = 0 ∗2 = 0

if  ∈ ¡1
2
+∞¢  then ∗1 =

3+1
5

 0 ∗1 = 0 and ∗2 =
2−1
5

 0 ∗2 = 0

The graph of ∗1 as a function of  is presented below (please, complete the picture)

21.510.50

1

0.75

0.5

0.25

0

w

x1

w

x1

The graph below shows constraint sets for different “important” values of  and some significant

level curve of the objective function.

 ∈ ¡0 1
2

¢
:

1.510.50-0.5-1

1.5

1

0.5

0

-0.5

-1

x1

x2

x1

x2

 = 1
2
:
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1.510.50-0.5-1

1.5

1

0.5

0

-0.5

-1

x1

x2

x1

x2

  1
2
:

1.510.50-0.5-1

1.5

1

0.5

0

-0.5

-1

x1

x2

x1

x2

Observe that in the example, we get that if ∗2 = 0, the associated constraint 2 ≥ 0 is not

significant. See Subsection 18.6.2, for a discussion of that statement.

Of course, several problems may arise in applying the above procedure. Below, we describe some

commonly encountered problems and some possible (partial) solutions.

18.4.1 Some problems and some solutions

1. The set 

 is not open.

Rewrite the problem in terms of an open set  0 and some added constraints. A standard

example is the following one.

max∈R+  ()   () ≥ 0
which can be rewritten as

max∈R  ()   () ≥ 0
 ≥ 0

2. Existence.

a. The constraint set is not compact. If the constraint set is not compact, it is sometimes

possible to find another maximization problem such that

i. its constraint set is compact and nonempty, and

ii. whose solution set is contained in the solution set of the problem we are analyzing.

A way to try to achieve both i. and ii. above is to “restrict the constraint set (to make it

compact) without eliminating the solution of the original problem”. Sometimes, a problem with
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the above properties is the following one.

max∈  ()   () ≥ 0 (1)

 ()−  (b) ≥ 0

where b is an element of  such that  (b) ≥ 0.
Observe that ( − cons) is an example of (1).

In fact, while, condition 1. above., i.e., the compactness of the constraint set of (1) depends

upon the specific characteristics of   and , condition ii. above is satisfied by problem (1), as

shown in detail below.

Define

 := argmax ( ) 1 := argmax (1)

and  and  1 the constraint sets of Problems ( ) and (1), respectively. Observe that

 1 ⊆  (18.31)

If  1 is compact, then1 6= ∅ and the only thing left to show is that 1 ⊆ , which is always

insured as proved below.

Proposition 746 1 ⊆ .

Proof. If 1 = ∅, we are done.
Suppose that 1 6= ∅, and that the conclusion of the Proposition is false, i.e., there exists

1 ∈1 such that

a. 1 ∈1, and b. 1 ∈ , or

a. ∀ ∈  such that  () ≥ 0 and  () ≥  (b), we have  ¡1¢ ≥  ();

and

b. either i. 1 ∈  ,

or ii. ∃e ∈  such that

 (e) ≥ 0 (18.32)

and

 (e)  
¡
1
¢

(18.33)

Let’s show that i. and ii. cannot hold.

i.

It cannot hold simply because  1 ⊆  , from 18.31.

ii.

Since 1 ∈  1,


¡
1
¢ ≥  (b) (18.34)

From (18.33) and (18.34), it follows that

 (e)   (b) (18.35)

But (18.32), (18.35) and (18.33) contradict the definition of 1, i.e., a. above

b. Existence without the Extreme Value Theorem If you are not able to show existence,

but

i. sufficient conditions to apply Kuhn-Tucker conditions hold, and

ii. you are able to find a solution to the Kuhn-Tucker conditions,

then a solution exists.
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18.5 The Implicit Function Theorem and Comparative Sta-

tics Analysis

The Implicit Function Theorem can be used to study how solutions ( ∈  ⊆ R) to maximizations
problems and, if needed, associated Lagrange or Kuhn-Tucker multipliers ( ∈ R) change when
parameters ( ∈ Π ⊆ R) change. That analysis can be done if the solutions to the maximization
problem (and the multipliers) are solution to a system of equation of the form

1 ( ) = 0

with (# choice variables) = (# dimension of the codomain of 1), or

2 ( ) = 0

where  := ( ), and (# choice variables and multipliers) = (# dimension of the codomain of

2),

To apply the Implicit Function Theorem, it must be the case that the following conditions do

hold.

1. (# choice variables ) = (# dimension of the codomain of 1), or

(# choice variables and multipliers) = (# dimension of the codomain of 2).

2.  has to be at least 
1That condition is insured if the above systems are obtained from

maximization problems characterized by functions   which are at least 2: usually the above

systems contain some form of first order conditions, which are written using first derivatives

of  and .

3. 1 (
∗ 0) = 0 or 2 (

∗ 0) = 0 The existence of a solution to the system is usually the

result of the strategy to describe how to solve a maximization form - see above Section 18.4.

4. det [1 (
∗ 0)]× 6= 0 or det [2 (

∗ 0)](+)×(+) 6= 0 That condition has to be

verified directly on the problem.

If the above conditions are verified, the Implicit Function Theorem allow to conclude what

follows (in reference to 2).

There exist an open neighborhood (∗) ⊆  of ∗, an open neighborhood (0) ⊆ Π of

0 and a unique 1 function  : (0) ⊆ Π ⊆ R → (∗) ⊆  ⊆ R such that ∀ ∈
 (0)   ( ()  ) = 0 and

 () = −
h
 ( )|=()

i−1
·
h
 ( )|=()

i
Therefore, using the above expression, we may be able to say if the increase in any value of any

parameter implies an increase in the value of any choice variable (or multiplier).

Three significant cases of application of the above procedure are presented below. We are going

to consider 2 functions defined on open subsets of Euclidean spaces.

18.5.1 Maximization problem without constraint

Assume that the problem to study is

max
∈

 ( )

and that

1.  is concave;

2. There exists a solution ∗ to the above problem associated with 0.

Then, from Proposition 686, we know that ∗ is a solution to

 ( 0) = 0

Therefore, we can try to apply the Implicit Function Theorem to

1 ( ) =  ( 0)

An example of application of the strategy illustrated above is presented in Section 19.3.
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18.5.2 Maximization problem with equality constraints

Consider a maximization problem

max∈  ( )   ( ) = 0

Assume that necessary and sufficient conditions to apply Lagrange Theorem hold and that there

exists a vector (∗ ∗) which is a solution (not necessarily unique) associated with the parameter
0. Therefore, we can try to apply the Implicit Function Theorem to

2 ( ) =

µ
 (∗ 0) + ∗ (∗ 0)
 (∗ 0) 

¶
(18.36)

18.5.3 Maximization problem with Inequality Constraints

Consider the following maximization problems with inequality constraints. For given  ∈ Π,

max∈  ( )   ( ) ≥ 0 (18.37)

Moreover, assume that the set of solutions of that problem is nonempty and characterized by the

set of solutions of the associated Kuhn-Tucker system, i.e., using the notation of Subsection 18.1,

 =  6= ∅

We have seen that we can write Kuhn-Tucker conditions in one of the two following ways, beside

some other ones, ⎧⎪⎪⎨⎪⎪⎩
 ( ) +  ( ) = 0 (1)

 ≥ 0 (2)

 ( ) ≥ 0 (3)

 ( ) = 0 (4)

(18.38)

or ½
 ( ) +  ( ) = 0 (1)

min {   ( )} = 0 for  ∈ {1 } (2)
(18.39)

The Implicit Function Theorem cannot be applied to either system (1838) or system (1839):

system (1838) contains inequalities ; system (1839) involves functions which are not differentiable.

We present below conditions under which the Implicit Function Theorem can be anyway applied

to allow to make comparative statics analysis. Take a solution (∗ ∗ 0) to the above system(s).
Assume that

for each , either ∗  0 or  (
∗ 0)  0

In other words, there is no  such that  =  (
∗ 0) = 0. Consider a partition ∗ b of

{1 }, and the resulting Kuhn-Tucker conditions.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
 (∗ 0) + ∗ (∗ 0) = 0

∗  0 for  ∈ ∗

 (
∗ 0) = 0 for  ∈ ∗

∗ = 0 for  ∈ b
 (

∗ 0)  0 for  ∈ b
(18.40)

Define
∗ (∗ 0) := ( (∗ 0))∈∗b (∗ 0) := ( (∗ 0))∈ 
∗∗ :=

¡
∗
¢
∈∗b∗ := ¡∗¢∈ 

Write the system of equations obtained from system (18.40) eliminating strict inequality con-

straints and substituting in the zero variables:½
 (∗ 0) + ∗∗∗ (∗ 0) = 0

∗ (∗ 0) = 0
(18.41)
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Observe that the number of equations is equal to the number of “remaining” unknowns and

they are

+#∗

i.e., Condition 1 presented at the beginning of the present Section 18.5 is satisfied. Assume that

the needed rank condition does hold and we therefore can apply the Implicit Function Theorem to

2 ( ) =

µ
 (∗ 0) + ∗∗∗ (∗ 0)
∗ (∗ 0)

¶
= 0

Then. we can conclude that there exists a unique 1 function  defined in an open neighborhood

1 of 0 such that

∀ ∈ 1  () := (∗ ()  ∗∗ ())

is a solution to system (18.41) at .

Therefore, by definition of ,½
 (∗ ()  ) + ∗∗ () ∗ (∗ ()  ) = 0

∗ (∗ ()  ) = 0
(18.42)

Since  is continuous and ∗∗ (0)  0 and b (∗ (0)  0)  0, there exist an open neighborhood
2 ⊆ 1 of 0 such that ∀ ∈ 2 ½

∗∗ ()  0b ( ()  )  0
(18.43)

Take also ∀ ∈ 2 n b∗ () = 0 (18.44)

Then, systems (18.42), (18.43) and (18.44) say that ∀ ∈ 2,
³
 ()  ∗ ()  b ()´ satisfy

Kuhn-Tucker conditions for problem (18.37) and therefore, since  = , they are solutions to the

maximization problem.

The above conclusion does not hold true if Kuhn-Tucker conditions are of the following form⎧⎪⎪⎨⎪⎪⎩
 ( ) +  ( ) = 0

 = 0  ( ) = 0 for  ∈  0

  0  ( ) = 0 for  ∈  00

 = 0  ( )  0 for  ∈ b
(18.45)

where  0 6= ∅,  00 and b is a partition of  .
In that case, applying the same procedure described above, i.e., eliminating strict inequality

constraints and substituting in the zero variables, leads to the following systems in the unknowns

 ∈ R and ()∈00 ∈ R#
00
:⎧⎨⎩

 ( ) + ()∈00  ()∈00 ( ) = 0

 ( ) = 0 for  ∈  0

 ( ) = 0 for  ∈  00

and therefore the number of equation is  + # 00 + # 0   + # 00simply because we are
considering the case  0 6= ∅. Therefore the crucial condition

(# choice variables and multipliers) = (# dimension of the codomain of 2)

is violated.

Even if the Implicit Function Theorem could be applied to the equations contained in (18.45),

in an open neighborhood of 0 we could have

 ()  0 and/or  ( ()  )  0 for  ∈  0

Then  () would be solutions to a set of equations and inequalities which are not Kuhn-Tucker

conditions of the maximization problem under analysis, and therefore  () would not be a solution

to the that maximization problem.

An example of application of the strategy illustrated above is presented in Section 19.1.



254 CHAPTER 18. MAXIMIZATION PROBLEMS

18.6 The Envelope Theorem and the meaning of multipliers

18.6.1 The Envelope Theorem

Consider the problem () : for given  ∈ Π

max∈  ( )   ( ) = 0

Assume that for every , the above problem admits a unique solution characterized by Lagrange

conditions and that the Implicit function theorem can be applied. Then, there exists an open set

O ⊆ Π such that

 : O→   :  7→ argmax ( ) 

 : O→ R  :  7→ max ( ) and

 : O→ R  7→ unique Lagrange multiplier vector

are differentiable functions.

Theorem 747 For any ∗ ∈ O and for any pair of associated (∗ ∗) := ( (∗)   (∗)), we have

 (
∗) = L (∗ ∗ ∗)

i.e.,

 (
∗) =  (

∗ ∗) + ∗ (
∗ ∗)

Remark 748 Observe that the above analysis applies also to the case of inequality constraints, as

long as the set of binding constraints does not change.

Proof. of Theorem 747 By definition of  () and  ()  we have that

∀ ∈ O  () =  ( ()  )  (1)

Consider an arbitrary value ∗ and the unique associate solution ∗ =  (∗) of problem ( ) 

Differentiating both sides of (1) with respect to  and computing at ∗ we get

[ (
∗)]1× =

h
 ( )|(∗∗)

i
1×

·
h
 ()|=∗

i
×

+
h
 ( )|(∗∗)

i
1×

(2)

From Lagrange conditions

 ( )|(∗∗) = −∗ ( )|(∗∗) (3) 

where ∗ is the unique value of the Lagrange multiplier. Moreover

∀ ∈ O  ( ()  ) = 0 (4)

Differentiating both sides of (4) with respect to  and computing at ∗ we geth
 ( )|(∗∗)

i
×

·
h
[ ()]|=∗

i
×

+
h
 ( )|(∗∗)

i
×

= 0 (5) 

Finally,

[ (
∗)]1×

(2)(3)
= −∗ ( )|(∗∗) ()|=∗ + ( )|(∗∗)

(5)
=

=  ( )|(∗∗) + ∗ ( )|(∗∗)
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18.6.2 On the meaning of the multipliers

The main goal of this subsection is to try to formalize the following statements.

1. The fact that  = 0 indicates that the associated constraint  () ≥ 0 is not significant - see
Proposition 749 below.

2. The fact that   0 indicates that a way to increase the value of the objective function is to

violate the associated constraint  () ≥ 0 - see Proposition 750 below.
For simplicity, consider the case  = 1. Let ( ) be the problem

max
∈

 ()   () ≥ 0

and ( ) the problem

max
∈

 ()

with  strictly quasi-concave,  is quasi-concave and solutions to both problem exist . Define

∗ := argmax ( ) with associated multiplier ∗, and ∗∗ := argmax ( ).

Proposition 749 If ∗ = 0, then ∗ = argmax ( )⇔ ∗ = argmax ( ) 

Proof. By the assumptions of this section, the solution to ( ) exists, is unique, it is equal to

∗ and there exists ∗ such that

 (∗) + ∗ (∗) = 0

min { (∗)  ∗} = 0

Moreover, the solution to ( ) exists, is unique and it is the solution to

 () = 0

Since ∗ = 0, the desired result follows.
Take   0 and  ∈ (−+∞). Let () be the problem

max
∈

 ()   () ≥ 

Let b : (−+∞)→   7→ argmax ()

b : (−+∞)→ R  7→ max () :=  (b ())
Let b () be such that ³b ()  b ()´ is the solution to the associated Kuhn-Tucker conditions.
Observe that

∗ = b (0)  ∗ = b (0) (18.46)

Proposition 750 If ∗  0, then b0 (0)  0.
Proof. From the envelope theorem,

∀ ∈ (−+∞)  b0 () =  ( () +  ( ()− ))

 |()() = −b ()
and from (18.46) b0 (0) = −b (0) = −∗  0

Remark 751 Consider the following problem. For given  ∈ R,
max∈  ()   ()−  ≥ 0 (18.47)

Assume that the above problem is “well-behaved” and that  () = argmax (18.47),  () =

 ( ()) and ( ()   ()) is the solution of the associated Kuhn-Tucker conditions. Then, applying

the Envelope Theorem we have

0 () =  ()
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Chapter 19

Applications to Economics

19.1 The Walrasian Consumer Problem

The utility function of a household is

 : R++ → R : 7→ () 

Assumption.  is a C2 function;  is differentiably strictly increasing, i.e., ∀ ∈ R++  ()À 0;

 is differentiably strictly quasi-concave, i.e., ∀ ∈ R++ ∆ 6= 0 and  ()∆ = 0 ⇒
∆2 ()∆  0; for any  ∈ R © ∈ R++ :  () ≥ 

ª
is closed in R .

The maximization problem for household  is

(1) max∈R++  ()  −  ≤ 0
The budget set of the above problem is clearly not compact. But, in the Appendix, we show

that the solution of (1) are the same as the solutions of (2) and (3) below. Observe that the

constraint set of (3) is compact.

(2) max∈R++  ()  −  = 0;

(3) max∈R++  ()  −  ≤ 0;
 () ≥  (∗) 

where ∗ ∈ © ∈ R++ :  ≤ 
ª


Theorem 752 Under the Assumptions (smooth 1-5),  () is a C1 function.

Proof.

Observe that, from it can be easily shown that,  is a function.

We want to show that (2) satisfies necessary and sufficient conditions to Lagrange Theorem,

and then apply the Implicit Function Theorem to the First Order Conditions of that problem.

The necessary condition is satisfied because  [− ] =  6= 0;
Define also

 : R++ ×R−1++ → R++
 : () 7→ Lagrange multiplier for (2) 

The sufficient conditions are satisfied because: from Assumptions (smooth 4),  is differentiably

strictly quasi-concave; the constraint is linear; the Lagrange multiplier  is strictly positive -see

below.

The Lagrangian function for problem (2) and the associated First Order Conditions are de-

scribed below.

L (   ) =  () +  · (−+ )

() (1)  ()−  = 0

(2) −+  = 0

257
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Define

 : R++ ×R++ ×R++ ×R++ → R ×R

 : (  ) 7→
µ

 ()− 

−+ 

¶


As an application of the Implicit Function Theorem, it is enough to show that() (   )

has full row rank ( + 1).

Suppose () does not have full rank; then there would exist

∆ ∈ R and ∆ ∈ R such that ∆ := (∆∆) 6= 0 and () · (∆∆) = 0, or∙
2 () −
− 0

¸ ∙
∆

∆

¸
= 0

or
() 2 ()∆− ∆ = 0

() −∆ = 0



The idea of the proof is to contradict Assumption u3.

Claim 1. ∆ 6= 0
By assumption it must be ∆ 6= 0 and therefore, if ∆ = 0 ∆ 6= 0 Since  ∈ R++ ∆ 6= 0

Moreover, if ∆ = 0 from (a), we would have ∆ = 0 a contradiction. 

Claim 2.  ·∆ = 0
From (1)  we have  ·∆−  ·∆ = 0; using () the desired result follows .
Claim 3. ∆2 ·∆ = 0

Premultiplying () by ∆  we get ∆2 ()∆−∆ ∆ = 0 Using ()  the result follows.
Claims 1, 2 and 3 contradict Assumption u3.

The above result gives also a way of computing () ()  as an application of the Implicit

Function Theorem .

Since

   

 ()−  2 − − 0

−+  − 0 − 1£
() ( ) ()

¤
(+1)×(+1) =

∙
 

 

¸
=

= −
∙
2 −
− 0

¸−1
(+1)×(+1)

∙ − 0

− 1

¸
(+1)×(+1)

To compute the inverse of the above matrix, we can use the following fact about the inverse of

partitioned matrix (see for example, Goldberger, (1963), page 26)

Let  be an ×  nonsingular matrix partitioned as

 =

∙
 

 

¸


where 1×1  1×2  2×1  2×2 and 1 + 2 =  Suppose that  and  :=  −
−1 are non singular. Then

−1 =
∙
−1

¡
 + −1−1

¢ −−1−1
−−1−1 −1

¸


If we assume that 2 is negative definite and therefore invertible, we have∙
2 −
− 0

¸−1
=

" ¡
2
¢−1 ³

 + −1 
¡
2
¢−1´

−1
¡
2
¢−1



−1
¡
2
¢−1

−1

#

where  = − ¡2
¢−1

 ∈ R++
And
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[ ()]× = −
h ¡

2
¢−1 ³

 + −1
¡
2
¢−1´

−1
¡
2
¢−1


i ∙




¸
=

= − ¡2
¢−1 ³

 + −1 
¡
2
¢−1´− −1

¡
2
¢−1

 = −−1 ¡2
¢−1 h


³
 +  

¡
2
¢−1´

+ 
i

[ ()]×1 = −
h ¡

2
¢−1 ³

 + −1 
¡
2
¢−1´

−1
¡
2
¢−1


i ∙

0

−1
¸
= −1

¡
2
¢−1



[ ()]1× = −
h
−1

¡
2
¢−1

−1
i ∙




¸
= −−1

³

¡
2
¢−1

+ 
´


[ ()]1×1 = −
h
−1

¡
2
¢−1

−1
i ∙

0

−1
¸
= −1





As a simple application of the Envelope Theorem, we also have that, defined the indirect utility

function as

 : R+1++ → R  : () 7→  ( ()) 

we have that

() () = 
£ − 1

¤


19.2 Production

Definition 753 A production vector (or input-output or netput vector) is a vector  := ()

=1 ∈

R which describes the net outputs of  commodities from a production process. Positive numbers

denote outputs, negative numbers denote inputs, zero numbers denote commodities neither used nor

produced.

Observe that, given the above definition,  is the profit of the firm.

Definition 754 The set of all feasible production vectors is called the production set  ⊆ R  If
 ∈  then  can be obtained as a result of the production process; if  ∈ that is not the case.

Definition 755 The Profit Maximization Problem (PMP) is

max


   ∈ 

It is convenient to describe the production set  using a function  : R → R called the

transformation function. That is done as follows:

 =
©
 ∈ R :  () ≥ 0ª 

We list below a smooth version of the assumptions made on  , using the transformation function.

Some assumption on  () 

(1) ∃ ∈ R such that  () ≥ 0
(2)  is 2.

(3) (No Free Lunch) If  ≥ 0 then  ()  0

(4) (Possibility of Inaction)  (0) = 0

(5) ( is differentiably strictly decreasing) ∀ ∈ R   ()¿ 0

(6) (Irreversibility) If  6= 0 and  () ≥ 0 then  (−)  0
(7) ( is differentiably strictly concave) ∀∆ ∈ R\ {0}  ∆2 ()∆  0

Definition 756 Consider a function  () satisfying the above properties and a strictly positive real

number  . The Smooth Profit Maximization Problem (SPMP) is

max


   () ≥ 0 and kk ≤  (19.1)
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Remark 757 For any solution to the above problem it must be the case that  () = 0. Suppose

there exists a solution 0 to (SPMP) such that  (0)  0 Since  is continuous, in fact 2,

there exists   0 such that  ∈  (0 ) ⇒  ()  0 Take 0 = 0 + ·1

 Then,  (0 0) :=³P

=1

¡



¢2´ 1
2

=
³

¡



¢2´ 1
2

=
³
2



´ 1
2

= √

  Therefore 0 ∈  (0 ) and

 (0)  0 (1) 

But,

0 = 0 + 
 · 1


 0 (2) 

(1) and (2) contradict the fact that 0 solves (SPMP).

Proposition 758 If a solution with kk   to ( ) exists  Then  : R++ → R ,  7→
argmax (191) is a well defined 1function.

Proof.

Let’s first show that  () is single valued.

Suppose there exist  0 ∈  () with  6= 0 Consider  := (1− ) +0 Since  () is strictly
concave, it follows that 

¡

¢
 (1− ) () +  (0) ≥ 0 where the last inequality comes from

the fact that  0 ∈  ()  But then 
¡

¢
 0 Then following the same argument as in Remark

757, there exists   0 such that 0 = + ·1

and  (0)  0 But 0   = (1− ) +0 = 

contradicting the fact that  ∈  () 

Let’s now show that  is 1

From Remark 757 and from the assumption that kk   (SPMP) can be rewritten as

max    () = 0 We can then try to apply Lagrange Theorem.

Necessary conditions:  ()¿ 0;

sufficient conditions:  is linear and therefore pseudo-concave;  () is differentiably strictly

concave and therefore quasi-concave; the Lagrange multiplier  is strictly positive -see below.

Therefore, the solutions to ( ) are characterized by the following First Order Conditions,

i.e., the derivative of the Lagrangian function with respect to  and  equated to zero:

 

L ( ) =  +  ()  +  () = 0  () = 0


Observe that  = − 1
1 ()

 0

As usual to show differentiability of the choice function we take derivatives of the First Order

Conditions.

 

+  () = 0 2 () [ ()]


 () = 0  () 0

We want to show that the above matrix has full rank. By contradiction, assume that there

exists ∆ := (∆∆) ∈ R ×R ∆ 6= 0 such that∙
2 () [ ()]



 () 0

¸ ∙
∆

∆

¸
= 0

i.e.,

2 () ·∆ + [ ()]
 ·∆ = 0 () 

 () ·∆ = 0 () 

Premultiplying () by ∆  we get ∆ ·2 () ·∆+∆ · [ ()]
 ·∆ = 0 From ()  it

follows that ∆ ·2 () ·∆ = 0 contradicting the differentiably strict concavity of  () 
(3)

From the Envelope Theorem, we know that if
¡
 

¢
is the unique pair of solution-multiplier

associated with  we have that
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 ()| =  ()|() +  ()|() 
Since  ()|() = ,  () = 0 and, by definition of   =  ()  we get  ()| =  () 

as desired

(4)

From (3)  we have that  () = 2
 ()  Since  () is convex -see Proposition ?? (2)- the

result follows.

(5)

From Proposition ?? (4) and the fact that  () is single valued, we know that ∀ ∈ R++  ()−
 () = 0. Taking derivatives with respect to  we have  ()|() · = 0 For  = 1 the desired
result follows.

19.3 The demand for insurance

Consider an individual whose wealth is

 −  with probability , and

 with probability 1− ,

where   0 and   0

Let the function

 : → R  : →  ()

be the individual’s Bernoulli function.

Assumption 1. ∀ ∈ R 0 ()  0 and 00 ()  0

Assumption 2.  is bounded above.

An insurance company offers a contract with following features: the potentially insured individ-

ual pays a premium  in each state and receives  if the accident occurs. The (potentially insured)

individual can buy a quantity  ∈ R of the contract. In the case, she pays a premium ( · ) in each
state and receives a reimbursement ( · ) if the accident occurs. Therefore, if the individual buys
a quantity  of the contract, she get a wealth described as follows

1 := − − +  with probability , and

2 := −  with probability 1− 
(19.2)

Remark 759 It is reasonable to assume that  ∈ (0 ) 

Define

 : R→ R  :  7→  ( − − + ) + (1− ) ( − ) 

Then the individual solves the following problem. For given,  ∈ R++  ∈ R++  ∈ (0 ) 
 ∈ (0 1)

max∈R  () () (19.3)

To show existence of a solution, we introduce the problem presented below. For given  ∈
R++  ∈ R++  ∈ (0 )   ∈ (0 1)

max∈R  ()   () ≥  (0) ( 0)

Defined∗ := argmax () and 0 := argmax ( 0)  the existence of solution to ()  follows
from the Proposition below.

Proposition 760 1. 0 ⊂ ∗ 2. 0 6= ∅
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Proof.

Exercise

To show that the solution is unique, observe that

 0 () = 0 ( − +  (− )) (− ) + (1− )0 ( − ) (−) (19.4)

and therefore

 00 () =
(+)
 00

(−)
( − +  (− ))

(+)

(− )
2
+

(+)

(1− )
(−)

00 ( − )
(+)

2  0

Summarizing, the unique solution of problem () is the unique solution of the equation:

 0 () = 0

Definition 761 ∗ : R++ × (0 1)× (0 )×R++ → R
∗ : (   ) 7→ argmax () 

∗ : Θ→ R
∗ :  7→  ( − + ∗ () (− )) + (1− ) ( − ∗ () )

Proposition 762 The signs of the derivatives of ∗ and ∗ with respect to  are presented in the
following table1 :

   

∗  0 if ∗ ∈ [0 1]  0 T 0 ≤ 0 if ∗ ≤ 1
∗ ≤ 0 if ∗ ∈ [0 1] ≤ 0 if ∗ ∈ [0 1] ≤ 0 if ∗ ≥ 0  0

Proof. Exercise.

19.4 Exercises on part IV

See Tito Pietra’s file (available on line): Exercises 15.1 → 15.6.

1Conditions on ∗ () contained in the table can be expressed in terms of exogenous variables.
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Chapter 20

Exercises

20.1 Linear Algebra

1.

Show that the set of pair of real numbers is not a vector space with respect to the following

operations:

(i). ( ) + ( ) = (+  + ) and  ( ) = ( ) ;

(ii) ( ) + ( ) = (+  ) and  ( ) = ( ) 

2.

Show that  is not a vector subspace of R3 on R if
(i)  =

©
(  ) ∈ R3 :  ≥ 0ª ;

(ii)  =
©
 ∈ R3 : kk ≤ 1ª 

(iii)  = Q3

3.

Let  be the vector space of all functions  : R→ R. Show the  is a vector subspace of  if

(i)  = { ∈  :  (1) = 0} ;
(ii)  = { ∈  :  (1) =  (2)} 

4.

Show that

(i).

 =
©
(1 2 3) ∈ R3 : 1 + 2 + 3 = 0

ª
is a vector subspace of R3;
(ii).

 = {(1−1 0)  (0 1−1)}
is a basis for  .

5.

Show the following fact.

Proposition. Let a matrix  ∈M ( ), with  ∈ N be given. The set

C := { ∈M ( ) :  = }

is a vector subspace of M ( ) (with respect to the field R).

6.

Let  and  be vector subspaces of a vector space  . Show that

 +  := { ∈ : ∃ ∈  and  ∈  such that  = + }

265
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is a vector subspace of  .

7.

Show that the following set of vectors is linearly independent:

{(1 1 1 )  (0 1 1)  (0 0 1)} 

8. Using the definition, find the change-of-basis matrix from

 = {1 = (1 2) 2 = (3 5)}

to

 = {1 = (1 0) 2 = (0 1)}
and from  to . Check the conclusion of Proposition ??, i.e., that one matrix is the inverse of

the other one.

9. Find the determinant of

 =

⎡⎢⎢⎢⎢⎣
6 2 1 0 5

2 1 1 −2 1

1 1 2 −2 3

3 0 2 3 −1
−1 −1 −3 4 2

⎤⎥⎥⎥⎥⎦
10. Say for which values of  ∈ R the following matrix has rank a. 4, b. 3:

 :=

⎡⎣  + 1 1 − 2

− 1 2−  

1 0 1 −1

⎤⎦
11.

Show that

 =
©
(1 2 3) ∈ R3 : 1 − 2 = 0

ª
is a vector subspace of R3 and find a basis for  .

12.

Given

 : R4 → R4  (1 2 3 4) =
¡
1 1 + 2 1 + 2 + 3 1 + 2 + 3 + 4

¢
show it is linear, compute the associated matrix with respect to canonical bases, and compute ker 

and Im.

13.

Complete the text below.

Proposition. Assume that  ∈  () and ker  = {0}. Then,

∀ ∈ Im  there exists a unique  ∈  such that  () = 

Proof.

Since , by definition, there exists  ∈  such that

 () =  (20.1)

Take 0 ∈  such that  (0) = . We want to show that

 (20.2)
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Observe that

 ()−  (0)
()
=  (20.3)

where () follows from .

Moreover,

 ()−  (0)
()
=  (20.4)

where () follows from .

Therefore,

 ( − 0) = 0

and, by definition of ker ,

 (20.5)

Since, ., from (205), it follows that

 − 0 = 0

14.

Let the following sets be given:

 =
©
(1 2 3 4) ∈ R4 : 1 − 2 + 3 − 4 = 0

ª
and

 =
©
(1 2 3 4) ∈ R4 : 1 + 2 + 3 + 4 = 0

ª
If possible, find a basis of  ∩ .

15.

Say if the following statement is true or false.

Let  and  be vector spaces on R,  a vector subspace of  and  ∈ L (). Then −1 ( )

is a vector subspace of  .

16.

Let the following full rank matrices

 =

∙
11 12
21 22

¸
 =

∙
11 12
21 22

¸
be given. Say for which values of  ∈ R the following linear system has solutions.

⎡⎢⎢⎢⎢⎣
1 11 12 0 0 0

2 21 22 0 0 0

3 5 6 11 12 0

4 7 8 21 22 0

1 11 12 0 0 

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
1
2
3
4
5
6

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣



1

2

3



⎤⎥⎥⎥⎥⎦

17.

Consider the following Proposition contained in Section 8.1 in the class Notes:

Proposition .∀ ∈ 

[]
u
v · []v = [ ()]u (20.6)

Verify the above equality in the case in which

a.

 : R2 → R2 (1 2) 7→
µ

1 + 2
1 − 2

¶
b. the basis v of the domain of  is ½µ

1

0

¶


µ
0

1

¶¾
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c. the basis u of the codomain of  is½µ
1

1

¶


µ
2

1

¶¾


d.

 =

µ
3

4

¶


18.

Complete the following proof.

Proposition. Let

 ∈ N such that    and

a vector subspace  of R such that dim = 

be given. Then, there exists  ∈ L (RR) such that Im  = .

Proof. Let
©

ª
=1

be a basis of  ⊆ R. Take  ∈ L (RR) such that

∀ ∈ {1  }  2
¡

¢
= 

where  is the —th element in the canonical basis in R
. Such function does exists and, in fact,

it is unique as a consequence of a Proposition in the Class Notes that we copy below:

..........................................................................................................................

Then, from the Dimension theorem

dim Im = 

Moreover,

 = 
©

ª
=1
⊆ 

Summarizing,

 ⊆ Im  , dim =  and dim Im  ≤ 

and therefore

dim Im = 

Finally, from Proposition .................................in the class Notes since  ⊆ Im  , dim = 

and dim Im =  we have that Im  = , as desired.

Proposition ............................. in the class Notes says what follows:

.......................................................................................

19.

Say for which value of the parameter  ∈ R the following system has one, infinite or no solutions⎧⎪⎪⎨⎪⎪⎩
1 + 2 = 1

1 + 2 = 

21 + 2 = 3

31 + 22 = 

20.

Say for which values of the system below admits one, none or infinite solutions.

 () ·  =  ()

where  ∈ R, and

 () ≡

⎡⎢⎢⎣
1 0

1−  2− 

1 

1  − 1

⎤⎥⎥⎦   () ≡

⎡⎢⎢⎣
 − 1


1

0

⎤⎥⎥⎦ 
21.
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Let V = ©1 2  ª be a set of vectors in R such that for any   ∈ {1  },
 ·  =

⎧⎨⎩ 0   6= 

1   = 

(20.7)

Show that V is a basis of R.
22.

Given a vector space  on a field  , sets  ⊆  and  ∈  , we define

+ := { ∈  : there exist  ∈  and  ∈  such that  = + } 

 := { ∈  : there exist  ∈  such that  = } 

Given a vector space  on a field  a linear function  ∈ L(  ) and  vector subspace of

 ,  is said to be  -invariant if

 ( ) ⊆

Let  be both -invariant and  -invariant and let  ∈  . Show that

a.  is  +  -invariant;

b.  is  ◦  -invariant;
c.  is  -invariant.

23.

Show that the set of all 2 × 2 symmetric real matrices is a vector subspace of M (2 2) and
compute its dimension.

24.

Let  be a vector space on a field  and  a vector subspace of  . Show that

a.  + = , and

b. for any  ∈  \ {0},  = .

25.

Let P (R) be the set polynomials of degree smaller or equal than  ∈ N+ on the set of real
numbers , i.e.,

P (R) =
(
 : R→ R such that ∃0 1   ∈ R such that for any  ∈ R  () =

X
=0




)


Show that P (R) is isomorphic to R+1.
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20.2 Some topology in metric spaces

20.2.1 Basic topology in metric spaces

1.

Do Exercise 363: Let  be a metric on a non-empty set . Show that

0 :  × → R  ( ) =
 ( )

1 +  ( )

is a metric on 

2.

Let  be the set of continuous real valued functions with domain [0 1] ⊆ R and

 ( ) =

Z 1

0

 ()−  () 

where the integral is the Riemann Integral (that one you learned in Calculus 1). Show that

( ) is not a metric space.

3.

Do Exercise 380 for  = 2 : ∀ ∈ N∀ ∈ {1  } ∀  ∈ R with   ,

×
=1 ( )

is (R 2) open.

4.

Show the second equality in Remark 388:

∩+∞=1
µ
− 1


1



¶
= {0}

5.

Say if the following set is (R 2) open or closed:

 :=

½
 ∈ R : ∃  ∈ N such that  = (−1) 1



¾

6.

Say if the following set is (R 2) open or closed:

 := ∪+∞=1
µ
1


 10− 1



¶


7.

Do Exercise 398: show that F () = F ¡¢.
8.

Do Exercise 399: show that F () is a closed set.

9.

Let the metric space (R 2) be given. Find  Cl () F ()  ()   () and say if  is
open or closed for  = Q,  = (0 1) and  =

©
 ∈ R : ∃ ∈ N+ such that  = 1



ª
.

10.

Show that the following statements are false:

a. Cl ( ) = ,

b.  Cl () = 
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11.

Given  ⊆ R, say if the following statements are true or false.
a.  is an open bounded interval ⇒  is an open set;

b.  is an open set ⇒  is an open bounded interval;

c.  ∈ F ()⇒  ∈  ();

d.  ∈  ()⇒  ∈ F () 

12.

Using the definition of convergent sequences, show that the following sequences do converge:

a. ()∈N ∈ R∞ such that ∀ ∈ N  = 1;
b. ()∈N ∈ R∞ such that ∀ ∈ N  = 1


.

13.

Using Proposition 425, show that [0 1] is (R 2) closed.

14.

Show the following result: A subset of a discrete space, i.e., a metric space with the discrete

metric, is compact if and only if it is finite.

15.

Say if the following statement is true: An open set is not compact.

16.

Using the definition of compactness, show the following statement: Any open ball in
¡
R2 2

¢
is

not compact.

17.

Show that  ( ∪) =  () ∪  () 

18.

Show that  ( ∩) 6=  () ∩ () 

19.

Using the characterization of continuous functions in terms of open sets, show that for any

metric space ( ) the constant function is continuous.

20.

a. Say if the following sets are (R 2) compact:
i.

R+

ii.

∀ ∈ R and∀ ∈ R++    ( ) 
b. Say if the following set is (R 2) compact:½

 ∈ R : ∃ ∈ N such that  = 1



¾


21.

Given the continuous functions

 : R → R

show that the following set is closed

{ ∈ R :  () ≥ 0}
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22.

Assume that  : R → R is continuous. Say if

 = { ∈ R :  () = 0}
is (a) closed, (b) is compact.

23.

Using the characterization of continuous functions in terms of open sets, show that the following

function is not continuous

 : R→ R  () =

⎧⎨⎩    6= 0

1   = 0

24.

Using the Extreme Value Theorem, say if the following maximization problems have solutions

(with k k being the Euclidean norm).

max
∈R

X
=1

  kk ≤ 1

max
∈R

X
=1

  kk  1

max
∈R

X
=1

  kk ≥ 1

25.

Let ( kk), ( kk ) be normed vector spaces. A function  : ( kk), ( kk ) is bounded if
∃ ∈ R++ such that ∀ ∈  k ()k ≤

Show that given a linear function  :  →  ,

 is bounded⇔  = 0

26.

 : ()→ R is upper semicontinuos at 0 ∈  if

∀  0∃  0 such that  (− 0)   ⇒  ()   (0) + 

 is upper semicontinuous if is upper semicontinuos at any 0 ∈ .

Show that the following statements are equivalent:

a.  is upper semicontinuos;

b. for any  ∈ R, { ∈  :  ()  } is ( ) open;

c. for any  ∈ R, { ∈  :  () ≥ } is ( ) closed.

27.

Let  be a subset of (R ) where  is the Euclidean distance. Show that if  is (R ) open,
then for any  ∈ , {}+ is (R ) open.
Hint: use the fact that for any   ∈ R,  ( ) = k− k and therefore, for any  ∈ R,

 (+  + ) = k+ − − k = k− k =  ( ).

28.

Let ( ) be a metric space. Show that if 1 and 2 are compact subsets of , then 1 +2

is compact.

29.

Given two metric spaces ( 1) and ( 2), a function  :  →  is an isometry with respect

to 1 and 2 if ∀1 2 ∈ ,

2((1) (2)) = 1(1 2)

Show that if  :  →  is an isometry then

a. is one-to-one;

b. ̂ :  → () is invertible;

c.  is continuous.
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20.2.2 Correspondences

To solve the following exercises on correspondences, we need some preliminary definitions.1

A set  ⊆ R is convex if ∀1, 2 ∈  and ∀ ∈ [0 1], (1− )1 + 2 ∈ .

A set  ⊆ R is strictly convex if ∀1, 2 ∈  and ∀ ∈ (0 1), (1− )1 + 2 ∈  .

Consider an open and convex set  ⊆ R and a continuous function  :  → R  is quasi-
concave iff ∀ 0 00 ∈  ∀  ∈ [0 1],

((1− )0 + 00) ≥ min { (0)  (00)} 
 is strictly quasi-concave

Definition 763 iff ∀ 0 00 ∈  such that 0 6= 00 and ∀  ∈ (0 1), we have that
((1− )0 + 00)  min { (0)  (00)} 

We define the budget correspondence as

Definition 764

 : R++ ×R++ →→ R   () =
©
 ∈ R+ :  ≤ 

ª


The Utility Maximization Problem ( ) is

Definition 765
max∈R+  ()   ≤  or  ∈  ()

 : R++ ×R++ →→ R   () = argmax ( ) is the demand correspondence.

The Profit Maximization Problem (PMP) is

max


   ∈ 

Definition 766 The supply correspondence is

 : R++ →→ R   () = argmax( )

We can now solve some exercises. (the numbering has to be changed)

1.

Show that  is non-empty valued.

2.

Show that for every () ∈ R++ ×R++
() if  is quasiconcave,  is convex valued;

() if  is strictly quasiconcave,  is single valued, i.e., it is a function.

3.

Show that  is closed.

4.

If a solution to (PMP) exists, show the following properties hold.

() If  is convex,  () is convex valued;

() If  is strictly convex (i.e., ∀ ∈ (0 1)   := (1− ) 0+00 ∈   ),  () is single valued.

5

Consider 1 2 : [0 2]→→ R

1 () =

⎧⎨⎩
£−1 + 025 ·  2 − 1¤   ∈ [0 1)
[−1 1]   = 1£−1 + 025 ·  2 − 1¤   ∈ (1 2]



and

2 () =

⎧⎨⎩
£−1 + 025 ·  2 − 1¤   ∈ [0 1)
[−075−025]   = 1£−1 + 025 ·  2 − 1¤   ∈ (1 2]



1The definition of quasi-concavity and strict quasi-concavity will be studied in detail in Chapter .
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Say if 1 and 2 are LHC, UHC, closed, convex valued, compact valued.

6.

Consider  : R+ →→ R

 () =

½ ©
sin 1



ª
   0

[−1 1]   = 0


Say if  is LHC, UHC, closed.

7.

Consider  : [0 1]→→ [−1 1]

 () =

½
[0 1]   ∈ Q ∩ [0 1]
[−1 0]   ∈ [0 1] \Q 

Say if  is LHC, UHC, closed.

8.

Consider 1 2 : [0 3]→→ R

1 () =
£
2 − 2 2¤ 

and

2 () =
£
2 − 3 2 − 1¤ 

3 () := (1 ∩ 2) () := 1 () ∩ 2 () 
Say if 1, 2 and 3 are LHC, UHC, closed.

20.3 Differential Calculus in Euclidean Spaces

1 .

Using the definition, compute the partial derivative of the following function in an arbitrary

point (0 0) :

 : R2 → R  ( ) = 22 −  + 2

2 .

If possible, compute partial derivatives of the following functions.

a.  ( ) =  · arctan 

;

b.  ( ) = ;

c.  ( ) = (sin (+ ))
√
+

in (0 3)

3,

Given the function  : R2 → R,

 ( ) =

⎧⎨⎩


2+2
 +  6= 0

0 otherwise



show that it admits both partial derivatives in (0 0) and it is not continuous in (0 0).

4 .

Using the definition, compute the directional derivative  0 ((1 1) ; (1 2)) with 1 2 6= 0 for
 : R2 → R,

 ( ) =
+ 

2 + 2 + 1


5 .

Using the definition, show that the following function is differentiable:  : R2 → R,

 ( ) = 2 − 2 +  (20.8)
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Comment: this exercise requires some tricky computations. Do not spend too much time on it.

Do this exercise after having studied Proposition 641.

6 .

Using the definition, show that the following functions are differentiable.

a.  ∈  (RR);
b. the projection function  : R → R,  :

¡

¢
=1

7→ 1.

7.

Show the following result which was used in the proof of Proposition 606. A linear function

 : R → R is continuous.

8 .

Compute the Jacobian matrix of  : R2 → R3

 ( ) = (sin cos  sin sin  cos cos )

9 .

Given differentiable functions   : R → R and  ∈ R\ {0}, compute the Jacobian matrix of
 : R3 → R3  (  ) =

³
 () ·  ()  (())


 ·(())

´
10 .

Compute total derivative and directional derivative at 0 in the direction .

a.

 : R3++ → R  (1 2 3) =
1

3
log 1 +

1

6
log 2 +

1

2
log 3

0 = (1 1 2),  =
1√
3
(1 1 1);

b.

 : R3 → R  (1 2 3) = 21 + 2
2
2 − 23 − 212 − 623

0 = (1 0−1),  =
³
− 1√

2
 0 1√

2

´
;

c.

 : R2 → R  (1 2) = 1 · 12

0 = (0 0),  = (2 3).

11 .

Given

 (  ) =
¡
2 + 2 + 2

¢−1
2 

show that if (  ) 6= 0, then

2 (  )

2
+

2 (  )

2
+

2 (  )

2
= 0

12 .

Given the 2 functions   : R→ R++, compute the Jacobian matrix of

 : R3 → R3  (  ) =
³
()

()
  ( ()) +  ln ( () +  ())

´

13 .

Given the functions

 : R2 → R2  ( ) =

µ
 + 

 + 

¶
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 : R→ R  7→  ()

 : R→ R2  () =  (  ())

Assume that  is 2. a. compute the differential of  in 0; b. check the conclusion of the Chain

Rule.

14 .

Let the following differentiable functions be given.

 : R3 → R (1 2 3) 7→  (1 2 3)

 : R3 → R (1 2 3) 7→  (1 2 3)

 : R3 → R3 (1 2 3) 7→
⎛⎝  (1 2 3)

 (1 2 3)

1

⎞⎠
 : R3 → R2 (1 2 3) 7→

µ
 (1 2 3)

 (1 2 3)

¶
Compute the directional derivative of the function  ◦  in the point (0 0 0) in the direction

(1 1 1).

15 .

Using the theorems of Chapter 16, show that the function in (208) is differentiable.

16 .

Given

 : R3 → R1 (  ) 7→  + + 3 + 222 + 3 + 3 − 9
say if you can apply the Implicit Function Theorem to the function in (0 0 0) = (1 1 1) and,

if possible, compute 

and 


in (1 1 1).

17 .

Using the notation of the statement of the Implicit Function Theorem presented in the Class

Notes, say if that Theorem can be applied to the cases described below; if it can be applied, compute

the Jacobian of . (Assume that a solution to the system  ( ) = 0 does exist).

a.  : R4 → R2

 (1 2 1 2) 7→
µ

21 − 22 + 21 + 32
12 + 1 − 2

¶
b.  : R4 → R2

 (1 2 1 2) 7→
µ
212 + 1 + 22
21 + 22 + 21 − 212 + 22

¶
c.  : R4 → R2

 (1 2 1 2) 7→
µ

21 − 22 + 21 + 32
12 + 1 − 2

¶

18.

Say under which conditions, if 3 −  −  = 0, then

2


= − 32 + 

(32 − )
3

19. Do Exercise 656: Let the utility function  : R2++ → R++ ( ) 7→  ( ) be given.

Assume that it satisfies the following properties i.  is 2, ii. ∀ ( ) ∈ R2++  ( )  0iii.
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∀ ( ) ∈ R2++  ( )  0 ( )  0 ( )  0. Compute the Marginal Rate of

Substitution in (0 0) and say if the graph of each indifference curve is concave.

20.

Let the function   : R → R be given and assume that

for every 0 ∈ R and every  ∈ R, the directional derivatives  0 (0;) and 0 (0;) do exist.

Define  : R → R  7→  () ·  (). If possible, compute 0 (0;) for every 0 ∈ R and every
 ∈ R.
21.

A function  : R2 → R  7→  () is homogenous of degree  ∈ N+ if

for every  = (1 2) ∈ R2 and every  ∈ R+,  (1 2) =  (1 2) 

Show that if  is homogenous of degree  and  ∈ 1
¡
R2R

¢
, then

for every  = (1 2) ∈ R2 1 ·1 (1 2)+2 ·2 (1 2) =  (1 2) 

20.4 Nonlinear Programming

1. 2 Determine, if possible, the nonnegative parameter values for which the following functions

 :  → R  : ()

=1 :=  7→  () are concave, pseudo-concave, quasi-concave, strictly concave.

()  = R++  () =  ;

()  = R++  ≥ 2  () =
P

=1  ()
 (for pseudo-concavity and quasi-concavity consider

only the case  = 2).

()  = R  () = min { − } 

2.

a. Discuss the following problem. For given  ∈ (0 1),  ∈ (0+∞),

max(12)  ·  () + (1− ) () s.t.  ≤ − 1
2


 ≤ 2− 2
 ≥ 0
 ≥ 0

where  : R→ R is a 2 function such that ∀ ∈ R, 0 ()  0 and 00 ()  0.
b. Say if there exist values of ( ) such that (  1 2 3 4) =

¡
2
3
 2

3
 1 0 0 0

¢
, with

1  0 is a solution to Kuhn-Tucker conditions, where for  ∈ {1 2 3 4},  the multiplier associ-
ated with constraint .

c. “Assuming” that the first, third and fourth constraint hold with a strict inequality, and

the multiplier associated with the second constraint is strictly positive, describe in detail how to

compute the effect of a change of  or  on a solution of the problem.

3.

a. Discuss the following problem. For given  ∈ (0 1)  1 2 ∈ R++

max()∈R2++×R  log + (1− ) log  

1 −−  ≥ 0
2 +−  ≥ 0

b. Compute the effect of a change of 1 on the component 
∗ of the solution.

c. Compute the effect of a change of  on the objective function computed at the solution of

the problem.

4.

2Exercise 1 is taken from David Cass’ problem sets for his Microeconomics course at the University of Pennsylvania.
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a. Discuss the following problem.

min()∈R2 2 + 2 − 4− 6  +  ≤ 6
 ≤ 2
 ≥ 0
 ≥ 0

Let (∗ ∗) be a solution to the the problem.
b. Can it be ∗ = 0 ?
c. Can it be (∗ ∗) = (2 2) ?.

5.

Characterize the solutions to the following problems.

() (consumption-investment)

max(12)∈R3  (1) +  (2)



1 +  ≤ 

2 ≤  ()

1 2  ≥ 0
where  : R → R 0  0 00  0;  : R+ → R  0  0  00  0 and such that  (0) = 0;  ∈

(0 1)   ∈ R++ After having written Kuhn Tucker conditions, consider just the case in which
1 2   0

() (labor-leisure)

max()∈R2  ( )



+  ≤ 

 ≤ 

  ≥ 0
where  : R2 is 2 ∀ ( )  ( ) À 0  is differentiably strictly quasi-concave, i.e.,∀ ( ) 

if ∆ 6= 0 and  ( ) ·∆ = 0, then ∆2 ∆  0;   0   0 and   0

Describe solutions for which   0 and 0    ,

6.

() Consider the model described in Exercise 6 ()  What would be the effect on consumption

(1 2) of an increase in initial endowment ?

What would be the effect on (the value of the objective function computed at the solution of

the problem) of an increase in initial endowment ?

Assume that  () =  with  ∈ R++ and  ∈ (0 1)  What would be the effect on consump-
tion (1 2) of an increase in ?

() Consider the model described in Exercise 6 () What would be the effect on leisure  of an

increase in the wage rate ? in the price level ?

What would be the effect on (the value of the objective function computed at the solution of

the problem) of an increase in the wage rate ? in the price level ?

7.

Show that if  : R2 → R  7→  () is homogenous of degree 1, then

 is concave⇔ for any   ∈ R2  (+ ) ≥  () +  () 



Chapter 21

Solutions

21.1 Linear Algebra

1.

We want to prove that the following sets are not vector spaces. Thus, it is enough to find a

counter-example violating one of the conditions defining vector spaces.

(i) The definition violates the so-called M2 distributive assumption since for  = 1 and  =  = 1,

(1 + 1) · (1 1) = 2 · (1 1) = (2 1) : while : 1 · (1 1) + 1 · (1 1) = (2 2)

(ii) The definition violates the so-called A4 commutative property since for  =  =  = 1 and

 = 0,

(1 1) + (1 0) = (2 1) 6= (1 0) + (1 1) = (2 0)
2.

(i) Take any  := (  ) ∈ with   0, and  ∈ R with   0; then  = (  ) with

  0 and therefore  ∈

(ii) Take any nonzero  ∈ and define  = 2||||. Observe that |||| = 2  1 and therefore
 ∈

(iii) Multiplication of any nonzero element of Q3 by  ∈ R \Q will give an element of R3 \Q3
instead of Q3.
3.

We use Proposition 139. Therefore, we have to check that

a. 0 ∈ ; b. ∀  ∈ ∀  ∈  +  ∈ .

Define simply by 0 the function  : R→ R such that ∀ ∈ R,  () = 0.
(i) a. Since 0 (1) = 0, 0 ∈ .

b.

 (1) +  (1) =  · 0 +  · 0 = 0
where the first equality follows from the assumption that   ∈ . Then, indeed, + ∈ .

(ii) a. Since 0 (1) = 0 = 0 (2), we have that 0 ∈ .

b.

 (1) +  (1) =  (2) +  (2) 

where the equality follows from the assumption that   ∈  and therefore  (1) =  (2) and

 (1) =  (2).

4.

Again we use Proposition 139 and we have to check that

a. 0 ∈ ; b. ∀  ∈ ∀  ∈  +  ∈ .

a. (0 0 0) ∈ simply because 0 + 0 + 0 = 0.

b. Given  = (1 2 3)   = (1 2 3) ∈  , i.e., such that

1 + 2 + 3 = 0 and 1 + 2 + 3 = 0 (21.1)

279
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we have

+  = (1 + 1 2 + 2 3 + 3) 

Then,

1 + 1 + 2 + 2 + 3 + 3 =  (1 + 2 + 3) +  (1 + 2 + 3)
(211)
= 0

(ii) We have to check that a.  is linearly independent and b.   =  .

a.

 (1−1 0) +  (0 1−1) = ¡  −+  − ¢
= 0

implies that  =  = 0.

b. Taken (1 2 3) ∈  , we want to find   ∈ R such that (1 2 3) =  (1−1 0) +
 (0 1−1) = ¡  −+  − ¢

, i.e., we want to find   ∈ R such that⎧⎪⎪⎨⎪⎪⎩
1 = 

2 = −+ 

3 = −
1 + 2 + 3 = 0⎧⎨⎩ −2 − 3 = 

2 = −+ 

3 = −
Then,  = −2 − 3  = −3 is the (unique) solution to the above system.

5.

1. 0 ∈M ( ) : 0 = 0 = 0.
2. ∀  ∈ R and ∀0 ∈ C,

( + 0) = + 0 =  + 0 =  +0 =  ( + 0) 

6.

i. 0 ∈  +  , because 0 ∈  and 0 ∈ 

ii. Take   ∈  and 1 2 ∈  +  . Then there exists 1 2 ∈  and 1 2 ∈  such that

1 = 1 + 1 and 2 = 2 + 2. Therefore,

1 + 2 = 
¡
1 + 1

¢
+ 

¡
2 + 2

¢
=
¡
1 + 2

¢
+
¡
1 + 2

¢ ∈  + 

because  and  are vector spaces and therefore 1 + 1 ∈  and 2 + 2 ∈  .

7.

We want to show that if
P3

=1  = 0 then  = 0 for all . Note that
P3

=1  = (1 1 +

2 1 + 2 + 3) = 0, which implies the desired result.

8.

We want to apply Definition ??: Consider a vector space  of dimension  and two bases

v =
©

ª
=1

and u =
©

ª
=1

of  . Then,

 =
£ £

1
¤
v


£

¤
v

 []v
¤ ∈M ( ) 

is called the change-of-basis matrix from the basis v to the basis u. Then in our case, the

change-of-basis matrix from  to  is

 =
£ £

1
¤


£
2
¤


¤ ∈M (2 2) 
Moreover,using also Proposition ??, the change-of-basis matrix from  to  is

 =
£ £

1
¤


£
2
¤


¤
= −1

Computation of
£
1
¤

 We want to find  and  such that 1 = 1 + 2, i.e., (1 0) =

 (1 2) +  (3 5) =
¡
+ 3 2+ 5

¢
 i.e.,⎧⎨⎩ + 3 = 1

2+ 5 = 0
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whose solution is  = −5  = 2
Computation of

£
2
¤

 We want to find  and  such that 2 = 1 + 2, i.e., (0 1) =

 (1 2) +  (3 5) =
¡
+ 3 2+ 5

¢
 i.e.,⎧⎨⎩ + 3 = 0

2+ 5 = 1½
+ 3 = 0

2+ 5 = 1

whose solution is  = 3  = −1 Therefore,

 =

∙ −5 3

2 −1
¸


Since  is the canonical basis, we have

 = {1 = (1 2) 2 = (3 5)}

 =

∙
1 3

2 5

¸


Finally ∙
1 3

2 5

¸−1
=

∙ −5 3

2 −1
¸

as desired.

9.

Easiest way: use row and column operations to change  to a triangular matrix.

det = det

⎡⎢⎢⎢⎢⎣
6 2 1 0 5

2 1 1 −2 1

1 1 2 −2 3

3 0 2 3 −1
−1 −1 −3 4 2

⎤⎥⎥⎥⎥⎦ = £1 ↔ 3
¤
= −det

⎡⎢⎢⎢⎢⎣
1 1 2 −2 3

2 1 1 −2 1

6 2 1 0 5

3 0 2 3 −1
−1 −1 −3 4 2

⎤⎥⎥⎥⎥⎦

= −det

⎡⎢⎢⎢⎢⎣
1 1 2 −2 3

2 1 1 −2 1

6 2 1 0 5

3 0 2 3 −1
−1 −1 −3 4 2

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎣
−21 +2 → 2

−61 +3 → 3

−31 +4 → 4

1 +5 → 5

⎤⎥⎥⎦ = −det
⎡⎢⎢⎢⎢⎣
1 1 2 −2 3

0 −1 −3 2 −5
0 −4 −11 12 −13
0 −3 −4 9 −10
0 0 −1 2 5

⎤⎥⎥⎥⎥⎦

= −det

⎡⎢⎢⎢⎢⎣
1 1 2 −2 3

0 −1 −3 2 −5
0 −4 −11 12 −13
0 −3 −4 9 −10
0 0 −1 2 5

⎤⎥⎥⎥⎥⎦ =
∙
42 +3 → 3

32 +4 → 4

¸
= −det

⎡⎢⎢⎢⎢⎣
1 1 2 −2 3

0 −1 −3 2 −5
0 0 1 4 7

0 0 5 3 5

0 0 −1 2 5

⎤⎥⎥⎥⎥⎦

= −det

⎡⎢⎢⎢⎢⎣
1 1 2 −2 3

0 −1 −3 2 −5
0 0 1 4 7

0 0 5 3 5

0 0 −1 2 5

⎤⎥⎥⎥⎥⎦ =
∙−53 +4 → 4

3 +5 → 5

¸
= −det

⎡⎢⎢⎢⎢⎣
1 1 2 −2 3

0 −1 −3 2 −5
0 0 1 4 7

0 0 0 −17 −30
0 0 0 6 12

⎤⎥⎥⎥⎥⎦

= −det

⎡⎢⎢⎢⎢⎣
1 1 2 −2 3

0 −1 −3 2 −5
0 0 1 4 7

0 0 0 −17 −30
0 0 0 6 12

⎤⎥⎥⎥⎥⎦ =
∙
6

17
4 +5 → 5

¸
= −det

⎡⎢⎢⎢⎢⎣
1 1 2 −2 3

0 −1 −3 2 −5
0 0 1 4 7

0 0 0 −17 −30
0 0 0 0 24

17

⎤⎥⎥⎥⎥⎦
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= −det

⎡⎢⎢⎢⎢⎣
1 1 2 −2 3

0 −1 −3 2 −5
0 0 1 4 7

0 0 0 −17 −30
0 0 0 0 24

17

⎤⎥⎥⎥⎥⎦ = −(1)(−1)(1)(−17)(2417) =⇒ det = −24

10.

Observe that it cannot be 4 as () ≤ min{##}. It’s easy to check that
() = 3 by using elementary operations on rows and columns of  :

−23 +1 → 1, 4 + 1 → 1, 4 + 3 → 3, 1 + 3 → 3, −2 + 3 → 3,

to get ⎡⎣ − 1 1 0 0

0 0 1 

0 0 0 −1

⎤⎦
which has the last three columns independent for any .

11.

Defined

 : R3 → R (1 2 3) 7→ 1 − 2

it is easy to check that  is linear and  = ker a vector space. Moreover,

[] =
£
1 −1 0

¤


Therefore, dimker  = 3− rank [] = 3− 1 = 2 1 = (1 1 0) and 2 = (0 0 1) are independent

elements of  . Therefore, from Remark 200, 1 2 are a basis for  .

12.

Linearity is easy. By definition,  is linear  ∀  ∈ R4 and ∀  ∈ R (+) = ()+()

Then,

() + () =

=(11+21+2+31+2+3+4)++(11+21+2+31+2+3+4) =

=(1+11+2+1+21+2+3+1+2+31+2+3+4+1+2+3+4) =

= (+ )

and then  is linear.

[] =

⎡⎢⎢⎣
1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

⎤⎥⎥⎦ 
Therefore, dimker  = 4− rank [] = 4− 4 = 0 Moreover, dim Im  = 4 and the column vectors

of [] are a basis of Im .

13.

Proposition. Assume that  ∈  () and ker  = {0}. Then,

∀ ∈  there exists a unique  ∈  such that  () = 

Proof.

Since  ∈ Im, by definition, there exists  ∈  such that

 () =  (21.2)

Take 0 ∈  such that  (0) = . We want to show that

 = 0 (21.3)
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Observe that

 ()−  (0)
()
= −  = 0 (21.4)

where () follows from (212) and (213).

Moreover,

 ()−  (0)
()
=  ( − 0)  (21.5)

where () follows from the assumption that  ∈ L ().
Therefore,

 ( − 0) = 0

and, by definition of ker ,

 − 0 ∈ ker  (21.6)

Since, by assumption, ker  = {0}, from (216), it follows that

 − 0 = 0

14.

Both  and  are ker of linear function; therefore  ,  and  ∩ are vector subspaces of

R4. Moreover

 ∩ =

⎧⎨⎩(1 2 3 4) ∈ R4 :
⎧⎨⎩ 1 − 2 + 3 − 4 = 0

1 + 2 + 3 + 4 = 0

⎫⎬⎭
rank

∙
1 −1 1 −1
1 1 1 1

¸
= 2

Therefore, dimker  = dim ∩ = 4− 2 = 2.
Let’s compute a basis of  ∩ :⎧⎨⎩ 1 − 2 = −3 + 4

1 + 2 = −3 − 4

After taking sum and subtraction we get following expression⎧⎨⎩ 1 = −3

2 = −4
A basis consists two linearly independent vectors. For example,

{(−1 0 1 0)  (0−1 0 0)} 
15.

By proposition 139, we have to show that

1. 0 ∈ −1 ( ) 

2. ∀  ∈ R and 1 2 ∈ −1 ( ) we have that 1 + 2 ∈ −1 ( ).

1.

 (0)
∈L()
= 0

 vector space∈ 

,

2.Since 1 2 ∈ −1 ( ),


¡
1
¢
 
¡
2
¢ ∈ (21.7)

Then


¡
1 + 2

¢ ∈L()
= 

¡
1
¢
+ 

¡
2
¢ ()∈ 

where () follows from (217) and the fact that  is a vector space.

16.
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Observe that

det

⎡⎢⎢⎢⎢⎣
11 12 0 0 0

21 22 0 0 0

5 6 11 12 0

7 8 21 22 0

11 12 0 0 

⎤⎥⎥⎥⎥⎦ = det · det · 
Then, if  6= 0then the rank of both matrix of coefficients and augmented matrix is 5 and the

set of solution to the system is an affine subspace of R6 of dimension 1 If  = 0then the system is⎡⎢⎢⎢⎢⎣
1 11 12 0 0 0

2 21 22 0 0 0

3 5 6 11 12 0

4 7 8 21 22 0

1 11 12 0 0 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
1
2
3
4
5
6

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
0

1

2

3

0

⎤⎥⎥⎥⎥⎦ 

which is equivalent to the system

⎡⎢⎢⎣
1 11 12 0 0 0

2 21 22 0 0 0

3 5 6 11 12 0

4 7 8 21 22 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

1
2
3
4
5
6

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎣
0

1

2

3

⎤⎥⎥⎦ 

whose set of solution is an affine subspace of R6 of dimension 2
17.

[]
u
v :=

∙∙


µ
1

0

¶¸
u



∙


µ
0

1

¶¸
u

¸
=

∙∙
1

1

¸
u



∙
1

−1
¸
u

¸
=

∙
1 −3
0 2

¸


[]v =

∙
3

4

¸

[ ()]u =

∙µ
7

−1
¶¸

u

=

∙ −9
8

¸

[]
u
v · []v =

∙
1 −3
0 2

¸ ∙
3

4

¸
=

∙ −9
8

¸
18.

Let

 ∈ N such that    and

a vector subspace  of R such that dim = 

be given. Then, there exists  ∈ L (RR) such that Im  = .

Proof. Let
©

ª
=1

be a basis of  ⊆ R. Take  ∈ L (RR) such that

∀ ∈ {1  }  2
¡

¢
= 

where  is the —th element in the canonical basis in R
. Such function does exists and, in fact,

it is unique as a consequence of a Proposition in the Class Notes that we copy below:

Let  and  be finite dimensional vectors spaces such that  =
©
1  

ª
is a basis of  and©

1  
ª
is a set of arbitrary vectors in  . Then there exists a unique linear function  :  → 

such that ∀ ∈ {1  },  ¡¢ =  - see Proposition 273, page 82.

Then, from the Dimension theorem

dim Im = − dimker  ≤ 

Moreover,  = span
©

ª
=1
⊆ Im. Summarizing,

 ⊆ Im  , dim =  and dim Im ≤ 
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and therefore

dim Im = 

Finally, from Proposition 179 in the class Notes since  ⊆ Im  , dim =  and dim Im = 

we have that Im = , as desired.

Proposition 179 in the class Notes says what follows: Proposition. Let  be a subspace of an

−dimensional vector space  . Then, 1. dim ≤ ; 2. If dim = , then  =  .

19.

[ | ] =

⎡⎢⎢⎣
 1 1

1 1 

2 1 3

3 2 

⎤⎥⎥⎦ =⇒ £
1 ↔ 2

¤
=⇒

⎡⎢⎢⎣
1 1 

 1 1

2 1 3

3 2 

⎤⎥⎥⎦
⎡⎢⎢⎣
1 1 

 1 1

2 1 3

3 2 

⎤⎥⎥⎦ =⇒ −1 +2 → 2

−21 +3 → 3

−31 +4 → 4
=⇒

⎡⎢⎢⎣
1 1 

0 1−  1− 2

0 −1 

0 −1 −2

⎤⎥⎥⎦ := [0 () | 0 ()]
Since

det

⎡⎣1 1 

0 −1 

0 −1 −2

⎤⎦ = 3
We have that if  6= 0, then rank  ≤ 2  3 = rank [0 () | 0 ()], and the system has no

solutions. If  = 0, [0 () | 0 ()] becomes⎡⎢⎢⎣
1 1 0

0 1 1

0 −1 0

0 −1 0

⎤⎥⎥⎦
whose rank is 3 and again the system has no solutions.

20.

[ () | ()] ≡

⎡⎢⎢⎣
1 0  − 1

1−  2−  

1  1

1  − 1 0

⎤⎥⎥⎦
det

⎡⎣ 1 0  − 1
1  1

1  − 1 0

⎤⎦ = 2− 2
If  6= 1, the system has no solutions. If  = 1

[ (1) | (1)] ≡

⎡⎢⎢⎣
1 0 0

0 1 1

1 1 1

1 0 0

⎤⎥⎥⎦
⎡⎣ 1 0 0

0 1 1

1 1 1

⎤⎦
∙
1 0 0

0 1 1

¸
Then, if  = 1, there exists a unique solution.

21.

The following Proposition is contained in the class Notes.
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Proposition 767 Let  be a vector space of dimension .

1. If  =
©
1  

ª ⊆  is a linearly independent set, then it is a basis of  ;

2. If span
¡
1  

¢
=  , then

©
1  

ª
is a basis of 

From that Proposition, it suffices to show that V is linearly independent, i.e., given ()=1 ∈ R

if
X
=1


 = 0 (21.8)

then

()

=1 = 0

Now, for any  ∈ {1  }, we have

0
(1)
=

Ã
X
=1




!


(2)
=

X
=1




(3)
=  

where (1) follows from (218) 

(2) follows from properties of the scalar product;

(3) follows from (207) 

22.

a. Let  ∈  . By assumption, () ∈  and  () ∈  and since  is a subspace,

() +  () ∈ 1 . Therefore, ( +  )() = () +  () ∈ , as desired.

b. Let  ∈  . By assumption,  () ∈  . Then ( ◦  )() = ( ()) ∈  since  is

-invariant.

c. Let  ∈ . By assumption and recalling Proposition 138 in Villanacci(20 September 2012),

( )() =  () ∈ .

23.

The set of 2× 2 symmetric real matrices is

S = © ∈M (2 2) :  = 
ª


We want to show that

i. 0 ∈ S and
ii. for any   ∈ R, for any  ∈ S, +  ∈ S.
i. 0 = 0−
2.(+ )


=  +  = + 

We want to show that

B :=
½∙

1 0

0 0

¸


∙
0 0

0 1

¸


∙
0 1

1 0

¸¾
is a basis of S and therefore dimS = 3. B is clearly linearly independent. Moreover,

S =
½
 ∈M (2 2) : ∃   ∈ R such that  =

∙
 

 

¸¾


and ∙
 

 

¸
= 

∙
1 0

0 0

¸
+ 

∙
0 0

0 1

¸
+ 

∙
0 1

1 0

¸


i.e., span (B)) = S, as desired.
24.

a. [⊇] Taken  ∈ we want to find 1 2 ∈  such that  = 1 + 2take 1 =  and

2 = 0 ∈

[⊆] Take 1 2 ∈ . Then 1 + 2 ∈ by definition ofvector space.

1 see Proposition 138 in Villanacci(20 September, 2012)
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b. [⊇] Let  ∈ . Then 1

 ∈ and 

¡
1


¢
 ∈  .

[⊆] It follows from the definition of vector space.

25.

The isomorphism is  : P (R)→ R+1

 () =

X
=0


 7→ ()


=0 

Indeed ,  is linear

...

and defined  : R+1 → P (R),

()

=0 →  () =

X
=0




we have that  ◦  = |P(R) and  ◦  = |R+1
....



288 CHAPTER 21. SOLUTIONS

21.2 Some topology in metric spaces

21.2.1 Basic topology in metric spaces

1.

To prove that 0 is a metric, we have to check the properties listed in Definition 349.
a. 0( ) ≥ 0 0( ) = 0⇔  = 

By definition of 0( ) it is always going to be positive as ( ) ≥ 0. Furthermore, 0( ) =
0⇐⇒ ( ) = 0⇐⇒  = .

b. 0( ) = 0( )
Applying the definition

0( ) = 0( )⇐⇒ ( )

1 + ( )
=

( )

1 + ( )

but ( ) = ( ) so we have

( )

1 + ( )
=

( )

1 + ( )

c. 0( ) ≤ 0( ) + 0( )
Applying the definition

0( ) ≤ 0( ) + 0( )⇐⇒ ( )

1 + ( )
≤ ( )

1 + ( )
+

( )

1 + ( )

Multiplying both sides by [1 + ( )][1 + ( )][1 + ( )]

( )[1 + ( )][1 + ( )] ≤ ( )[1 + ( )][1 + ( )] + ( )[1 + ( )][1 + ( )]

Simplifying we obtain

( ) ≤ ( ) + ( ) + [[1 + ( )][1 + ( )][1 + ( )] + 2[1 + ( )][1 + ( )]]

which concludes the proof.

2.

It is enough to show that one of the properties defining a metric does not hold.

It can be  ( ) = 0 and  6= . Take

 () = 0∀ ∈ [0 1] 

and

 () = −2+ 1
Then, Z 1

0

(−2+ 1)  = 0

It can be  ( )  0Consider the null function and the function that take value 1 for all  in

[0; 1]. Then (0 1) = − R 1
0
1  by linearity of the Riemann integral, which is equal to −1. Then,

(0 1)  0.

3.

Define  = (1 1)× (2 2) and take 0 :=
¡
01 

0
2

¢ ∈ . Then, for  ∈ {1 2}, there exist   0
such that 0 ∈ 

¡
0  

¢ ⊆ ( ). Take  = min {1 2}. Then, for  ∈ {1 2}, 0 ∈ 
¡
0  

¢ ⊆
( ) and, defined  =.

¡
01 

¢ × 
¡
02 

¢
, we have that 0 ∈  ⊆ . It then suffices to show

that 
¡
0 

¢ ⊆ . Observe that
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 ∈ 
¡
0 

¢⇔ 
¡
 0

¢
 


¡¡
01 0

¢
 (1 0)

¢
=

q
(01 − 1)

2
=
¯̄
01 − 1

¯̄


and


¡¡
01 0

¢
 (1 0)

¢
=

q
(01 − 1) ≤

q
(01 − 1)

2
+ (01 − 1)

2
= 

¡
 0

¢


4.

Show the second equality in Remark 388:

∩+∞=1
µ
− 1


1



¶
= {0}

5.

 =

½
−1+1

2
−1
3

1

4
−1
5

1

6
 

¾
The set is not open: it suffices to find  ∈  and such that  ∈  ; take for example −1. We

want to show that it false that

∃  0 such that (−1− −1 + ) ⊆ 

In fact, ∀  0 −1 − 
2
∈ (−1− −1 + ), but −1 − 

2
∈ . The set is not closed. It suffices

to show that F () is not contained in , in fact that 0 ∈  (obvious) and 0 ∈ F (). We want to
show that ∀  0,  (0 ) ∩  6= ∅In fact, (−1) 1


∈  (0 ) if  is even and (−1) 1


= 1


 . It

is then enough to take  even and   1

.

6.

 = (0 10)

The set is (R 2) open, as a union of infinite collection of open sets. The set is not closed,
because  is not open. 10 or 0 do not belongs to ()

7.

The solution immediately follow from Definition of boundary of a set: Let a metric space ()

and a set  ⊆  be given.  is an boundary point of  if

any open ball centered in  intersects both  and its complement in, i.e., ∀ ∈ R++  ( )∩
 6= ∅ ∧  ( ) ∩  6= ∅
As you can see nothing changes in definition above if you replace the set with its complement.

8.

 ∈ (F ()) ⇔  ∈ (F ())
⇔ ¬ ¡∀ ∈ R++  ( ) ∩  6= ∅ ∧  ( ) ∩  6= ∅¢
⇔ ∃ ∈ R++ such that  ( ) ∩  = ∅ ∨  ( ) ∩  6= ∅
⇔ ∃ ∈ R++ such that  ( ) ⊆  ∨  ( ) ⊆ 

⇔  ∈   ∨  ∈  
(1)⇔ ∃∗ ∈ R++ such that either a.  ( ∗) ⊆   or b.  ( ∗) ⊆  

(21.9)

where (1) follows from the fact that the Interior of a set is an open set.

If case a. in (219) holds true, then, using Lemma 482,  ( ∗) ⊆ (F ()) and similarly for
case b., as desired.

9.
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  Cl () F ()  ()  () open or closed

 = Q ∅ R R R ∅ neither open nor closed

 = (0 1) (0 1) [0 1] {0 1} [0 1] ∅ open

 =
©
1


ª
∈N+ ∅  ∪ {0}  ∪ {0} {0}  neither open nor closed

10.

a.

Take  = N. Then,   = ∅, Cl (∅) = ∅, and Cl ( ) = ∅ 6= N =.
b.

Take  = N. Then, Cl () = N,  N = ∅, and  Cl () = ∅ 6= N =.

11.

a.

True. If  is an open bounded interval, then ∃  ∈ R,    such that  = ( ). Take  ∈ 

and  = min {|− |  |− |}. Then  ( ) ⊆ ( ).
b.

False. (0 1) ∪ (2 3) is an open set, but it is not an open interval.
c.

False. Take  := {0 1}. 0 ∈ F (), but 0 ∈  ()

d. 

False. Take  (0 1)  1
2
∈  () 0 but 1

2
∈ F () 

12.

Recall that: A sequence ()∈N ∈ ∞ is said to be ( ) convergent to 0 ∈  (or convergent

with respect to the metric space ( ) ) if ∀  0∃0 ∈ N such that ∀  0  ( 0)  .

a.

()∈ ∈ R∞ such that ∀ ∈  :  = 1

Let   0 then by definition of ()∈ , ∀  0, ( 1) = 0  . So that

lim
→∞

 = 1

b.

()∈ ∈ R∞ such that ∀ ∈  :  =
1


Let   0. Because  is unbounded, ∃0 ∈  , such that 0 
1

. Then ∀  0, ( 0) =

1



1
0

 . Then, by definition of a limit, we proved that

lim
→∞

 = 0

13.

Take ()∈N ∈ [0 1]∞ such that  → 0; we want to show that 0 ∈ [0 1]. Suppose otherwise,
i.e., 0 ∈ [0 1].
Case 1. 0  0 By definition of convergence, chosen  = −0

2
 0, there exists  ∈ N such

that ∀  ,  ( 0)   i.e., | − 0|   = −0
2
, i.e., 0 +

0
2

   0 − 0
2
= 0

2
 0.

Summarizing, ∀  ,  ∈ [0 1]  contradicting the assumption that ()∈N ∈ [0 1]∞ 

Case 2. 0  1. Similar to case 1.

14.

This is Example 7.15, page 150, Morris (2007):

1. In fact, we have the following result: Let ( ) be a metric space and  = {1  } any
finite subset of Then  is compact, as shown below.

Let ,  ∈  be any family of open sets such that  ⊆ ∪∈. Then for each  ∈ , there

exists  such that  ∈  . Then  ⊆ 1 ∪2 ∪  ∪ . Therefore  is compact.
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2. Conversely, let  be compact. Then the family of singleton sets  = {},  ∈  is such

that each  is open and  ⊆ ∪∈. Since  is compact, there exists 1  2    such that

 ⊆ 1 ∪2 ∪  ∪ , that is,  ⊆ {1  }. Hence,  is finite.

15.

In general it is false. For example in a discrete metric space: see previous exercise.

16.

Take an open ball  ( ). Consider S = ©

¡
 

¡
1− 1



¢¢ª
∈N\{01}. Observe that  is an

open cover of  ( ); in fact ∪∈N\{01}
¡
 

¡
1− 1



¢¢
=  ( ) as shown below.

[⊆] 0 ∈ ∪∈N\{01}
¡
 

¡
1− 1



¢¢⇔ ∃0N\ {0 1} such  ∈ 
³
 

³
1− 1

0

´´
⊆  ( ).

[⊇] Take 0 ∈  ( ). Then,  ( 0)  . Take  such that  (0 )  
³
1− 1

0

´
, i.e.,

  
−(0) (and   1), then 0 ∈ 

¡
 

¡
1− 1



¢¢
.

Consider an arbitrary subcover of S, i.e.,

S 0 =
½


µ
 

µ
1− 1



¶¶¾
∈N

with#N =  ∈ N. Define ∗ = min { ∈ N}. Then ∪∈N
¡
 

¡
1− 1



¢¢
= 

¡
 

¡
1− 1

∗
¢¢
,

and if  (0 ) ∈ ¡ ¡1− 1
∗
¢
 
¢
, then 0 ∈  ( ) and 0 ∈ ∪∈N

¡
 

¡
1− 1



¢¢
.

17.

1st proof.

We have to show that  ( ∪) ⊆  () ∪  () and  () ∪  () ⊆  ( ∪).
To prove the first inclusion, take  ∈  ( ∪); then ∃ ∈  ∪  such that () = . Then

either  ∈  or  ∈  that implies () =  ∈  or () =  ∈ . In both case  ∈ () ∪ ()
We now show the opposite e inclusion. Let  ∈ () ∪ (), then  ∈ () or  ∈ (), but

 ∈ () implies that ∃ ∈  such that () = . The same implication for  ∈ (). As results,

 = () in either case with  ∈  ∪ i.e.  ∈ ( ∪).
2nd proof.

 ∈ ( ∪)⇔
⇔ ∃ ∈  ∪ such that () = 

⇔ (∃ ∈  such that () = ) ∨ (∃ ∈  such that () = )

⇔ ( ∈ ()) ∨ ( ∈ ())

⇔  ∈ () ∪ ()

18.:

First proof. Take  = sin  = [−2 0]   = [0 2].

Second proof. Consider

 : {0 1}→ R  7→ 1

Then take  = {0} and  = {1}. Then  ∩ = ∅, so ( ∩) = ∅. But as () = () = {1},
we have that () ∩ () = {1} 6= ∅.

19.

Take  ∈ R and define the following function
 :  →   () = 

It suffices to show that the preimage of every open subset of the domain is open in the codomain.

The inverse image of any open set  is either  (if  ∈ ) or ∅ (if  ∈ ), which are both open

sets.

20.
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a.

i. R+ is not bounded, then by Proposition 444 it is not compact.
ii.  ( ) is compact.

From Proposition 444, it suffices to show that the set is closed and bounded.

 ( ) is closed from Proposition 401.

 ( ) is bounded because   ( ) = { ∈ R :  ( ) ≤ } ⊆  ( 2).

Let’s show in detail the equality.

i.   ( ) ⊆ .

The function  : R → R  () =  ( ) :=
³P

=1 ( − )
2
´ 1
2

is continuous. Therefore,

 = −1 ([0 ]) is closed. Since  ( ) ⊆ , by definition of closure, the desired result follows.

ii.   ( ) ⊇ .

From Corollary 485, it suffices to show that   ( ) ⊇ . If  ( )  , we are done.

Suppose that  ( ) = We want to show that for every   0 we have that  ( ) ∩ ( ) 6=
∅If   , then  ∈  ( ) ∩  ( ). Now take,  ≤ . It is enough to take a point “very

close to  inside  ( )”". For example, we can verify that  ∈  ( ) ∩  ( ), where  =

+
¡
1− 

2
) ( − )

¢
Indeed,

 ( ) =
³
1− 

2
) ( )

´
= (1− 

2
) =  − 

2
 

and

 ( ) =


2
 ( ) =



2
 =



2
 

c.

See solution to Exercise 5, where it was shown that  is not closed and therefore using Proposition

444, we can conclude  is not compact.

21.

Observe that given for any  ∈ {1 }  the continuous functions  : R → R and  = ()


=1
,

we can define

 := { ∈ R :  () ≥ 0} 
Then  is closed, because of the following argument:

 = ∩=1−1 ([0+∞)) ; since  is continuous, and [0+∞) is closed, then −1 ([0+∞)) is
closed in R; then  is closed because intersection of closed sets.

22.

The set is closed, because  = −1 ({0}) 
The set is not compact: take  as the constant function.

23.

Let =  (1 ) be an open ball around the value 1 of the codomain, with   1. −1( ) =
{0} ∪(1 ) is the union of an open set and a closed set, so is neither open nor closed.

24.

To apply the Extreme Value Theorem, we first have to check if the function to be maximized is

continuous. Clearly, the function
P

=1  is continuous as is the sum of affine functions. Therefore,

to check for the existence of solutions for the problems we only have to check for the compactness

of the restrictions.

The first set is closed, because it is the inverse image of the closed set [0 1] via the continuous

function kk. The first set is bounded as well by definition. Therefore the set is compact and the
function is continuous, we can apply Extreme Value theorem. The second set is not closed, therefore

it is not compact and Extreme Value theorem can not be applied. The third set is unbounded, and

therefore it is not compact and the Extreme Value theorem can not be applied.

25.

[⇐]
Obvious.

[⇒]
We want to show that  6= 0⇒  is not bounded, i.e., ∀ ∈ R++∃ ∈  such that k ()k   .
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Since  6= 0∃ ∈ \{0} such that () 6= 0. Define  = 2
k()k . Then

k ()k =
°°°°µ 2

k ()k


¶°°°°


=
2

k ()k
k ()k = 2  

as desired.

26.

⇒ 

Take an arbitrary  ∈ R; if { ∈  :  ()  } = −1 ((−∞ )) = ∅, we are done. Otherwise,
take 0 ∈ −1 ((−∞ )), Then, −  (0) :=   0 and by definition of upper semicontinuity , we

have

∃  0 such that  (− 0)   ⇒  ()   (0) +  =  (0) + −  (0) = 

i.e.,  (0 ) ⊆ −1 ((−∞ )), i.e., the desired result.

⇔ 

{ ∈  :  ()  } =  \ { ∈  :  () ≥ }.
⇒ 

We want to show that

∀0 ∈  ∀  0∃  0 such that  (0 ) ⊆ −1 ((−∞  (0) + )) 

But by assumption −1 ((−∞  (0) + )) is an open set and contains 0 and therefore the

desired result follows.

27.

Take  ∈ {}+ Then there exists  ∈  such that  = +  and since  is open there exists

  0 such that

 ∈  ( ) ⊆  (21.10)

We want to show that

i. {}+ ( ) is an open ball centered at  = + , i.e., {}+ ( ) =  (+  ), and

ii.  (+  ) ⊆ {}+

i.

[⊆]  ∈ {} +  ( ) ⇔ ∃ ∈  such that  ( )   and  =  +  ⇒  ( + ) =

 (+  + )

=  ( )   ⇒  ∈  (+  ).

[⊇]  ∈  (+  )⇔  ( + )  Now since  = +( − ) and  ( −  ) = k − − k =
k − (+ )k =  ( + )  , we get the desired conclusion.

ii.

 ∈  (+  ) ⇔ k − (+ )k  . Since  =  + ( − ) and k( − )− k  , i.e.,

 −  ∈  ( )
(2110)

⊆ , we get the desired result.

28.

By assumption, for any  ∈ {1 2} and for any { } ⊆  there exists  ∈  such that, up

to a subsequence  → Take {} ⊆ 1 + 2 = . Then ∀  = 1 + 2 with  ∈ 

 = 1 2Thus taking converging subsequences of ( ),  ∈ {1 2}  we get  → 1 + 2 ∈  as

desired.

29.

a. We want to show that ∀1 2 ∈ , (1) = (2)⇒ 1 = 2. Indeed

0 = ((1) (2)) = (1 2)⇒ 1 = 2

b. It follows from a.

c. We want to show that ∀0 ∈ ∀  0∃  0 such that

1( 0)   ⇒ 2(() (0))  

Take  = . Then,

1( 0)  ⇒ 2(() (0))  
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21.2.2 Correspondences

1.

Since  is a continuous function, from the Extreme Value Theorem , we are left with showing

that for every ()   () is non empty and compact,i.e.,  is non empty valued and compact

valued.

 =
³




´
=1
∈  () 

 () is closed because is the intersection of the inverse image of two closed sets via continuous

functions.

 () is bounded below by zero.

 () is bounded above because for every   ≤ −0 6= 
0

0


≤ 


 where the first inequal-

ity comes from the fact that  ≤  and the second inequality from the fact that  ∈ R++ and
 ∈ R+
2.

()Consider 0 00 ∈  () We want to show that ∀ ∈ [0 1]   := (1− )0+00 ∈  () 

Observe that  (0) =  (00) := ∗. From the quasiconcavity of  we have 
¡

¢ ≥ ∗ We are

therefore left with showing that  ∈  ()  i.e.,  is convex valued. To see that, simply, observe

that  = (1− ) 0 + 00 ≤ (1− ) +  = 

() Assume otherwise. Following exactly the same argument as above we have 0 00 ∈  () 

and  ≤  Since  is strictly quasi concave, we also have that 
¡

¢
  (0) =  (00) := ∗

which contradicts the fact that 0 00 ∈  () 

3.

We want to show that for every () the following is true. For every sequence {( )} ⊆
R++ ×R++ such that
( )→ ()   ∈  ( )   → 

it is the case that  ∈  () 

Since  ∈  ( ), we have that  ≤  Taking limits of both sides, we get  ≤ i.e.,

 ∈  () 

4.

()We want to show that ∀0 00 ∈  ()  ∀ ∈ [0 1]  it is the case that  := (1− ) 0+00 ∈
 ()  i.e.,  ∈  and ∀ ∈   ≥ 

 ∈  simply because  is convex.

 := (1− ) 0 + 00
000∈()
≥ (1− )  +  = 

()Suppose not; then ∃0 00 ∈  such that 0 6= 00 and such that

∀ ∈  0 = 00   (1) 

Since  is strictly convex,∀ ∈ (0 1)   := (1− ) 0 + 00 ∈   Then, ∃  0 such that


¡
 

¢ ⊆  Consider ∗ :=  + 
2
1 where 1 := (1  1) ∈ R   ¡∗ ¢ = qP

=1

¡

2

¢2
=



2
√

 Then, ∗ ∈ 

¡
 

¢ ⊆  and, since À 0, we have that ∗   = 0 = 00 contradicting
(1) 

5.

This exercise is taken from Beavis and Dobbs (1990), pages 74-78.

21.510.50

3.75

2.5

1.25

0

-1.25

x

y

x

y
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For every  ∈ [0 2], both 1 () and 2 () are closed, bounded intervals and therefore convex

and compact sets. Clearly 1 is closed and 2 is not closed.

1and 2 are clearly UHC and LHC for  6= 1 Using the definitions, it is easy to see that for
 = 1 1 is UHC, and not LHC and 2 is LHC and not UHC.

6.

53.752.51.250

1

0.5

0

-0.5

-1

x

y

x

y

For every   0,  is a continuous function. Therefore, for those values of   is both UHC

and LHC.

 is UHC in 0 For every neighborhood of [−1 1] and for any neighborhood of {0} in R+
 () ⊆ [−1 1] 

 is not LHC in 0 Take the open set  =
¡
1
2
 3
2

¢
;we want to show that ∀  0 ∃∗ ∈ (0 )

such that  (∗) ∈ ¡1
2
 3
2

¢
 Take  ∈ N such that 1


  and ∗ = 1


 Then 0  ∗   and

sin ∗ = sin = 0 ∈ ¡1
2
 3
2

¢


Since  is UHC and closed valued, from Proposition 16 is closed.

7.

 is not closed. Take  =
√
2

2
∈ [0 1] for every  ∈ N Observe that  → 0 For every

 ∈ N  = −1 ∈  () and  → −1 But −1 ∈  (0) = [0 1] 

 is not UHC. Take  = 0 and a neighborhood  =
¡−1

2
 3
2

¢
of  (0) = [0 1]  Then ∀ 

0 ∃∗ ∈ (0 ) \Q Therefore,  (∗) = [−1 0] * 

 is not LHC. Take  = 0 and the open set  =
¡
1
2
 3
2

¢
Then  (0) ∩ ¡1

2
 3
2

¢
= [0 1] ∩ ¡1

2
 3
2

¢
=¡

1
2
 1
¤ 6= ∅ But, as above, ∀  0 ∃∗ ∈ (0 ) \Q . Then  (∗) ∩  = [−1 0] ∩ ¡1

2
 3
2

¢
= ∅

8.

(This exercise is taken from Klein, E. (1973), Mathematical Methods in Theoretical Economics,

Academic Press, New York, NY, page 119).

Observe that 3 () =
£
2 − 2 2 − 1¤ 

32.521.510.50

7.5

5

2.5

0

-2.5

x

y

x

y

1 ([0 3]) =
©
( ) ∈ R2 :  ≥ 0× ≤ 3  ≥ 2 − 2  ≤ 2

ª
 1 ([0 3]) is defined in terms of

weak inequalities and continuous functions and it is closed and therefore 1 is closed. Similar

argument applies to 2 and 3

Since [−10 10] is a compact set such that 1 ([0 3]) ⊆ [−10 10]  from Proposition 17, 1 is

UHC. Similar argument applies to 2 and 3

1 is LHC. Take an arbitrary  ∈ [0 3] and a open set  with non-empty intersection with

1 () =
£
2 − 2 2¤  To fix ideas, take  =

£
 2 + 

¤
 with  ∈ ¡

0 2
¢
 Then, take  =³√


p
2 + 

´
 Then for every  ∈ 

©
2
ª ⊆  ∩ 1 () 
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Similar argument applies to 2 and 3

21.3 Differential Calculus in Euclidean Spaces

1 .

The partial derivative of  with respect to the first coordinate at the point (0 0), is - if it

exists and is finite -

lim
→0

( 0)− (0 0)

− 0

( 0)− (0 0)

− 0
=
22 − 0 + 20 − (220 − 00 + 20)

− 0

=
22 − 220 − (0 − 00)

− 0

= 2(+ 0)− 0

Then

1(0 0) = 40 − 0

The partial derivative of  with respect to the second coordinate at the point (0 0), is - if it

exists and is finite -

lim
→0

(0 )− (0 0)

 − 0

(0 )− (0 0)

 − 0
=
220 − 0 + 2 − (220 − 00 + 20)

 − 0

=
−0( − 0) + 2 − 20

 − 0

= −0 + ( + 0)

2(0 0) = −0 + 20
2 .

a.

The domain of  is R\{0} × R. As arctan is differentiable over the whole domain, we may
compute the partial derivative over the whole domain of  at the point ( ) - we omit from now

on the superscript 0

1( ) = arctan



+ (− 

2
)

1

1 + ( 

)2

= arctan



− 

1

1 + ( 

)2

2( ) = 
1



1

1 + ( 

)2
=

1

1 + ( 

)2

b.

The function is defined on R++ ×R. and

∀( ) ∈ R++ ×R ( ) =  ln

Thus as exp and  are differentiable over their whole respective domain, we may compute the

partial derivatives :

1( ) =



 ln = −1

2( ) = ln()
 = ln()

c.
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( ) = (sin(+ ))
√
+ = 

√
+ ln[sin(+)] in (0 3).

We check that sin(0 + 3)  0 so that the point belongs to the domain of the function. Both partial

derivatives in ( ) have the same expression since  is symmetric with respect to  and .

1( ) = 2( ) =

∙
1

2
√
+ 

ln[sin(+ )] +
√
+  cot(+ )

¸
(sin(+ ))

√
+

and

1(0 3) = 2(0 3) =

∙
1

2
√
3
ln[sin(3)] +

√
3 tan(3)

¸
(sin(3))

√
3

3.

a.

 (0 0) = lim
→0

 ( 0)−  (0 0)


= lim

→0
0


= 0;

b.

 (0 0) = lim
→0

 (0 )−  (0 0)


= lim

→0
0


= 0;

c.

Consider the sequences ()∈ and ()∈ such that ∀ ∈  :  =  =
1

. We have that

lim
→0

( ) = 0R2 , but

( ) =
1
2

1
2
+ 1

2



Then

lim
→0

( ) =
1

2
6= (0 0) = 0

Thus,  is not continuous in (0 0).

4 .

 0((1 1); (1 2)) = lim→0
(1 + 1 1 + 2)− (1 1)


=

lim→0
1



∙
2 + (1 + 2)

(1 + 1)2 + (1 + 2)2 + 1
− 2
3

¸
= · · ·

= −1 + 2

9

5 .

1st answer.

We will show the existence of a linear function (00)( ) = (− 0) + ( − 0) such that

the definition of differential is satisfied. After substituting, we want to show that

lim
()→(00)

|2 − 2 +  − 20 + 20 − 00 − (− 0)− ( − 0)|p
(− 0)2 + ( − 0)2

= 0

Manipulate the numerator of the above to get  = |( − 0)( + 0 −  + ) − ( − 0)( +

0 + − 0)|. Now the ratio  whose limit we are interested to obtain satisfies

0 ≤  ≤ |− 0||+ 0 − + |p
(− 0)2 + ( − 0)2

+
| − 0|| + 0 + − 0|p
(− 0)2 + ( − 0)2

≤ |− 0||+ 0 − + |+ | − 0|| + 0 + − 0|

For  = 20 + 0 and  = 0 − 20 we get the limit of  equal zero as required.

2nd answer.



298 CHAPTER 21. SOLUTIONS

As a polynomial function, we know that  is 1(R2) so we can “guess" that the derivative at
the point ( ) is the following linear application:

() : R
2 → R

 7→ (2+ −2 + )

µ
1
2

¶
In order to comply with the definition, we have to prove that

lim
→0

 (( ) + (1 2))−  (( ))− ()()

|||| = 0

 (( ) + (1 2))−  (( ))− ()() = (+ 1)
2 − ( + 2)

2 + (+ 1)( + 2)

− 2 + 2 −  − (2+ −2 + )

µ
1
2

¶
= 21 + 21 − 22 − 22 + 2 + 1 + 12

− (2+ )1 − (−2 + )2

= 21 − 22 + 12

= (||||2)

Or, we know that lim
→0

(||||2)
|||| = 0. Then we have proven that the candidate was indeed the

derivative of  at point ( ).

6 .

a) given 0 ∈ R we need to find 0 : R
 → R linear and 0 with lim→00() = 0. Take

0 =  and 0 ≡ 0. Then, the desired result follows.
b) projection is linear, so by a) is differentiable.

7.

From the definition of continuity, we want to show that ∀0 ∈ R ∀  0 ∃  0 such that

k− 0k   ⇒ k ()−  (0)k  . Defined [] = , we have that

k ()−  (0)k = k · − 0k =

=
°°1 () · (− 0)   

 () · (− 0)
°° (1)≤ P

=1

¯̄
 () · (− 0)

¯̄ (2)
≤

≤P
=1

°° ()
°° · k− 0k ≤  · ¡max∈{1} ©°° ()

°°ª¢ · k− 0k 

(21.11)

where (1) follows from Remark 56 and (2) from Proposition 53.4, i.e., Cauchy-Schwarz inequal-

ity.Take

 =


 · ¡max∈{1} { ()}¢ 
Then we have that k− 0k   implies that k− 0k · · ¡max∈{1} © ()

ª¢
 , and

from (2111)  k ()−  (0)k  , as desired.

8 .

( ) =

⎡⎣ cos cos  − sin sin 
cos sin  sin cos 

− sin cos  − cos sin 

⎤⎦ 
9 .

(  ) =

⎡⎣ 0()() 0 ()0()
0(())0() −(())2 0

exp((())(((()) + 0(())0())) 0 0

⎤⎦ 
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10 .

a.

 is differentiable over its domain since  7→ log  is differentiable over R++. Then from Proposition
610, we know that

[] = () =
£
1
31

 1
62

 1
23

¤
Then

[0 ] =
£
1
3

1
6

1
4

¤
By application of Remark 611, we have that

 0(0 ) = (0) =
1√
3

£
1
3

1
6

1
4

¤


⎛⎝11
1

⎞⎠ =

√
3

4

b.

As a polynomial expression,  is differentiable over its domain.

[] = () =
£
21 − 22 42 − 21 − 63 −23 − 62

¤
Then

[0 ] =
£
2 4 2

¤
and

 0(0 ) = (0) =
£
2 4 2

¤


⎛⎝− 1√
2

0
1√
2

⎞⎠ = 0

c.

[] = () =
£
12 + 21

12  21
12

¤
Then

[0 ] =
£
1 0

¤
and

 0(0 ) = (0) =
£
1 0

¤


µ
2

3

¶
= 2

11 .

Then since  is in ∞(R\{0}), we know that  admits partial derivative functions and that

these functions admit themselves partial derivatives in (  ). Since, the function is symmetric in

its arguments, it is enough to compute explicitly
2()

2
.




(  ) = −(2 + 2 + 2)−

3
2

Then
2

2
(  ) = −(2 + 2 + 2)−

3
2 + 32(2 + 2 + 2)−

5
2

Then ∀(  ) ∈ R3\{0},

2

2
(  ) +

2

2
(  ) +

2

2
(  ) = −3(2 + 2 + 2)−

3
2 + (32 + 32 + 32)(2 + 2 + 2)−

5
2

= −3(2 + 2 + 2)−
3
2 + 3(2 + 2 + 2)−

3
2

= 0

12 .

  ∈ 2(RR++)2

 : R3 → R3 (  ) =
³
()

()
 (()) +  ln(() + ())

´
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Since () ⊆ R++, (  ) 7→ ()

()
is differentiable as the ratio of differentiable functions. And

since (+ ) ⊆ R++ and that ln is differentiable over R++,  7→ ln(() + ()) is differentiable

by proposition 619. Then

(  ) =

⎡⎢⎣
0()
()

0 −0() ()
()2

0()0(()) +   0
0()+0()
()+()

0 0

⎤⎥⎦
13 .

a.

Since

 () =

µ
 +  ()

() + 

¶


then

[] =  () =

µ
 + 0 ()

0 () () + 1

¶


[0] =  (0) =

µ
1 + 0 (0)

0 (0) (0) + 1

¶


b.

Let us define  : R→ R2 () = ( ()). Then  =  ◦ . As  is differentiable on R and  is

differentiable on R2 we may apply the “chain rule".

0 = (0) ◦ 0

[] = () =

∙
1

0()

¸
[()] = ( ) =

∙
 1

1 

¸
Then

[0] =

∙
0 1

1 (0)

¸ ∙
1

0(0)

¸
=

∙
1 + 0(0)

1 + 0(0)(0)

¸
14 .

 ( ◦ ) () =  ()|=() · () 

 () =

∙
1 () 2 () 3 ()

1 () 2 () 3 ()

¸
|=()

 () =

⎡⎣ 1 () 2 () 3 ()

1 () 2 () 3 ()

1 0 0

⎤⎦
 ( ◦ ) () =

 1
(()()1) 2

(()()1) 3
(()()1)

1
(()()1) 2

(()()1) 3
(()()1)




1
() 2

() 3
()

1
() 2

() 3
()

1 0 0


=

=

∙
1 2 3

1 2 3

¸⎡⎣ 1 2 3

1 2 3

1 0 0

⎤⎦ =
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=

∙
1 ·1 +21 +3 1 ·2 +2 ·2 1 ·3 +2 ·3

1 ·1 +2 ·1 +3 1 ·2 +2 ·2 1 ·3 +2 ·3

¸


15 .

By the sufficient condition of differentiability, it is enough to show that the function  ∈ 1.

Partial derivatives are



= 2 +  and




= −2 +  — both are indeed continuous, so  is

differentiable.

16 .

i)  ∈ 1 as (  ) = (1+42+3 32+42+3 1+3+32) has continuous entries

(everywhere, in particular around (0 0 0))).

ii) (0 0 0) = 0 by direct calculation.

iii)  0 =


|(000) = 7 6= 0,  0 = 


|(000) = 10 6= 0 and  0 =



|(000) = 8 6= 0.

Therefore we can apply Implicit Function Theorem around (0 0 0) = (1 1 1) to get




= −

0


 0
= −78




= −

0


 0
= −710

17 .

a)

 =

∙
21 −22 2 3

2 1 1 −1
¸

and each entry of  is continuous; then  is 1. det( ) = 221 + 2
2
2 6= 0 except for

1 = 2 = 0. Finally,

() = −
∙
21 −22
2 1

¸−1 ∙
2 3

1 −1
¸
= − 1

221 + 2
2
2

∙
21 + 22 31 − 22
−22 + 21 −21 − 32

¸


b)

 =

∙
22 21 1 22
21 22 21 − 22 −21 + 22

¸
continuous, det( ) = 4

2
2 − 421 6= 0 except for |1| = |2|. Finally

() = −
∙
22 21
21 22

¸−1 ∙
1 22

21 − 22 −21 + 22

¸
=

= − 1
422−421

∙−411 + 412 + 22 411 − 412 + 422
−21 + 421 − 422 −412 − 421 + 422

¸ 

c)

 =

∙
2 3 21 −22
1 −1 2 1

¸
continuous, det( ) = −5 6= 0 always. Finally

() = −
∙
2 3

1 −1
¸−1 ∙

21 −22
2 1

¸
=
1

5

∙−21 − 32 22 − 31
−21 + 22 22 + 21

¸


18.

As an application of the Implicit Function Theorem, we have that




= −

(3−−)


(3−−)


= − −
32 − 
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if 32 −  6= 0. Then,

2


=


³

()

3(())2−

´


=




¡
32 − 

¢− 6

· 2

(32 − )
2

Since,




= −

(3−−)


(3−−)


= − −1
32 − 



we get

2


=

1
32−

¡
32 − 

¢− 6 1
32− · 2

(32 − )
2

=
−32 − 

(32 − )
3

19.

As an application of the Implicit Function Theorem, we have that the Marginal Rate of Substi-

tution in (0 0) is



 |()=(00)
= −

(()−)


(()−)
 |()=(00)

 0

2

2
= −


³
(())

(())

´


= −

Ã
(−)

+
(+)



(−)



!
(+)

−
Ã

(+)

+
(−)


(−)



!
(+)



()
2

(+)

 0

and therefore the function  () describing indifference curves is convex.

20.

Adapt the proof for the case of the derivative of the product of functions from R to R.
21.

Differentiate both sides of

 (1 2) =  (1 2)

with respect to  and then replace  with 1

21.4 Nonlinear Programming

1.

()

If  = 0 then  () =  The constant function is concave and therefore pseudo-concave,

quasi-concave, not strictly concave.

If   0,  0 () = −1  00 () =  ( − 1)−2
 00 () ≤ 0⇔  ( − 1) ≥ 0 ≥0≥0⇔ 0 ≤  ≤ 1⇔  concave ⇒  quasi-concave.

 00 ()  0⇔ (  0 and  ∈ (0 1))⇒  strictly concave.

()

The Hessian matrix of  is

2 () =

⎡⎢⎣ 11 (1 − 1)1−2 0

. . .

0  ( − 1)−2

⎤⎥⎦


2 () is negative semidefinite ⇔ (∀  ∈ [0 1])⇒  is concave.

2 () is negative definitive ⇔ (∀   0 and  ∈ (0 1))⇒  is strictly concave.

The border Hessian matrix is

 ( ()) =

⎡⎢⎢⎢⎣
0 11

1−1 − 
−1

11
1−1 11 (1 − 1)1−2 0

| . . .


−1 0  ( − 1)−2

⎤⎥⎥⎥⎦
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The determinant of the significant leading principal minors are

det

∙
0 11

1−1

11
1−1 11 (1 − 1)1−2

¸
= −2121

¡
1−1

¢2
 0

det

⎡⎣ 0 11
1−1 22

2−1

11
1−1 11 (1 − 1)1−2 0

22
1−1 0 22 (2 − 1)2−2

⎤⎦ =
= − £111−1111−122 (2 − 1)2−2¤− £221−1222−111 (1 − 1)1−2¤ =
= − ¡11221+2−4¢ £112 (2 − 1) + 22

1 (1 − 1)
¤
=

= −11221+2−4
£
11

2 (2 − 1) + 22
1 (1 − 1)

¤
 0

iff for  = 1 2   0 and  ∈ (0 1) 
()

If  = 0 then  () = min {−} = 0
If   0 we have

The intersection of the two line has coordinates ∗ :
³
= +


 
´


 is clearly not strictly concave, because it is constant in a subset of its domain. Let’s show it

is concave and therefore pseudo-concave and quasi-concave.

Given 0 00 ∈  3 cases are possible.

Case 1. 0 00 ≤ ∗
Case 2. 0 00 ≥ ∗
Case 3. 0 ≤ ∗ and 00 ≥ ∗
The most difficult case is case 3: we want to show that (1− )  (0)+ (00) ≤  ((1− )0 + 00) 
Then, we have

(1− )  (0) +  (00) = (1− )min { 0 − }+ min { 00 − } = (1− ) (0 − ) + 

Since, by construction  ≥ 0 − 

(1− ) (0 − ) +  ≤ ;

since, by construction  ≤ 00 − 

(1− ) (0 − ) +  ≤ (1− ) (0 − ) +  ((00 − ) =  [(1− )0 + 00]− 

Then

(1− )  (0) +  (00) ≤ min {  [(1− )0 + 00]− } =  ((1− )0 + 00) 
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as desired.

2.

a.

i. Canonical form.

For given  ∈ (0 1),  ∈ (0+∞),

max()∈R2  ·  () + (1− ) () s.t. − 1
2
−  ≥ 0 1

2− 2−  ≥ 0 2
 ≥ 0 3
 ≥ 0 4½

 = − 1
2


 = 2− 2  solution is

∙
 =

2

3
  =

2

3


¸

21.510.50

2

1.5

1

0.5

0

x

y

x

y

ii. The set  and the functions  and  (  open and convex;  and  at least differentiable).

a. The domain of all function is R2. Take  = R2 which is open and convex.
b.  ( ) = ( · 0 ()  (1− )0 ()).The Hessian matrix is∙

 · 00 () 0

0 (1− )00 ()

¸
Therefore,  and  are 2 functions and  is strictly concave and the functions  are affine.

iii. Existence.

 is closed and bounded below by (0 0) and above by ( ) :

 ≤ − 1
2
 ≤ 

2 ≤ 2−  ≤ 2.
iv. Number of solutions.

The solution is unique because  is strictly concave and the functions  are affine and therefore

concave.

v. Necessity of K-T conditions.

The functions  are affine and therefore concave.

++ =
¡
1
2
 1

2

¢

− 1
2
1
2
− 1

2
 = 1

4
  0

2− 21
2
− 1

2
 = 1

2
  0

1
2
  0
1
2
  0

vi. Sufficiency of K-T conditions.
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The objective function is strictly concave and the functions  are affine

vii. K-T conditions.

L (  1  4; ) =  · ()+ (1− ) ()+1

µ
− 1

2
− 

¶
+2 (2− 2− )+3+4

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

 · 0 ()− 1
2
1 − 22 + 3 = 0

(1− )0 ()− 1 − 2 + 4 = 0

min
©
1 − 1

2
− 

ª
= 0

min {2 2− 2− } = 0

min {3 } = 0

min {4 } = 0

b. Inserting (  1 2 3 4) =
¡
2
3
 2

3
 1 0 0 0

¢
, with 1  0, in the Kuhn-Tucker condi-

tions we get: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

 · 0 ¡2
3

¢− 1

2
1 = 0

(1− )0
¡
2
3

¢− 1 = 0

− 1
2
2
3
− 2

3
 = 0

min
©
0 2− 22

3
− 2

3

ª

= 0

min
©
0 2

3

ª

= 0

min
©
0 2

3

ª

= 0

and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 = 2 · 0 ¡2
3

¢
 0

1 = (1− )0
¡
2
3

¢ ≥ 0

− 1
2
2
3
− 2

3
 = 0

min {0 0} = 0

min
©
0 2

3

ª

= 0

min
©
0 2

3

ª

= 0

Therefore, the proposed vector is a solution if

2 · 0
µ
2

3


¶
= (1− )0

µ
2

3


¶
 0

i.e.,

2 = 1−  or  =
1

3
and for any  ∈ R++

c. If the first, third and fourth constraint hold with a strict inequality, and the multiplier

associated with the second constraint is strictly positive, Kuhn-Tucker conditions become:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

 · 0 ()− 22 = 0

(1− )0 ()− 2 = 0

− 1
2
−   0

2− 2−  = 0

  0

  0⎧⎨⎩  · 0 ()− 22 = 0

(1− )0 ()− 2 = 0

2− 2−  = 0

  2  

 · 0 ()− 22  · 00 () 0 −2 0 () 0

(1− )0 ()− 2 0 (1− )00 () −1 −0 () 0

2− 2−  −2 −1 0 0 2
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det

⎡⎣  · 00 () 0 −2
0 (1− )00 () −1
−2 −1 0

⎤⎦ =
= 00 () det

∙
(1− )00 () −1
−1 0

¸
− 2 det

∙
0 −2
(1− )00 () −1

¸
=

= −00 ()− 4 (1− )00 ()  0

() (  2) = −
⎡⎣  · 00 () 0 −2
0 (1− )00 () −1
−2 −1 0

⎤⎦−1 ⎡⎣ 0 () 0

−0 () 0

0 2

⎤⎦
Using maple:

⎡⎣  · 00 () 0 −2
0 (1− )00 () −1
−2 −1 0

⎤⎦−1 =

= 1
−00()−4(1−)00()

⎡⎣ −1 2 200 ()− 200 ()
2 −4 00 ()

200 ()− 200 () 00 () 00 ()00 ()− 200 ()00 ()

⎤⎦

() (  2) =

= − 1
−00()−4(1−)00()

⎡⎣ −1 2 200 () (1− )

2 −4 00 ()
200 () (1− ) 00 () 00 ()00 () (1− )

⎤⎦⎡⎣ 0 () 0

−0 () 0

0 2

⎤⎦ =

= 1
00()+4(1−)00()

⎡⎣ −0 ()− 20 () 400 () (1− )

20 ()− 40 () 200 ()
200 () (1− ) · 0 () + 00 () (−0 ()) 200 ()00 () (1− )

⎤⎦
3.

i. Canonical form.

For given  ∈ (0 1)  1 2 ∈ R++
max()∈R2++×R  log + (1− ) log  

1 −−  ≥ 0 
2 +−  ≥ 0 

where  and  are the multipliers associated with the first and the second constraint respec-

tively.

ii. The set  and the functions  and  (  open and convex;  and  at least differentiable)

The set  = R2++×R is open and convex. The constraint functions are affine and therefore C2.
The gradient and the hessian matrix of the objective function are computed below:

  

 log + (1− ) log  


1−


0

  




− 
2

0 0

1−


0 −1−
2

0

0 0 0 0
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Therefore, the objective function is C2 and concave, but not strictly concave.
iii. Existence.

The problem has the same solution set as the following problem:

max()∈R2++×R  log + (1− ) log  

1 −−  ≥ 0 
2 +−  ≥ 0 
 log + (1− ) log  ≥  log1 + (1− ) log2

whose constraint set is compact (details left to the reader).

iv. Number of solutions.

The objective function is concave and the constraint functions are affine; uniqueness is not

insured on the basis of the sufficient conditions presented in the notes.

v. Necessity of K-T conditions.

Constraint functions are affine and therefore pseudo-concave. Choose ( )
++

=
¡
1
2
 2
2
 0
¢


vi. Sufficiency of Kuhn-Tucker conditions.

 is concave and therefore pseudo-concave and constraint functions are affine and therefore

quasi-concave..

vii. K-T conditions.

 = 0⇒ 

−  = 0

 = 0⇒ 1−

−  = 0

 = 0⇒ − +  = 0

min {1 −−  } = 0
min {2 +−  } = 0

viii. Solve the K-T conditions.

Constraints are binding:  =


 0 and  =

1−


 0 Then, we get

 =


and  = 



 =
1−

and  = 1−



 =  := 

1 −−  = 0

2 +−  = 0

 =


and  = 



 =
1−

and  = 1−



 = 
1 −− 


= 0

2 +− 1−

= 0

Then 1 − 

= −2 + 1−


and  = 1

1+2
Therefore

 =
1

1+2

 =
1

1+2

 =  (1 + 2)

 = (1− ) (1 + 2)

b., c.

Computations of the desired derivatives are straightforward.

4.

i. Canonical form.

max()∈R2 −2 − 2 + 4+ 6  −−  + 6 ≥ 0 1
2−  ≥ 0 2
 ≥ 0 
 ≥ 0 

ii. The set  and the functions  and  (  open and convex;  and  at least differentiable)
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 = R2 is open and convex. The constraint functions are affine and therefore 2. The gradient
and hessian matrix of the objective function are computed below.

 

−2 − 2 + 4+ 6 −2+ 4 −2 + 6


 

−2+ 4 −2 0

−2 + 6 0 −2
Therefore the objective function is 2 and strictly concave.

iii. Existence.

The constraint set  is nonempty ( 0 belongs to it) and closed. It is bounded below by 0  is

bounded above by 2.  is bounded above because of the first constraint::  ≤ 6−
≥0
≤ 6 Therefore

 is compact.

iv. Number of solutions.

Since the objective function is strictly concave (and therefore strictly quasi-concave) and the

constraint function are affine and therefore quasi-concave, the solution is unique.

v. Necessity of K-T conditions.

Constraints are affine and therefore pseudo-concave. Take (++ ++) = (1 1) 

vi. Sufficiency of K-T conditions.

The objective function is strictly concave and therefore pseudo-concave. Constraints are affine

and therefore quasi-concave.

vii. K-T conditions.

L ¡  1 2  ¢ = −2 − 2 + 4+ 6 + 1 · (−−  + 6) + +2 · (2− ) + + 

−2+ 4− 1 +  = 0

−2 + 6− 1 − 2 +  = 0

min {−−  + 6 1} = 0
min {2−  2} = 0
min { } = 0
min

©
 

ª
= 0

b.

+4− 1 +  = 0

−2 + 6− 2 +  = 0

min {− + 6 1} = 0
min {2−  2} = 0
min {0 } = 0
min

©
 

ª
= 0

Since  ≤ 2 we get − + 6  0 and therefore 1 = 0. But then  = −4 which contradicts the
Kuhn-Tucker conditions above.

c.
−4 + 4− 1 +  = 0

−4 + 6− 2 +  = 0

min {−4 + 6 1} = 0
min {2− 2 2} = 0
min {2 } = 0
min

©
2 

ª
= 0

−1 +  = 0

+2− 2 +  = 0

1 = 0

min {0 2} = 0
 = 0

 = 0
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 = 0

+2− 2 = 0

1 = 0

min {0 2} = 0
 = 0

 = 0

 = 0

2 = 2

1 = 0

 = 0

 = 0

Therefore
¡
∗ ∗ ∗1 

∗
2 
∗
 
∗


¢
= (2 2 0 2 0) is a solution to the Kuhn-Tucker conditions

5 .2

5. a.

i. Canonical form.

For given  ∈ (0 1)   ∈ R++,

max(12)∈R3  (1) +  (2)



− 1 −  ≥ 0 1
 ()− 2 ≥ 0 2
1 ≥ 0 1
2 ≥ 0 2
 ≥ 0 3

ii. The set  and the functions  and  (  open and convex;  and  at least differentiable).

 = R3 is open and convex. Let’s compute the gradient and the Hessian matrix of the second
constraint:

1 2 

 ()− 2 0 −1  0 ()

1 2 

0 0 0 0

−1 0 0 0

 0 () 0 0  00 ()  0

Therefore the second constraint function is 2 and concave; the other constraint functions are

affine.

Let’s compute the gradient and the Hessian matrix of the objective functions:

1 2 

 (1) +  (2) 0 (1) 0 (2) 0

1 2 

0 (1) 00 (1) 0 0

0 (2) 0 00 (2) 0

0 0 0 0

Therefore the objective function is 2 and concave.

2Exercise 7 and 8 are taken from David Cass’ problem sets for his Microeconomics course at the University of

Pennsylvania.
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iii. Existence.

The objective function is continuous on R3
The constraint set is closed because inverse image of closed sets via continuous functions. It is

bounded below by 0. It is bounded above: suppose not then

if 1 → +∞ then from the first constraint it must be → −∞ which is impossible;

if 2 → +∞ then from the second constraint and the fact that  0  0 it must be  → +∞

violating the first constraint;

if  → +∞ then the first constraint is violated.

Therefore, as an application of the Extreme Value Theorem, a solution exists.

iv. Number of solutions.

Since the objective function is concave and the constraint functions are either concave or affine,

uniqueness is not insured on the basis of the sufficient conditions presented in the notes.

v. Necessity of K-T conditions.

The constraints are affine or concave. Take
¡
++1  ++2  ++

¢
=
¡

4
 1
2

¡

4

¢
 
4

¢
 Then the con-

straints are verified with strict inequality.

vi. Sufficiency of K-T conditions.

The objective function is concave and therefore pseudo-concave. The constraint functions are

either concave or affine and therefore quasi-concave.

vii. K-T conditions.

L (1 2  1 2 1 2 3) :=  (1)+ (2)+1 (− 1 − )+2 ( ()− 2)+11+22+

3 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (1)− 1 + 1 = 0

0 (2)− 2 + 2 = 0

−1 + 2
0 () + 3 = 0

min {− 1 −  1} = 0
min { ()− 2 2} = 0
min {1 1} = 0
min {2 2} = 0
min { 3} = 0

viii. Solve the K-T conditions.

Since we are looking for positive solution we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (1)− 1 = 0

0 (2)− 2 = 0

−1 + 2
0 () = 0

min {− 1 −  1} = 0
min { ()− 2 2} = 0
1 = 0

2 = 0

3 = 0⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 (1)− 1 = 0

0 (2)− 2 = 0

−1 + 2
0 () = 0

− 1 −  = 0

 ()− 2 = 0

Observe that from the first two equations of the above system, 1 2  0

5. b.

i. Canonical form.

For given   0   0 and   0

max()∈R2  ( )



−−  +  ≥ 0
 −  ≥ 0
 ≥ 0
 ≥ 0
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ii. The set  and the functions  and  (  open and convex;  and  at least differentiable).

 = R2 is open and convex.
The constraint functions are affine and therefore 2. The objective function is 2 and differen-

tiably strictly quasi concave by assumption.

iii. Existence.

The objective function is continuous on R3
The constraint set is closed because inverse image of closed sets via continuous functions. It is

bounded below by 0. It is bounded above: suppose not then

if → +∞ then from the first constraint (+ = )it must be → −∞ which is impossible.

Similar case is obtained, if → +∞

Therefore, as an application of the Extreme Value Theorem, a solution exists.

iv. Number of solutions.

The budget set is convex. The function is differentiably strictly quasi concave and therefore

strictly quasi-concave and the solution is unique.

v. Necessity of K-T conditions.

The constraints are pseudo-concave (++ ++) = (̄
3
 ̄
3
) satisfies the constraints with strict

inequalities.

vi. Sufficiency of K-T conditions.

The objective function is differentiably strictly quasi-concave and therefore pseudo-concave. The

constraint functions are quasi-concave

vii. K-T conditions.

L ¡1 2  1 2 3 4;  ¢ :=  ( ) + 1
¡−−  + 

¢
+ 2

¡
 − 

¢
+ 3+ 4

− 1+ 3 = 0

− 1 − 2 + 4 = 0

min
©−−  +  1

ª
= 0

min
©
 −  2

ª
= 0

min { 3} = 0
min { 4} = 0

viii. Solve the K-T conditions.

Since we are looking for solutions at which   0 and 0    , we get

− 1+ 3 = 0

− 1 − 2 + 4 = 0

min
©−−  +  1

ª
= 0

2 = 0

3 = 0

4 = 0

− 1 = 0

− 1 = 0

min
©−−  +  1

ª
= 0

and then 1  0 and

⎧⎨⎩
− 1 = 0

− 1 = 0

−−  +  = 0



7.

a.

Let’s apply the Implicit Function Theorem (:= IFT) to the conditions found in Exercise 7.(a).

Writing them in the usual informal way we have:
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1 2  1 2  

0 (1)− 1 = 0 00 (1) −1
0 (2)− 2 = 0 00 (2) −1
−1 + 2

0 () = 0 2
00 () −1  0 () 2

−1

− 1 −  = 0 −1 −1 1

 ()− 2 = 0 −1  0 () 

To apply the IFT, we need to check that the following matrix has full rank

 :=

⎡⎢⎢⎢⎢⎣
00 (1) −1

00 (2) −1
2

00 () −1  0 ()
−1 −1

−1  0 ()

⎤⎥⎥⎥⎥⎦


Suppose not then there exists ∆ := (∆1∆2∆∆1∆2) 6= 0 such that ∆ = 0 i.e.,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
00 (1)∆1+ −∆1 = 0

00 (2)∆2+ −∆2 = 0

2
00 ()∆+ −∆1+  0 ()∆2 = 0

−∆1+ −∆ = 0

−∆2+  0 ()∆+ = 0

Recall that

[∆ = 0⇒ ∆ = 0]   has full rank.

The idea of the proof is either you prove directly [∆ = 0⇒ ∆ = 0]  or you 1. assume∆ = 0
and ∆ 6= 0 and you get a contradiction.
If we define ∆ := (∆1∆2), ∆ := (∆1∆2)  

2 :=

∙
00 (1)∆1

00 (2)∆2

¸
 the

above system can be rewritten as⎧⎪⎪⎨⎪⎪⎩
2∆+ −∆ = 0

2
00 ()∆+ [−1  0 ()]∆ = 0

−∆+
∙ −1
 0 ()

¸
∆ = 0



⎧⎪⎪⎨⎪⎪⎩
∆2∆+ −∆∆ = 0 (1)

∆2
00 ()∆+ ∆ [−1  0 ()]∆ = 0 (2)

−∆∆+ ∆
∙ −1
 0 ()

¸
∆ = 0 (3)



∆2∆
(1)
= ∆∆ = −∆∆ (3)= ∆

∙ −1
 0 ()

¸
∆

(2)
= ∆ [−1  0 ()]∆ =

= ∆2
00 ()∆  0

while ∆2∆ = (∆1)
2
00 (1)+(∆2)

2
00 (1)  0 since we got a contradiction,  has full

rank.

Therefore, in a neighborhood of the solution we have

() (1 2  1 2) = −

⎡⎢⎢⎢⎢⎣
00 (1) −1

00 (2) −1
2

00 () −1  0 ()
−1 −1

−1  0 ()

⎤⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎣ 2

−1

1



⎤⎥⎥⎥⎥⎦ 
To compute the inverse of the above matrix, we can use the following fact about the inverse of

partitioned matrix (see Goldberger, (1964), page 27:

Let  be an ×  nonsingular matrix partitioned as
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 =

∙
 

 

¸


where 1×1  1×2  2×1  2×2 and 1 + 2 =  Suppose that  and  :=  −
−1 are non singular. Then

−1 =
∙
−1

¡
 + −1−1

¢ −−1−1
−−1−1 −1

¸


In fact, using Maple, with obviously simplified notation, we get⎡⎢⎢⎢⎢⎣
1 0 0 −1 0

0 2 0 0 −1
0 0 22 −1 1
−1 0 −1 0 0

0 −1 1 0 0

⎤⎥⎥⎥⎥⎦
−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1+2

2
1+22

− 1
1+2

2
1+22

− 1
1+2

2
1+22

− 2
2
1+22

1+2
2
1+22

−2 1
1+2

2
1+22

− 1
1+2

2
1+22

21
1+2

2
1+22

1
1+2

2
1+22

−1 1
1+2

2
1+22

− 1+22
1+2

2
1+22

− 1
1+2

2
1+22

1
1+2

2
1+22

1
1+2

2
1+22

− 1
1+2

2
1+22

2
1

1+2
2
1+22

− 2
2
1+22

1+2
2
1+22

−1 1
1+2

2
1+22

− 1
1+2

2
1+22

−1 2
2
1+22

1+2
2
1+22

−21 1
1+2

2
1+22

−2 1
1+2

2
1+22

− 1+22
1+2

2
1+22

2
1

1+2
2
1+22

−21 1
1+2

2
1+22

−2 1+22
1+2

2
1+22

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Therefore,

⎡⎢⎢⎢⎢⎣
1 1
2 2
 

1 1
 2  2

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

21+22
1+21+22

2
−1+21

1+21+22

1
1

1+21+22

−12−1+1+22
1+21+22

1
1+21+22

−2
−1+21

1+21+22

1
21+22

1+21+22
1

2
−1+21

1+21+22

21
1

1+21+22
2

−12−1+1+22
1+21+22

⎤⎥⎥⎥⎥⎥⎥⎥⎦


Then 1 =
21+22

1+21+22
:=

+


−

00(2)
+

 0+
+

2

−
 00

00(1)
−

+
+
00(2)
−

 0
+
+2

+
 00
−
” = −−”  0

2 = 1
1

1+21+22
:=

+

 0
−

00(1)
00(1)
−

+
+
00(2)
−

 0
+

+2
+
 00
−
” = −−”  0

 = −2
−1+21

1+21+22
:= −

+

2

+

−1+
+


−

00(2)
+

 0
+



00(1)
−

+
+
00(2)
−

 0
+
+2

+
 00
−


which has sign equal to 

µ
+

2

+

−1 +
+


−

00 (2)
+

 0
+


¶


b.

Let’s apply the Implicit Function Theorem to the conditions found in a previous exercise. Writ-

ing them in the usual informal way we have:

  1   

− 1 = 0 2
 2

 − −1
− 1 = 0 2

 2
 − −1

−−  +  = 0 − − −1  −  

To apply the IFT, we need to check that the following matrix has full rank

 :=

⎡⎣ 2
 2

 −
2
 2

 −
− −

⎤⎦
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Defined 2 :=

∙
2
 2



2
 2



¸
  :=

∙ −
−

¸
 we have  :=

∙
2 −
−

¸


Suppose not then there exists ∆ := (∆∆) ∈ ¡R2 ×R¢ \ {0} such that ∆ = 0 i.e.,½
2∆ −∆ = 0 (1)

−∆ = 0 (2)

We are going to show

Step 1. ∆ 6= 0; Step 2.  ·∆ = 0; Step 3. It is not the case that ∆2∆  0

These results contradict the assumption about 

Step 1.

Suppose ∆ = 0 Since  À 0 from (1)  we get ∆ = 0 and therefore ∆ = 0 a contradiction.

Step 2.

From the First Order Conditions, we have

− 1 = 0 (3) 

∆
(3)
= 1∆

(2)
= 0

Step 3.

∆2∆
(1)
= ∆ ∆

(2)
= 0

Therefore, in a neighborhood of the solution we have

() (  1) = −
⎡⎣ 2

 2
 −

2
 2

 −
− −

⎤⎦−1 ⎡⎣ −1 −1
−1  −  

⎤⎦ 
Unfortunately, here we cannot use the formula seen in the Exercise 4 (a) because the Hessian of

the utility function is not necessarily nonsingular. We can invert the matrix using the definition of

inverse. (For the inverse of a partitioned matrix with this characteristics see also Dhrymes, P. J.,

(1978), Mathematics for Econometrics, 2nd edition, Springer-Verlag, New York, NY, Addendum

pages 142-144.

With obvious notation and using Maple, we get⎡⎣   −
  −
− − 0

⎤⎦−1 =
⎡⎢⎣

2

2−2+2 − 
2−2+2 − −+

2−2+2
− 

2−2+2
2

2−2+2
−+

2−2+2
− −+

2−2+2
−+

2−2+2
−+2

2−2+2

⎤⎥⎦
Therefore,

() (  1) =

−

⎡⎢⎣
2

2−2+2 − 
2−2+2 − −+

2−2+2
− 

2−2+2
2

2−2+2
−+

2−2+2
− −+

2−2+2
−+

2−2+2
−+2

2−2+2

⎤⎥⎦
⎡⎣ −1 0 0

0 −1 0

−1  −  

⎤⎦ =

=

⎡⎢⎣ − −21−+
2−2+2 − 1−+

2−2+2
−+

2−2+2
−1−+
2−2+2

21−+
2−2+2 − −+

2−2+2

−−1+1+−2
2−2+2

−1+1−+2
2−2+2 − −+2

2−2+2

⎤⎥⎦
 =

−1 −  + 

2 − 2 + 2

 =
21 −  + 

2 − 2 + 2


The sign of these expressions is ambiguous, unless other assumptions are made.

7.

[⇒]
Since  is concave, then



µ
1

2
+

1

2


¶
≥ 1
2
 () +

1

2
 () 



21.4. NONLINEAR PROGRAMMING 315

Since  is homogenous of degree 1, then



µ
1

2
(+ )

¶
=
1

2
 (+ ) 

Therefore,

 (+ ) ≥  () +  () 

[⇐]
Since  is homogenous of degree 1, then for any  ∈ R2 and any  ∈ R+, we have

 () =  ()  (21.12)

By assumption, we have that

for any   ∈ R2  (+ ) ≥  () +  ()  (21.13)

Then, for any  ∈ [0 1],

 ((1− )+ )
(2113)

≥  ((1− )) +  ()
(2112)
= (1− )  () +  () 

as desired.
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