Climax communities

Climax communities Main climatic determinants of biomes

Guido Chelazzi

Climax communities Main ecological determinants of biomes

Guido Chelazzi

Community structure change during succession Years after farmland abandonment

Biodiversity change during succession

Biodiversity change during succession

Intermedium disturb

Biodiversity change during succession Intermedium disturb (Sousa experiment)

Bebble-stony beach

Guido Chelazzi

Biodiversity change during succession Frequency of wildfires

Biodiversity change during succession Intensity of grazing

Number of plant species

Climate-Fire-Grazing interactions

Community as a functional system

However formed, communities must have an internal, functional consistency to persist within an ecosystem, or to develop coherently

Each species must find its own functional, ecological space to be a stable member of a given community

Species are "packaged" within communities according to their ecological prophyle (e.g. trophic prophyle, sustainable interactions with other species in terms of predation, competition, mutualism etc.)

Trophic web

A description of the trophic relationship within the community

Guido Chelazzi

Vertical stratification of the community (Food chain)

Assessment of the "vertical position" of each species along the trophic chain

A) Ethological assessment: direct observations of the foraging behaviour of the single species

B) Dietary assessment: analysis of gut content, faeces content, discarded items etc.

C) Isotopic assessment: sorting of different stable isotopes of N and C

Dietary assessment of the position along the trophic chain Predatory birds' pellet analysis

Trophic position (N isotopes)

Trophic position (C isotopes)

-8

Biomass/Energy transfer at each step of the food chain

P = Allocated into "production" (Growth + Reproduction)

P / A = Net coefficient of production

Se = Secreted

U = Utilized first Es = Escreted

A = Assimilated

biosyntesis

mobility

concentration

S = Discarded

C = Consumed

 $\overrightarrow{}$ Not intercepted

E = Energy available (per unit space and time)

Reduction of the total biomass/energy with increasing level of the food web

Oceanic trophic chain (off Peru coast)

Relative biomass per habitat unit

Above- and below-ground energy allocation in mixed (savannah like) ecosystem

Consumption matrix

Direct observation in field or in the laboratory
Indirect assessment (gut content, faeces etc.)

Consumer

Consumption matrix

Guido Chelazzi

Biodiversity within trophic webs

Horizontal biodiversity (Taxa within each level)

Biodiversity within trophic webs

Horizontal diversity

is controlled by demographic interactions between species of the same trophic level (competition, mutualism)

Vertical diversity

is controlled by prey-predators interactions (energy flow, structural and behavioural characteristics of both)

Energetic control of vertical biodiversity

Energy available at n_{th} level Energy conversion coefficient

Minimun energy to sustain a level

$$n = 1 + \frac{Log(E_{\min}) - Log(E_{1})}{Log(\eta)}$$

Number of permitted levels

Guido Chelazzi

Primary production control of vertical biodiversity

Community connectedness (connectance)

Taxa

Connectance in real (benthonic) communities

Stability vs connectance in simulated communities

S = number of species

Propagation of demographic disturbance

Propagation of demographic disturbance

Top-down progagation prevails in communities where classic predator-prey relationships are dominant

Bottom-up prevails where donor-controlled relationships are common (e.g. in scavenger dominated communities)

Bottom-up biomagnification of POP Top-down propagation of demographic disturbance

Biomagnification of persistent pollutants and community disruption

DDD treatment of Clear Lake (California) to eliminate the non biting dipteran Chaoborus astiptocus

Diclorodifenildicloroetano

Flint & van der Bosch, 1981 in Begon et alii, 1990

Propagation of demographic disturbance

Top-down

Taxonomic horizontal diversity is a buffer for top-down demographic disturbance propagation

Reducing horizontal diversity reduces the community resilience to demographic fluctuations

Non-trophic relationships within communities

Members of a community (different species) may establish relationships different from predation and competition:

Mutualism/Commensalism – Reciprocal or directional trophic exchange between species

Facilitation – Non-trophic reciprocal or directional benefits (e.g. modification of abiotic components of the environment which "facilitate" the presence of another species)

Ecological engineering - When one species modifies the abiotic/biotic structure of an ecosystem in such a way that this reshape the environment and makes it suitable for survival-reproduction of other species

Niche construction – When protracted and profound niche construction leads to selection of new traits (genetic-phenotipic) in the constructor species and in other species which became "entrapped" into the constructed niche (one extreme case is domestication)

Schemes of energy/matter circulation in communities

PP primary production DOM dead organic matter H herbivores S scavengers Dc decomposers C carnivores TP top predators

Energy transfer Matter transfer Heat loss

Schemes of energy/matter circulation in communities

PP primary production DOM dead organic matter P predators Dv detritivores

Energy transfer – Matter transfer – Heat loss – A) Dv 🚬 P DOM PP F B) Dv PP DOM C) Dv

DOM

PP

Stream community (USA) Standing biomass

Sandy beach community Energy flows

Source-sink coupled ecosystems

Sea currents

Rocky shores

Seagrass beds

Sandy beach

Stranded organic materials