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Net primary productivity
Terrestrial vs marine ecosystems

Terrestrial Ecosystems
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Net primary productivity (annual average)
Terrestrial systems
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Primary production in terrestrial systems

PP in terrestrial ecosystems is performed by autotrophic plants through
photosynthetic processes

C3, C4, CAM etc.

Principal factors affecting terrestrial PP are:

v' Light availability (season/latitude)

v Nutrient availability
(soil composition, recycling)

v' Water availability (precipitation, soil physical characteristics)
v" Disturb such as fire, grazing (natural and anthropogenic)
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Photosynthetically Active Radiation

400 nm 700 nm

Visible Light

Light that plants use for
photosynthesis

Phycoerythrin
vf\l
Phycocyanin

Chiorophyll a

(=)
S
c
O
S
Q
-
QO
(/2]
0
<

0 o~ ' » :
300nm 400nm 700nm

Guido Chelazzi



Photoperiod length

winter

autumnal

summer

solstice

solstice

(Aep sad sinoy) poliadojoyd

=
o

N
N
N~
Z
o

™~
=
o
O
1)
=
@
£
=

Guido Chelazzi



Net Primary Productivity in temperate forests
Central-East USA
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NPP relationship with precipitations
Temperate forests Europe and USA

NPP (g-10°-m=2-y-1)

Precipitation (mm-103-y-1)
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NPP relationship with hydric stress

Temperate forests Europe and USA
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NPP increase with soil fertilization
Chestnut stand
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Production and respiration along the succession

in an evergreen temperate forest (schematic)
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Biomass allocation along the succession

in a broadleaf temperate forest (schematic)
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Primary production in oceanic systems

Most of oceanic PP is from photosynthetic phytoplancton operating at
the ocean surface in the euphotic zone (ten to hundreds m depth)

Factors affecting oceanic PP are:

v' Light availability (depth)

v" Nutrient availability P Nt cport upwelling
(recycling, runoff and upwelling) o

Oxidation of carbon
v Temperature ol o

v Water acidity (CO, dissolved SO
by antropogenic release in the atmosphere)
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Light extinction with dept in water
Lambert-Beer equation

| = IO . g Kz (Z, extinction coefficient)
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Light extinction with dept in water
Spectral variation
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Nitrates dissolved in oceanic waters

Surface

1000 m depth
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Phosphates & nitrates concentration
Oceanic waters
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Physical/chemical gradients at ocean surface

particulate organic carbon (umol/kg)
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Net primary productivity (annual average)
Oceanic systems
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El Nino Southern Oscillation
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El Nino Southern Oscillation
Variations off the Peru coast
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Circum-Antarctic overturning circulation

Antarctic polynyas ,, — STF, Sub-Tropical Front; SAF, Sub-Antarctic Front; PF,
— Polar Front; SAMW, Sub-Antarctic Mode Water; AAIW,
Antarctic Intermediate Water; UCDW, Upper
Circumpolar Deep Water; LCDW, Lower Circumpolar
o, ¢ - Deep Water; AABW, Antarctic Bottom Water; SAZ, Sub-
""’ ‘ X 3 Antarctic Zone; PFZ, Polar Frontal Zone; AZ, Antarctic
i Zone; SPZ, Sub-Polar Zone.
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Oceanic trophic chain
Relative energy content of different trophic levels
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Source-sink coupled communities

Euphotic zone

Benthic zone
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Carbon sink from euphotic zone
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Relationship between euphotic PP
and benthonic production
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Primary production in oceanic systems

Only a minor fraction of PP in oceans is from chemosynthesis, as in the
hydrothermal vents of mid-oceanic ridges, operated by chemoautotroph
bacteria
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The Ecosystem
The whole set of bio-abiotic compartments and their patterns of interaction

Functional setting m Ecological engineering
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Biogeochemical cycles
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Biogeochemical cycles

Which chemical items are subject to biogeochemical cycling
Elements

Macrocomponents (e.g. C, N, O, P, S)

Microcomponents (e.g. Mg, Mn, Fe, Cu)

Molecules
(e.g. H,0, CH,, O,)

Xenobiotics
(e.g. chlorinated hydrocarbons, organometallic compounds)
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Biogeochemical cycles
General schemes

Open
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Phosphorus global cycle (quasi open cycle)

P moving from land
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Carbon global cycle (quasi closed cycle)
IPCC 2001
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Source: Intergovernmental Panel on Climate Change, Climate Change 2001: The Scientific Basis (U.K., 2001)
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Nitrogen global cycle
Gruber & Galloway 2008 Nature

Fluxes in Tg Yr -
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Redox transformationss during Nitrogen global cycle

Riduzione assimilativa
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The role of bacteria in the terrestrial
Nitrogen cycle

A. Nitrogen Fixation:

Free-living (e.g. Azotobacter) and symbiotic (e.g. Rhizobium) bacteria convert

atmospheric nitrogen N, to ammonia NH,* using the energy from ATP. (In the marine
environment N, fixation is performed by cyanobacteria).

B. Nitrification:

Several species of soil bacteria convert ammonia NH,* to nitrite NO,* (e.g.

Nitrosomonas) and nitrite to nitrate NO5* (Nitrobacter) when the soil contains high levels
of oxygen.

C. Denitrification:

Several species of soil bacteria (e.g. Pseudomonas, Clostridium) convert nitrate NO;*

to free nitrogen N, when the soil is waterlogged and thus contains low levels of oxygen.
Such bacteria use the nitrate as the final electron acceptor during respiration rather
than oxygen. Denitrification depletes the soil of essential nitrate fertilizers.
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Human effects on Nitrogen cycle

A. Increase in Nitrogen fixation by use of nitrogen-fixing plants and industrial
production of ammonia (Haber-Bosch)

B. NOx emission into Atmosphere by civil and industrial fossil fuel burning
C. Waste water discharge from human and domestic animal populations
Main effects:

= Eutrophication

= Air, soil and water acidification

= Greenhouse effect (N,0 has a lifetime of 114—120 years, and is 300 times more
effective than CO, as a greenhouse gas)
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The Fate of Haber-Bosch Nitrogen

N Fertilizer N Fertilizer N N N N
Produced Applied in Crop Harvested in Food Consumed
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14% of the N produced in the Haber-Bosch process enters the
human mouth




Ecological engineering-Niche construction
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Biotic community

Abiotic components
of the environment

Ecological engineering
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Examples of niche constructors
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