Detailed program of the couns.
Matenatica per be aptheraioni Economiche 2 Laboatorio.

Tutti i paragrafi cerckiati nell'miduce. deglixppunti in rete, come riportato di seguto

Contents

I Basic Linear Algebra 7
1 Systems of linear equations 9
(1.1) Linear equations and solutions 9
(1.2) Systems of linear equations, equivalent systems and elementary operations 10
1.3 Systems in triangular and echelon form 11
1.4 Reduction algorithm 12
(1.5) Matrices 14
(1.6) Systems of linear equations and matrices 18
(1.7) Exercises 19
2 The Euclidean Space \mathbb{R}^{n} 21
(2.1) Sum and scalar multiplication 21
(2.2) Scalar product 22
2.3 Norms and Distances 23
(2.4) Exercises 25
3 Matrices 27
(3.1) Matrix operations 28
(3.2) Inverse matrices 33
3.3 Elementary matrices 34
3.4 Elementary column operations 41
(3.5) Exercises 44
4 Vector spaces 45
4.1 Definition 45
4.2 Examples 47
4.3 Vector subspaces 48
4.4) Linear combinations 49
4.5 Row and column space of a matrix 50
4.6 Linear dependence and independence 54
4.7 Basis and dimension 60
(4.8) Coordinates 63
4.9) Row and column span 64
(4.10 Exercises 66
5 Determinant and rank of a matrix 67
(5.1) Definition and properties of the determinant of a matrix 67
5.2 Rank of a matrix 71
5.3) Inverse matrices (continued) 72
5.4 Span of a matrix, linearly independent rows and columns, rank 74
5.5) Exercises 76
6 Linear functions 77
6.1 Definition 77
6.2 Kernel and Image of a linear function 78
6.3 Nonsingular functions and isomorphisms 81
6.4 Exercises 84
7 Linear functions and matrices 85
7.1 From a linear function to the associated matrix 85
7.2 From a matrix to the associated linear function 87
7.3 $\mathbb{M}(m, n)$ and $\mathcal{L}(V, U)$ are isomorphic 88
7.4 Some related properties of a linear function and associated matrix 90
7.5 Some facts on $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ 93
(7.6) Examples of computation of $[l]_{\mathrm{v}}^{\mathbf{u}}$ 95
(7.7) Exercises 96
7.8 Appendices. 96
7.8.1 The dual and double dual space of a vector space 96
7.8.2 Vector spaces as Images or Kernels of well chosen linear functions 99
8 . Solutions to systems of linear equations 103
8.1 Some preliminary basic facts 103
8.2 A solution method: Rouchè-Capelli's and Cramer's theorems 104
8.3 Exercises 113
II Some topology in metric spaces 115
9 Metric spaces 117
9.1 Definitions and examples 117
(9.2) Open and closed sets 121
9.2.1 Sets which are open or closed in metric subspaces. 125
9.3 Sequences 127
9.4 Sequential characterization of closed sets 130
9.5. Compactness 130
9.5.1 Compactness and bounded, closed sets 131
9.5.2 Sequential compactness 133
9.6 Completeness 139
9.6.1 Cauchy sequences 139
9.6.2 Complete metric spaces 140
9.6.3 Completeness and closedness 141
9.7 Fixed point theorem: contractions 142
9.8 Appendices. 144
9.8.1 Some characterizations of open and closed sets 144
9.8.2 Norms and metrics 148
(9.9) Exercises 151
10 Functions 153
10.1 Limits of functions 153
10.2 Continuous Functions 154
10.3 Continuous functions on compact sets 158
10.4 Exercises 160
11 Correspondence, maximum theorem and a fixed point theorem 161
11.1 Continuous Correspondences 161
11.2 The Maximum Theorem 168
11.3 Fixed point theorems 171
11.4 Application of the maximum theorem to the consumer problem 172
III Differential calculus in Euclidean spaces 175
12 Partial derivatives and directional derivatives 177
12.1 Partial Derivatives 177
(12.2) Directional Derivatives 178
13 Differentiability 185
13. Total Derivative and Differentiability 185
13.2 Total Derivatives in terms of Partial Derivatives. 187
14 Some Theorems 189
14.1 The chain rule 190
14.2 Mean value theorem 192
14.3 A sufficient condition for differentiability 195
14. A sufficient condition for equality of mixed partial derivatives 195
14.5 Taylor's theorem for real valued functions 195
15 Implicit function theorem 197
15.1 Some intuition 197
15.2 Functions with full rank square Jacobian 199
15.3 The inverse function theorem 202
15.4 The implicit function theorem 204
15.5 Some geometrical remarks on the gradient 206
15.6 Extremum problems with equality constraints. 206
15.7) Exercises on part III 208
IV Nonlinear programming 209
16 Convex sets 211
(16.1) Definition 211
16.2 Separation of convex sets 211
16.3 Farkas' Lemma 213
17 Concave functions 217
17.1 Different Kinds of Concave Functions 217
17,1.1 Concave Functions. 218
17.1.2 Strictly Concave Functions. 220
17.1.3 Quasi-Concave Functions. 222
17.1.4 Strictly Quasi-concave Functions. 226
17.1.5 Pseudo-concave Functions. 228
17.2 Relationships among Different Kinds of Concavity 229
17.2.1 Hessians and Concavity. 232
18 Maximization Problems 235
18.1 The case of inequality constraints: Kuhn-Tucker theorems 235
18.1.1 On uniqueness of the solution 239
18.2 The Case of Equality Constraints: Lagrange Theorem. 240
18.3 The Case of Both Equality and Inequality Constraints. 242
18.4 Main Steps to Solve a (Nice) Maximization Problem 244
18.4.1 Some problems and some solutions 249
18.5 The Implicit Function Theorem and Comparative Statics Analysis 251
18.5.1 Maximization problem without constraint 251
18.5.2 Maximization problem with equality constraints 252
18.5.3 Maximization problem with Inequality Constraints 252
18.6 The Envelope Theorem and the meaning of multipliers 254
18.6.1 The Envelope Theorem 254
18.6.2 On the meaning of the multipliers 255
19 Applications to Economics 257
19.1 The Walrasian Consumer Problem 257
19.2 Production 259
19.3 The demand for insurance 261
19.4 Exercises on part IV 262
V Problem Sets 263
20 Exercises 265
20.1 Linear Algebra 265
20.2 Some topology in metric spaces 270
20.2.1 Basic topology in metric spaces 270
20.2.2 Correspondences 273
20.3 Differential Calculus in Euclidean Spaces 274
20.4 Nonlinear Programming 277
21 Solutions 279
21.1 Linear Algebra 279
21.2 Some topology in metric spaces 288
21.2.1 Basic topology in metric spaces 288
21.2.2 Correspondences 294
21.3 Differential Calculus in Euclidean Spaces 296
21.4 Nonlinear Programming 302

