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1 Introduction

The aim of this course is to provide at least a part of the technical tools
necessary to understand the macroeconomic literature currently published in
professional journals, research reports, institutional documents and the like.
Emphasis will be placed more on the methods for constructing models than
on their factual premises and implications. Macroeconomics offers a wide
variety of models, which means that there is also a wide variety of alternative
theories that differ from each other because of their specific assumptions
and of the different logical structures used in processing them. In order
to make one’s own mind in this maze of competing offers one must first of
all be able to understand the language of models, and this cannot be done
without some basic knowledge of the mathematical and statistical structures
that provide the scaffolding used in the construction. Given its closeness to
economic policy, and the fact of being frequently used to support political
ideologies, macroeconomics has always been a highly controversial field. In
these lectures, the actual contents of these controversies will be played down,
while emphasis will be placed on the technical operations involved in building
the models used to support conflicting views.

Throughout the course the main reference model will be the Dynamic
Stochastic General Equilibrium model (DSGE), i.e. a theory of the economy
based on a combination of three items: (1) General Economic Equilibrium,
defined at the level of macro variables; (2) Dynamics, generated by the fact
that agents’ choices (consumption and investment) affect both the present
and the future of the economy; (3) Uncertainty, due to the fact that the future
cannot be entirely known at the time a decision is made, and represented by
the interplay between personal choices and impersonal stochastic factors in
determining the evolution of the system.

DSGE is neither the most convincing model on offer nor the most used
in empirical applications of macroeconomics. After the worldwide financial
crisis started in the US in 2007 and subsequent depression it has been heavily
criticized. So far, however, critics have not been able to provide better and at
least equally tractable alternatives and the DSGE has remained in saddle. In
many quarters it is still considered to be the model which embodies the core
of modern macroeconomic theory, a sort of doctrinal barycenter reference to
which is inevitable in all macroeconomic discussion. This is why it is taken
as the core also of this course.

These lectures refer toWickens,Macroeconomic Theory, 2nd edition 2011,
especially chapters 2, 4, 6.3, 9, 11 (corresponding to 2, 4, 6.3, 9, 10 of the
first edition, 2008). Other readings will be suggested as we proceed with the
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course.
As a general introduction to the recent history and present state of macro-

economic theory, the survey contained in chapter 1 of Wickens 2011 may be
sufficient. It may be useful also to have a look at some of the following: E.
Phelps, Seven schools of macroeconomic thought, Oxford 1990; Chari, Ke-
hoe, “Modern macroeconomics in practice”, and Mankiw, “The macroecono-
mist as scientist and engineer”, both in Journal of Economic Perspectives,
20:4 (Fall 2006); Snowdon, Vane, Wynarczyk, A modern guide to Macroeco-
nomics, Elgar 1994 and, more updated, Snowdon, Vane, Modern Macroeco-
nomics, Elgar 2005 (the texts indicated so far are available at the Biblioteca
di Polo). A recent historical assessment is found in M. De Vroey, A history
of Macroeconomics from Keynes to Lucas and beyond, Cambridge UP 2016.
As to the post-crisis outlook: N. Kocherlakota, "Modern macroeconomic
models as tools for economic policy" (Federal Reserve Bank of Minneapo-
lis 2009), and P. Romer, “The trouble with Macroeconomics” (2016), are
freely available online; G. Saint-Paul, "The possibility of ideological bias in
structural macroeconomic models", American Economic Journal: Macroeco-
nomics, 10:1 (2018) is an interesting exercise.

Outline of the contents of this year’s (2018) lectures. Basic DGE model;
methods of dynamic optimization in a deterministic environment; steady
states; exogenous growth; OLG models; sticky prices and adjustment to
shocks; uncertainty, stochastic processes, expectations; dynamic optimization
in a stochastic environment; applications to portfolio choice; the Capital
Asset Pricing Model (CAPM) and the contingent claims approach.
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2 The basic DGE model

This whole section refers to Wickens, chs 2 and 4.
As a first approximation to DSGE, we consider an economy set in a

deterministic environment. This means that the past determines the future
completely and according to perfectly known causal processes, without any
chance of unpredictable events (‘novelties’, or ‘innovations’) affecting the
state of the economy. Having complete knowledge of past history up to the
present and being able to understand the causal laws regulating the economy,
agents can perfectly predict the future consequences of decisions made in
the present. Determinism plus perfect information is equivalent to perfect
forecast, or the total absence of uncertainty.

For a description of the components of the model-economy see Wick-
ens 2.3. One of the main features of the model is the strong simplification
afforded by the device of the ‘representative agent’: the behavior of a pop-
ulation of heterogeneous individuals (households or firms) is reduced to the
behaviour of one single individual whose characteristics are assumed to be
‘representative’ — a sort of average — of all the individuals in the population.
This is a much criticized assumption, not only because it wipes out all the
macroeconomic phenomena ascribable to differences in the characteristics of
individuals belonging to different social groups — for example, the macroeco-
nomic effects of inequality in the distribution of wealth — but also for purely
theoretical reasons. Assuming that the choices of a population can be studied
as if they were choices of a fictitious individual implies that all the aggregate
behaviour functions — basically, aggregate demand and supply — are supposed
to have the same characteristics as the corresponding individual behaviour
functions. This statement contradicts a theorem of microeconomic general
equilibrium theory, known as the Sonnenschein-Mantel-Debreu theorem, that
says that, in general, not all the characteristics of individual demand func-
tions carry over to the resulting aggregate demand function: the latter may
be a function of a different type, so that no individual function can be ‘repre-
sentative’ of the behaviour of the whole population. Thus, by assuming that
a representative agent exists macroeconomic equilibrium theory comes into
conflict with the microeconomic equilibrium theory from which it is alleged
to derive. [For further reading on this point see A.P. Kirman, "Whom or
what does the representative individual represent?", Journal of Economic
Perspectives, 6:2 (Spring 1992).]

For all its theoretical and empirical flaws, however, the assumption that
the representative agent can be an adequate device to deal with heteroge-
neous populations is extremely effective in granting that the model is analyt-
ically tractable without excessive complication. Theories that do not resort
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to this assumption are certainly more realistic, theoretically sound and richer
in implications, but unfortunately they also tend to be much more complex,
sometimes beyond analytical tractability. An example in point is the class of
models called ACE (Agent-based Computable Economics): individual agents
are treated as being different from each other but the dynamics generated
by their interaction gives rise to mathematical systems that often turn out
to be unsolvable. In such cases the only way to explore their properties is by
means of computer simulations. We have here an instance of the fact that
tractability and plausibility of assumptions conflict with each other quite
often.

We follow Wickens in presenting the basic DGE model in two versions:
(1) As the model of a centrally planned economy in which there is only one
decision maker, the central planner, who decides the consumption-investment
path of the economy with the aim of maximizing an index of social welfare
based on the representative household’s utility function. In this version, equi-
librium means that the planner manages to achieve his object by using his
total control of the economy, maximization being subject to constraints of
compatibility between consumption-investment and production. (2) As the
model of a decentralized economy in which individual decisions are coordi-
nated through the markets for labour, commodities and bonds. Here, all
agents are supposed to be price-taker, i.e. markets are assumed to be per-
fectly competitive; and equilibrium means that prices guarantee that all the
transactions (purchases and sales) required in order to implement individual
decisions can be carried out, or equivalently, that all individual decisions are
compatible among themselves. In both cases, provided the social welfare
function in (1) and the representative household’s utility function in (2) are
the same, also the equilibrium path turns out to be the same. It is thus
demonstrated that, under the hypotheses of the model, equilibrium compet-
itive prices as in (2) guarantee a socially optimal outcome as in (1). This
result extends the propositions known in microeconomics as the "fundamen-
tal theorems of welfare economics" to the level of macroeconomic theory.

2.1 DGE in a centrally planned economy

Further simplifications, that can be removed at a more advanced level of the
analysis: international trade does not exist or, if it exists, is fully balanced
(trade balance is permanently zero); labour (or its complement, leisure) is
not an argument of the representative household’s utility function; output
(GDP) is treated as a versatile commodity that may serve either as capital
good or as consumption good.

The economic variables measure events that occur in time, and this is
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treated as a discrete variable measured in integer numbers. Take 0 as the
current date; any positive or negative integer s refers to any date in the future
or the past.

Constraints of the planner are: (i) the technology, represented by the
aggregate production function Ys = F (Ks), which is assumed to have F

′ > 0,
F ′′ < 0 and to satisfy the Inada conditions (NB: the latter exclude F ′′ = 0
uniformly, contrary to what is assumed by Wickens on p. 16). Employed
labour is assumed to be constant so that it can be treated as a parameter of
the function. No technical progress is assumed.

(ii) The budget constraint, which for the whole economy coincides with
the national accounting equation (with zero balance of trade)

Cs + Is = Ys

Given a constant rate δǫ (0, 1) of depreciation of capital goods due to age,
we get Ks+1 = Ks (1− δ) + Is, and by replacing Is in the previous equation

Cs +Ks+1 = Ys +Ks (1− δ)

By introducing constraint (i) in the last equation, we finally get

Cs +Ks+1 = F (Ks) +Ks (1− δ)

which compounds technical and budget constraints in one single equation.
A relaxed form of this overall constraint is

F (Ks) +Ks (1− δ)− Cs −Ks+1 ≥ 0

Relaxation allows for the possibility of inefficiency in production (Ys <
F (Ks)) and/or waste in the use of final product (Cs + Is < Ys).

On date 0 the capital stock of the economy Ko is given, being the re-
sult of past choices of consumption-investment. The optimal plan from 0 to
any future date T consists in choosing a consumption-accumulation sequence
{Cs,Ks+1 : s = 0, 1, 2...T} so as to maximize the utility of the representative
consumer (household), written as a generic function of the expected con-
sumption profile

U = U (Co, C1...CT )

In this form the utility function is more general than the standard sum
of discounted utilities used by Wickens and by and large in macroeconomic
literature. We shall restrict to that more specific form when necessary. By
now we only assume that the function has positive first derivative and nega-
tive second derivative with respect to each argument Cs, and that it satisfies
the Inada condition for Cs → 0.
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Summing up, and taking the constraints in the relaxed form, the DGE of
the planned economy is a plan {Cs, Ks+1 : s = 0, ...T} that solves the follow-
ing problem: given the current Ko, and a planning period from 0 to T (in a
later generalization we shall admit T to be infinite), maximize U by choosing
a plan that at each s = 0, ...T satisfies the restriction

F (Ks) +Ks (1− δ)− Cs −Ks+1 ≥ 0

Cs, Ks+1 ≥ 0

Notice that if Ko = 0 the only feasible plan is Cs = Ks+1 = 0 at all s.
Thus, Ko is always assumed to be strictly positive for the problem to make
sense.

The solution(s) to the problem, if these exist, can be found by means of
several methods, some of which are especially devised for dynamic problems
of this kind. The Lagrangean method is not particularly well-suited for
dynamic problems but in the case of finite horizon it works as efficiently
as any other. We will examine some of these methods in sequence, starting
with Lagrange.

2.2 Optimization via Lagrange

I assume the basics of the method to be known from microeconomics. Briefly,
the steps are: (i) construct the Lagrange function L out of the data of the
original constrained maximization problem; (ii) check that the objective func-
tion and the constraints satisfy concavity and ‘constraint qualification’; (iii)
look for the “saddle points” (or minmax) of L (if any); (iv) use the proper-
ties of the saddle points to characterize the properties of the corresponding
solutions to the original problem.

Here, the Lagrange function can be written as

L (C,K;λo;λ, µ, γ) ≡ λoU (Co, ...CT )+

+
T�

s=0

�
λs+1 [F (Ks) +Ks (1− δ)− Cs −Ks+1] + µsCs + γs+1Ks+1

�

where λo, λ = (λ1, ...λT+1) , µ = (µo, ...µT ) , γ =
�
γ1, ...γT+1

�
are the La-

grange multipliers, all of them definitionally constrained to be non-negative,
with λo strictly positive.

Exercise 1 Check that the conditions of concavity and ‘constraint qualifica-
tion’ hold (provided Ko > 0).
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A saddle point of L (C,K;λo;λ, µ, γ) is a maximum with respect to the
variables C = (Co, ...CT ) , K = (K1, ...KT+1), and a minimum with respect
to λ, µ, γ (λo is treated as an arbitrarily given parameter). According to a
proposition not difficult to demonstrate, if (C,K;λo;λ, µ, γ) are the coordi-
nates of a saddle point of L, then also (C,K; aλo; aλ, aµ, aγ), where a is an
arbitrary positive real number, are coordinates of a saddle point. In other
words, the vector (λo, λ, µ, γ) is determined by the solution but only up to
its scale. The Lagrange multipliers can therefore be taken at a scale a such
that aλo = 1.

Notice that L is concave with respect to the arguments C and K (see
exercise 1) and linear with respect to λ, µ and γ. As a consequence, the
FOCs of maximum with respect to the former, and minimum with respect to
the latter, provide both necessary and sufficient conditions of max and min.
Notice also that in maximizing L with respect to C and K, these variables
must be treated as free (the constraints of the original problem will take care
that in the solution these variables turn out to be non-negative), while in
minimizing with respect to λ, µ and γ the non-negativity constraint must be
taken into account explicitly.

Exercise 2 Set λo = 1 and check that the FOCs characterizing the saddle
points of L are the following

U ′
s − λs+1 + µs = 0 s = 0, ...T (1)

λs+1 [F
′
s + 1− δ]− λs + γs = 0 s = 1, ...T (2)

−λT+1 + γT+1 = 0 (3)

F (Ks) +Ks (1− δ)− Cs −Ks+1 ≥ 0 and (4)

λs+1 [F (Ks) +Ks (1− δ)− Cs −Ks+1] = 0 s = 0, ...T

Cs ≥ 0 and µsCs = 0 s = 0, ...T (5)

Ks+1 ≥ 0 and γs+1Ks+1 = 0 s = 0, ...T (6)

From an analysis of the FOCs found in solving exercise 2 we can derive
the main characteristics of the optimal consumption-investment plan.

From condition (1) and the fact that U ′ is always positive, λs+1 > 0 for
all s = 0, ...T ; hence, from (4)

F (Ks) +Ks (1− δ) = Cs +Ks+1 s = 0, ...T (7)

Besides, from (3) and λT+1 > 0 it follows that γT+1 > 0 and therefore,
from (6),

KT+1 = 0 (8)
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Next we prove that the consumption sequence {Cs : s = 0, ...T} must be
strictly positive. Briefly, if at any t it turns out that Ct = 0, then (i) Cs = 0
at all s < t (prove this by using conditions (1) and (2)), and also (ii) Cs = 0
at all s > t (again, prove this by means of (1), (2), (i) and the hypothesis
that Ko > 0). Thus, the consumption sequence is either strictly positive
or strictly zero. The latter case is impossible because it would contradict
Ko > 0 and (8) KT+1 = 0. Hence the sequence must be strictly positive.

From the last result it follows that the sequence {Ks : s = 0, ...T} must
be strictly positive as well (prove this by means of (7) and Ko > 0). The two
results together imply µs = γs+1 = 0 for all s from 0 to T − 1 and µT = 0.

We thus pass from the conditions in general form (1) to (6) to the following
reduced set of conditions

U ′
s = λs+1 s = 0, ...T

λs+1 [F
′
s + 1− δ] = λs s = 1, ...T

F (Ks) +Ks (1− δ) = Cs +Ks+1 s = 0, ...T

KT+1 = 0

By replacing the first into the second condition we further reduce the
necessary and sufficient characterization of an optimal path to the following
three conditions

U ′
s [F

′
s + 1− δ] = U ′

s−1 s = 1, ...T (9)

F (Ks) +Ks (1− δ) = Cs +Ks+1 s = 0, ...T (10)

KT+1 = 0 (11)

The first of the three conditions is called Euler condition or Euler equa-
tion. The economic interpretation is in terms of the equality between mar-
ginal rate of substitution in consumption and marginal rate of transforma-
tion in production. In this case substitution and transformation applies to
consumption/production of the same commodity at two different dates con-
sidered as if it were consumption/production of two different commodities.
The fact that Euler condition amounts to an equality between rates of inter-
temporal substitution/transformation can be checked by solving the next

Exercise 3 Prove that
U ′s−1
U ′s

measures the representative household’s mar-
ginal rate of substitution between consumption at s − 1 and consumption at
s, and that F ′

s + 1− δ measures the technical rate of transformation between
the same.
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2.3 Dynamic properties of the optimal plan

We now examine the dynamic implications of the equations (9) and (10)
that characterize the optimum consumption-investment plan. For the sake
of simplicity we shall restrict the utility function to the case of a function U
with separable marginal utilities, in the sense that each partial derivative U ′

s

is assumed to be a function of Cs alone, independently of consumption levels
at dates different from s.

Given this restriction, we rewrite the two equations as follows

U ′
s+1 [F

′ (Ks+1) + 1− δ]− U ′
s = 0 (12)

F (Ks) +Ks (1− δ)− Cs −Ks+1 = 0 (13)

where U ′
t (with t = s, s+ 1)means partial derivative of U with respect to Ct

and is a function of Ct alone.
As s ranges from 0 to T − 1in (12), and from 0 to T in (13), we have T

couples of equations like (12)-(13) plus the residual equation (13) that links
CT , KT to KT+1. It is not difficult to check that each couple of equations
links the pair (Cs,Ks) to (Cs+1, Ks+1) in a one-to-one, invertible way. It
thus defines a rule of transition (a “law of motion” in classical mechanics
terminology) connecting two successive states of the economy characterized
by means of the levels of consumption and capital stock. The rule can be used
either forwards, knowing (Cs, Ks) determine the next state (Cs+1, Ks+1); or
backwards, knowing (Cs+1, Ks+1) determine the preceding state (Cs, Ks).

If one starts from a given initial state (Co, Ko), repeated forward ap-
plications of the rule of transition T times determine a unique sequence
of states {(Cs, Ks) : s = 1, ...T}, plus KT+1 by applying equation (13) with
s = T . Starting from the other end, take a pair (CT , KT+1) and apply
the rule of transition backwards T times: the result is a unique sequence
{(Cs−1, Ks) : s = 1, ...T}, plus Ko by applying equation (13) with s = 0.
Thus, again, one gets a unique sequence of states from T to 0.

More in general, it is possible to demonstrate the following result: if we as-
sign given values to two variables arbitrarily chosen from the set
{Co, ..., CT ,Ko, ...,KT+1}, then there is one and only one set of values of
the remaining 2T + 1 variables such that the 2T + 1 equations (12)-(13) are
satisfied. In other words, system (12)-(13) has a unique solution provided
two “degrees of freedom” (dof) are saturated assigning arbitrary values to
two of its unknowns. This can be done in as many ways as there are ele-
ments in R2. But of course, in order for it to be economically meaningful,
the solution must not contain negative terms. Therefore, not all arbitrary
assignments will turn out to be economically meaningful.
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The solution of the system identifies a sequence of states
{(Cs,Ks) : s = 0, ...T} followed by a unique level of capital stock KT+1 re-
maining at the end. The sequence can be seen as a function mapping the
integer variable s = 0, ...T into R2 and describing the position of the economy
at each date, its ‘trajectory’ in the R2 space: the ‘story’ or the ‘dynamics’
of the economy over the [0, T ] interval. It is usual to take the initial capital
stock Ko as given. We also know, from equation (11) in section 2.2, that
the final stock KT+1 is bound to be zero if the trajectory has to be opti-
mal. The two conditions concerning the initial and terminal capital stock
over the planning period are called ‘boundary conditions’. Once these have
been fixed, the two dof of the system (12)-(13) are saturated and the optimal
trajectory is uniquely determined, as can be seen by solving the following
exercise.

Exercise 4 Argue that equations (12)-(13), together with boundary condi-
tions Ko = Ko (a given value) and KT+1 = 0, identify one and only one
optimal sequence in the finite T -horizon problem of optimal planning. [Hint:
show that, given Ko, CT and KT are continuous functions of Co, the for-
mer strictly increasing, the latter strictly decreasing. Find the relationship
between CT and KT that the optimal plan must satisfy. Now you have one
equation with the only unknown Co. Show that if the equation has a solution,
this is unique...]

As in all finite horizon optimal planning problems, the second boundary
condition in the form KT+1 = 0 implies that the planner is not interested
in the survival of the economy beyond the end of the planning period. This
unrealistic implication can be removed simply by assuming that the planner
has a second target concerning the capital stock at the end of the planning
period: for example, to avoid that the final stock is lower than the initial
one, KT+1 ≥ Ko > 0. The changes in the characteristics of the optimal plan
are shown by the solution to the next exercise.

Exercise 5 Like the previous exercise, but now assume that the second bound-
ary condition is given by KT+1 = KT+1, a given positive value. Show that
there is an upper bound on KT+1 beyond which the problem has no econom-
ically meaningful solution, and that the utility associated to the optimum
accumulation plan is inversely related to KT+1.

Finally, an important implication of the uniqueness of the optimal plan
associated with given boundary conditions is the following: different optimal
plans, i.e. plans associated with different boundary conditions, cannot have
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any state (Cs, Ks) in common. This is demonstrated easily. If two different
plans had a common state at some s ∈ (0, T ), then they would also have
common states (Ct, Kt) at all 0 ≤ t < s and s < t ≤ T . But then they would
also have the same boundary conditions, and therefore they would be the
same plan. Thus, if a state belongs to an optimal plan for given boundary
conditions, there are no other boundary conditions for which that state can
be optimal.

2.4 Infinite horizon: recursive utility

Now we extend the analysis of optimal planning to the case of an infinite
horizon T = ∞. We shall see that, thanks to convenient restrictions con-
cerning the shape of the utility function, the problem takes on a recursive
structure that enables us to use simple mathematical methods.

With T = ∞ utility turns out to be a function of an infinite number of
arguments. In order to simplify formal manipulations we assume that it has
the so-called ‘recursive property’ explained here below.

Generally speaking, a function with an infinite number of arguments of
the type y = f (x0, x1, x2, ...) is said to be ‘recursive’ if there exist two func-
tions, call them ϕ : R → R and W : R2 → R, such that the value of f can
be written in the following (separable) way

f (x0, x1, x2, ...) =W (ϕ (x0) , f (x1, x2, ...))

The W function is called the “aggregator function”. The function indicated
with ϕ isolates the first argument of the sequence from all the others. The
argument of f in the right hand side of the formula is the same sequence as
in f in the left hand side, but for the elimination of its first term (‘truncated’
sequence).

As f appears on the right of the formula as second argument of the
aggregator, by applying the same kind of decomposition a second time we
get

f (x0, x1, ...) = W (ϕ (x0) ,W (ϕ (x1) , f (x2, ...)))

an so on. After n iterations we get

f (x0, x1, ...) =W (ϕ (x0) ,W (ϕ (x1) ,W (...W (ϕ (xn) , f (xn+1, ...)) ...)))

Iterations may continue to any extent; in general, it is always possible to
write

f (x0, x1, ...) = lim
n→∞

W (ϕ (x0) ,W (ϕ (x1) ,W (...W (ϕ (xn) , f (xn+1, ...)) ...)))
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Notice that the last formula isolates each of the first n arguments from
all the others by means of the ϕ function, while the residual arguments in
the tail from n+ 1 to infinity remain attached to each other. An additional
hypothesis, that is usually assumed to hold in economic applications, is the
hypothesis called ‘complete separability’. This means assuming that the
function can be written in the form

f (x0, x1, ...) =

= lim
n→∞

W (ϕ (x0) ,W (ϕ (x1) ,W (...W (ϕ (xn) , f (xn+1, ...)) ...)))

= W (ϕ (x0) ,W (ϕ (x1) ,W (... ...)))

with the tail of unseparated arguments disappearing entirely from the argu-
ments of W .

A recursive utility function is a function that can be written as

U (C0, C1, C2, ...) = W (u (C0) , U (C1, C2, ...))

In the case of utility the first argument of the aggregator is called the ‘instan-
taneous utility’ of a flow of consumption. Total utility is thus decomposed
into two components, the instantaneous utility determined by Co and the to-
tal utility of the truncated sequence C1, C2, .... Iterating the decomposition
n times we get

U (C0, C1, C2, ...) =

=W (u (C0) ,W (u (C1) ,W (u (C2) , ...W (u (Cn) , U (Cn+1, Cn+2, ...)) ...)))

a function of a series of instantaneous utilities and the total utility of the
residual tail of consumption levels. Here as follows u will always be assumed
to be increasing, concave, with first derivative tending to infinity for Cs → 0.
It is natural to assume that W is an increasing function with respect to both
its arguments.

A particularly simple and much used case of recursive utility is that in
which the aggregator is a linear function of the type W (u, U) = u + βU .
The parameter β is usually assumed to be positive and less than one and is
interpreted as a subjective factor of discount, measuring the representative
consumer’s time preference or degree of ‘impatience’ (the more impatient
individual has β nearer to zero). Alternatively, if we call θ the subjective
rate of discount, we have

β =
1

1 + θ

and impatience grows as θ increases from zero to infinity.
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By operating iteratively with the linear aggregator

U (C0, C1, ...) = u (C0) + βU (C1, C2, ...)

U (C1, C2, ...) = u (C1) + βU (C2, C3, ...)

U (C2, C3, ...) = u (C2) + βU (C3, C4, ...)

we get, by way of substitution,

U (C0, C1, ...) = u (C0) + βu (C1) + β2u (C2) + ...

...+ βnu (Cn) + βn+1U (Cn+1, Cn+2, ...)

In this case the hypothesis of complete separability (see above) takes on
a particularly simple form. From

U (C0, C1, ...) = lim
n→∞

�
n�

s=0

βsu (Cs) + βn+1U (Cn+1, Cn+2, ...)

�

= lim
n→∞

n�

s=0

βsu (Cs) + lim
n→∞

βn+1U (Cn+1, Cn+2, ...)

it is clear that complete separability, i.e. the hypothesis

U (C0, C1, ...) = lim
n→∞

n�

s=0

βsu (Cs) =
∞�

s=0

βsu (Cs)

according to which U resolves entirely into a sum of instantaneous utilities
independent of each other, is equivalent to

lim
n→∞

βn+1U (Cn+1, Cn+2, ...) = 0

Since β < 1, a sufficient condition for this is the boundedness of total utility.

2.5 Infinite horizon: dynamics

Although the Lagrange method is not the most qualified method for solving
problems of dynamic optimization with infinite horizon, there is no obstacle
to continuing to use it either. Apart from the specific form of the utility
function, the only difference in constructing the Lagrange function with T =
∞ (see section 2.2) is in the fact that, the number of constraints being infinite,
also the sums that appear in the formula have an infinite number of addends.
It may turn out that for some values of the variables and of the Lagrange
multipliers these sums add up to infinity, so that L (·) = ∞, but this raises
no problem: since we are looking for saddle or maxmin points of the function,
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it is easy to see that when the function is at a minimum with respect to all
the Lagrange multipliers, all the sums in the formula equal zero and (for λo

normalized to 1) L (·) is finite and equal to U .
With infinite horizon the FOCs of minimum and maximum are mainly

the same as displayed in the solution to exercise 2, with ∞ in the place of
T . The only changes are those due to the introduction of recursive utility,
and to the fact that a condition like (3) no longer exists because there are no
longer left-overs of capital to be managed at the end of the planning period
— indeed, there is no end to the planning period.

After the FOCs (12) and (13) have been transformed according to recur-
sivity, they take the form

βu′ (Cs+1) [F
′ (Ks+1) + 1− δ]− u′ (Cs) = 0 (14)

F (Ks) +Ks (1− δ)− Cs −Ks+1 = 0 (15)

which differs from the previous system for the presence of the discount factor
and marginal instantaneous utilities in Euler equation (14). We still have a
one-to-one, reversible rule of transition between consecutive states, but the
important difference is that here the rule is independent of the date: indeed,
the marginal utility function in (14) is the same at all dates, while in equation
(12) it could be different from one date to another.

This fact establishes the recursive character of the dynamics generated
by the (14)-(15) system. Starting from a given (Co,Ko), for example, the
system determines the position (Cs,Ks) at any date s, either s > 0 or s < 0
— hence possibly the entire trajectory from −∞ to +∞ — by applying the
same transition rule s times, either forwards or backwards.

In mathematical terms, a recursive system such as (14)-(15) is a system of
two first-order difference equations. Just to recall some of the main properties
of such systems: (i) a solution is a time sequence ranging from −∞ to +∞,
in our case a function mapping the set integers into R2, such that replacing
the values of the function into the equations the latter are satisfied at all
s. (ii) The general solution to an n-order difference equation has n dof, i.e.
n free parameters, with a unique solution for each arbitrary assignment of
values to them. In our case of two first-order equations, we have two times
one dof. We have an idea of what this means from the discussion in section
2.3.

But differently from the finite-horizon case, here there is a problem. We
do not have the terminal capital stock to provide us with a second boundary
condition (in addition to the given initial capital stock Ko) to make the opti-
mal sequence uniquely determined. Conditions (14) and (15), together with
the given Ko, leave one dof open: to close it we need one further condition,
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but how to make sure that this picks up exactly the optimal path out of the
infinite number of paths that still satisfy (14) and (15)?

The transversality condition mentioned all of a sudden byWickens (chapt.
2 p. 21), provides the answer to the problem but why this is so remains
unexplained — on the basis of the Lagrange method alone. There is no direct
way through leading from the logic of that method to transversality. In
fact the necessity of the latter condition when the problem has no terminal
boundary condition becomes evident if dynamic optimization is approached
through other methods, notably those based on variational calculus that we
shall see in section 3.

To have an intuition of how it is that transversality is able to sort the
optimum sequence from all those that satisfy (14) and (15), we can use
the graphical representation of the dynamics of the system provided by the
phase-diagram in Wickens figure 2.10 on p. 28. This is reproduced as figure
1 here. The picture has been completed by inserting the curve of equation
F (K) + K (1− δ) = C. This curve (line 0a in the figure), together with
the horizontal axis, encompasses the economically feasible part of the state-
space (states in the positive orthant but above the curve cannot be reached).
Besides, we extend the graph of the curve F (K) − δK = C up to its inter-
section (point B) with the abscissa, and call K∗∗ the stock of capital such
that F (K∗∗)− δK∗∗ = 0.

Figure 1

From the analysis of figure 1 we reach the following conclusions.
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(i) All the sequences having at least one state placed above the saddlepath
cannot represent solutions to the (14) and (15) dynamic system. Why? Just
consider the following argument. All the sequences of this type will sooner or
later cross the 0a curve that encompasses the feasible states of the economy.
But if the next state to a given (Cs, Ks) according to equations (14) and (15)
is a state (Cs+1, Ks+1) lying outside the curve, i.e. with Cs+1 > F (Ks+1) −
δKs+1, what the economy can at most do is to reach a state (C,K) such that
C = F (K)− δK. Consequently, between s and s+1 equation (15) does not
hold and this sequence is not consistent with the system.

(ii) Sequences consistent with (14) and (15) must therefore lie entirely
in the area bounded from above by the saddlepath. Those having at least
one state in the saddlepath are entirely included in the latter and converge
to the stationary sequence represented by the state (C∗,K∗) from below or
from above. Those having at least one state placed below the saddlepath
lie entirely below it and converge to the stationary sequence (0, K∗∗). No-
tice that convergence must be asymptotic because, as seen above, different
sequences cannot have any state in common.

(iii) Consider a sequence identified by an initial state
	
Ĉo, K̂o



placed

below the saddlepath. Compare it with a sequence identified by an initial

state
	
Co, K̂o



placed in the saddlepath. Obviously Ĉo < Co. Working on the

system (14)-(15) it is not difficult to prove that, at all s > 0, states
	
Ĉs, K̂s




in the former sequence and states (Cs, Ks) in the latter are characterized by
Ĉs < Cs and K̂s > Ks. The proof of this statement comes from the hint
given in exercise 4: according to (14)-(15), Cs+1 is increasing with respect to
Cs, decreasing with respect to Ks, while Ks+1 is decreasing with respect to
Cs and increasing with respect to Ks. Apply (14) and (15) repeatedly: you
will get the statement to be proved.

From the last point, it follows directly that, given an initial capital stock
Ko, the optimal sequence is the one which starts and remains forever in the
saddlepath, converging to (C∗, K∗) in infinite time. Of course the optimal
sequence coincides with the stationary (C∗, K∗) if Ko happens to equal K

∗.
It is also easy to check that all optimal sequences satisfy the condition of

transversality because

lim
s→∞

βsu′ (Cs)Ks = u′ (C∗)K∗ lim
s→∞

βs = 0

The last step consists in proving that, in our case, transversality is not
only a necessary condition of optimality but also a sufficient one, in the
sense that no non-optimal sequence can satisfy it. This follows from the fact
that all non-optimal sequences converge to the stationary sequence (0,K∗∗).
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Look at the series of the terms βsu′ (Cs)Ks with Ks approaching K∗∗ and
Cs monotonically declining to 0. From Euler equation (14) it is easy to see
that the series is positive and monotonically increasing with respect to s,
therefore its limit cannot be zero.

2.6 Steady states and convergence

Let us reconsider the transition rule defined by equations (14)-(15). We
rewrite it as an one-to-one map ϕ : R2 → R

2 such that

(Cs, Ks) = ϕ (Cs−1,Ks−1)

or inversely
(Cs−1, Ks−1) = ϕ−1 (Cs, Ks)

Given an initial state (Co,Ko), the corresponding (unique) infinite sequence
is described by

(Cs, Ks) = ϕs (Co, Ko)

with s, the number of (forward or backward) applications of the transition
rule, ranging from −∞ to +∞.

As we have seen from figure 1, all the sequences generated by ϕ for a
given initial state converge to some state, either the one represented by A or
by B in the figure. Notice that the continuity of the u′, F and F ′ functions
implies that the function ϕ (and its inverse) is continuous. Now recall the
theorem that says that if a function f (x) is continuous and

lim
x→x∗

f (x) = a

then a = f (x∗). In our case, call xs ≡ (Cs,Ks): from

lim
s→∞

ϕs (xo) = x∗

(where x∗ is one of the limit states of the system), and from

lim
s→∞

ϕs (xo) = lim
s→∞

ϕ (xs−1) = lim
xs−1→x∗

ϕ (xs−1)

it follows that
lim

xs−1→x∗
ϕ (xs−1) = x∗

As ϕ is continuous, the theorem recalled above implies

ϕ (x∗) = x∗
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i.e., the limit states of all the sequences generated by ϕ are fixed points of ϕ.
A fixed point of a transition rule corresponds to a stationary infinite

sequence: from ϕ (x∗) = x∗ it follows that, taking xo = x∗, xs = ϕs (x∗) = x∗

for any s. As we know, no two different sequences can have states in common.
Thus, even if an infinite sequence ϕs (x) converges to a fixed point x∗, the
sequence can never ‘reach’ the state x∗.

In economic terminology, states (sequences) corresponding to fixed points
are called “steady states”. Not all transition rules have steady states. There
are various theorems of existence of fixed points that state sufficient condi-
tions to that effect. In our case, existence descends from the convergence
of all the sequences of the type {ϕs (x) : s = 1, 2...} with x chosen from an
appropriate subspace of R2. Here we don’t inquire further into the matter.

The steady state marked with A in figure 1 and corresponding to (C∗, K∗)
is the optimal sequence of the economy for Ko = K∗, and the limit of all op-
timal sequences for Ko �= K∗. Therefore stationary levels of consumption C∗

and capital stock K∗ are either the actual or the tendential (in the longrun)
state of the optimally planned economy. The absence of any longrun growth
here descends from the assumptions of the model, that rule out technical
progress and changes in the labouring population (see section 2.7).

Our system has two other fixed points, corresponding to points 0 and B
in figure 1. The last one is the limit of all the sequences that have no states
in the saddlepath, while 0 is the limit of none (apart from itself).

From equation (14) we see that a characteristic of this steady state is

F ′ (K∗)− δ =
1

β
− 1 = θ

or in other words the marginal productivity of capital net of scrapping equals
the subjective rate of discount of the representative consumer. This last
characteristic establishes an inverse relationship between θ, the degree of
impatience, and the steady state levels (C∗, K∗). Notice that a population of
absolutely non-impatient consumers, with θ = 0, will place its steady state
at the point of maximum of the F (K)− δK curve, a point at which also the
steady state level of consumption is the maximum attainable in the economy.
This is called the ‘Golden Rule’ steady state.

The ability of fixed points to attract sequences is called stability. A stable
point x∗ has a proper basin of attraction, i.e. a set of points x (including
itself) such that

lim
s→∞

ϕs (x) = x∗

The basin of an unstable fixed point like 0 in figure 1 contains the point itself
and nothing else. Point B is stable and its basin covers almost the whole
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relevant space with the only exclusion of the saddlepath. The basin of the
optimal steady state of the system coincides with the saddlepath, which is
a one-dimensional manifold in R2. Getting there, therefore, seems more a
matter of luck than the preordered course of events of the optimally planned
economy. If the economy does not manage to enter the saddlepath, the model
predicts either unsustainable overconsumption leading to self-destruction in
a finite time, or unrelenting accumulation with starvation looming in the far
future.

2.7 Optimal exogenous growth

This section refers toWickens chapter 3, sections from 1 to 4, where the basics
of growth models and the meaning of the exogenous/endogenous growth dis-
tinction are made clear. The primary source of all these models and of many
others that we don’t have the time to discuss is Robert Solow, "A Contribu-
tion to the Theory of Economic Growth", Quarterly Journal of Economics
70 (1956).

In the model of exogenous optimal growth presented in sect. 3.4 Wick-
ens assumes that two factors of growth, population increase and technological
progress, are simultaneously at work. The result is a rather bulky mathemat-
ical formulation that obscures how simple an extension of the DGE model of
optimal plan this growth model is. In order to get rid of useless mathematical
complexity, we consider the two factors of growth separately by presenting
the model in two distinct steps: first, an economy with demographic growth
(n > 0) without technical progress (µ = 0); second, the same economy with
technical progress and a stationary working population (n = 0, µ > 0).

Before we develop the model, we must introduce two simplifying hypothe-
ses regarding the shape of the functions of production and of instantaneous
utility.

(i) Production function. Since the input of labour in the economy is now
treated as a variable, production will be assumed explicitly to be a function
of both production factors, capital and labour K,L. What kind of func-
tion? In the literature on macroeconomic growth the standard assumption
is that the aggregate technology in the economy is characterized by constant
returns to the scale of utilization of both factors. This corresponds to the
mathematical property F (λK,λL) = λF (K,L), where λ, a positive scalar,
is a measure of expansion or contraction in the utilization of the factors and
in the corresponding GDP. Notice that this property is more general than
linearity: in mathematics the property is called homogeneity of degree 1. All
linear functions are homogeneous degree 1 but not viceversa. A particularly
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convenient special case of non-linear but homogeneous degree 1 production
function is the so-called Cobb-Douglas function, of the form

Y = KαL1−α

The parameter α is taken in the open (0, 1) interval.

Exercise 6 Demonstrate the following facts concerning the above
Cobb-Douglas production function: (i) it is degree 1 homogeneous, (ii) the
exponents α and 1− α represent the elasticity of output with respect to cap-
ital and to labour, (iii) each exponent being less than one implies that the
marginal productivity of each factor is decreasing, (iv) the isoquants of the
function in K, L space are concave.

(ii) Instantaneous utility function. A convenient class of utility functions
is defined by the property of ‘constant elasticity of marginal utility’, also
known as the property of ‘constant relative risk aversion’ (CRRA). Given a
generic increasing, concave, twice differentiable instantaneous utility function
u = u (C), the elasticity of marginal utility with respect to consumption —
that in models of choice under uncertainty provides also a measure of relative
risk aversion — is defined by

σ ≡ −C

u′
du′

dC
= −Cu′′

u′

where σ must be positive from u′ > 0 > u′′. Since we know that

C
u′′

u′
=

d ln u′ (C)

d lnC

then
ln u′ (C) = a− σ lnC

with a an arbitrary constant. Let us call ea ≡ A. The property of constant
elasticity therefore requires that

u′ (C) = AC−σ

For σ < 1 this implies that the constant elasticity utility function must be a
function of the kind

u (C) = A
C1−σ

1− σ

which is also called the ‘power’ utility function. For σ = 1 the constant
elasticity function must be a logarithmic function of the type

u (C) = A lnC + b
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with b another (positive) arbitrary constant. (The case σ > 1 is excluded by
the general properties of utility — why?). In the following we will in general
set A = 1 and b = 0 for the sake of simplicity.

(I) Demographic growth
Let us now consider an infinite horizon optimal plan for an economy

characterized by a constant rate of growth n > 0 of the labouring population,
with production and instantaneous utility functions as described above. Let
Lo be the labouring population at the initial date 0: then Ls = (1 + n)s Lo,
and in general Ls = (1 + n)Ls−1.

The constraint of the economy becomes

Kα
s L

1−α
s +Ks (1− δ)− Cs −Ks+1 ≥ 0

Let us use small type letters for indicating capital, output, and consumption
ratios per-head, as follows

ks ≡
Ks

Ls

, ys ≡
Ys

Ls

=
Kα

s L
1−α
s

Ls

= kα
s , cs ≡

Cs

Ls

Notice that output per-head is a decreasing returns function (α < 1) of
capital per-head. As is easy to check, the budget constraint can be restated
in per-head terms by dividing it by Ls

kα
s + ks (1− δ)− cs − (1 + n) ks+1 ≥ 0

An optimal growth plan is an infinite-horizon sequence (cs, ks) with s =
0, 1, ... such that discounted total utility is maximized compatibly with the
budget constraint and all the non-negativity constraints seen in 2.2 being
satisfied. Expressed in per-head terms, total utility is given by (we take the
case σ < 1)

∞�

s=0

βs C
1−σ
s

1− σ
=

∞�

s=0

βs (Lscs)
1−σ

1− σ

Maximization by means of Lagrange method, as in section 2.2, is left as
an exercise. At the end of the procedure the two necessary conditions of
optimum, Euler and budget condition, turn out to be similar to equations
(14) and (15)

β (Ls+1cs+1)
−σ
�
αkα−1

s+1 + 1− δ
�
− (Lscs)

−σ = 0

kα
s + ks (1− δ)− cs − (1 + n) ks+1 = 0 (16)
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Through simple manipulation, Euler equation can also be written as

αkα−1
s+1 + 1− δ =

1

β


Ls+1cs+1
Lscs

�σ

=
1

β
(1 + n)σ


cs+1
cs

�σ

Remember that 1/β = 1 + θ. Besides, let us use the linear approximation

(1 + n)σ ≃ 1 + σn

(this is found by taking a truncated Taylor expansion of the function (1 + n)σ

in a neighborhood of n = 0). We then get

1

β
(1 + n)σ ≃ (1 + θ) (1 + σn) ≃ 1 + θ + σn

and Euler condition takes on the form

αkα−1
s+1 + 1− δ = (1 + θ + σn)


cs+1
cs

�σ

(17)

Graphic analysis of the dynamic system constituted by equations (17)
and (16) gives the same results as the one carried out in section 2.5, see
figure 2 here below

Figure 2

Here, the variables measured along the axes are per-head capital and
consumption. The curve 0a represents the function kα+(1− δ) k and defines
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the boundary of the feasible states of the economy. Curve 0AB represents
the function kα − (δ + n) k which, from the budget equation (16), equals
cs + (1 + n) (ks+1 − ks), so that if

cs = kα
s − (δ + n) ks

the capital-labour ratio ks must be constant. The capital-labour ratio k∗ is
chosen so as to satisfy the equation

αkα−1
s+1 − δ = θ + σn

so that, if ks = k∗ consumption per-head cs must be constant (look at Euler
equation (17)).

The dynamics of (cs, ks) in the feasible area is exactly like the dynamics
in figure 1 of section 2.5: the optimal paths are those that are located along
the saddle-path converging to the steady state path represented by point A.
In the very long run therefore any optimal path will come to resemble the
steady state path more and more closely. The steady state is characterized
by

c∗ = (k∗)α − (δ + n) k∗

α (k∗)α−1 = δ + θ + σn

stationary capital-labour and consumption-labour ratios. The absolute lev-
els of capital and consumption, Ks = Lsk

∗ and Cs = Lsc
∗ will therefore be

increasing at the same rate n as the labouring population. All other char-
acteristic ratios in the economy (output per-head, consumption to output,
etc.) will also remain constant because everything is growing at the same
rate (“balanced growth”).

Exercise 7 The steady state of an economy is said to satisfy the “Golden
Rule” (GR) when consumption per-head is the maximum feasible consump-
tion per-head available in the economy. Show that, in order to have GR
steady state, the rate of discount of the economy θ must be equal to (1− σ)n
while, with θ > (1− σ)n, steady state consumption per-head is less than the
available maximum.

(II) Growth with technological progress
We now turn to an economy with stationary population Ls = L (n = 0)

but a steady flow of exogenous innovations which raises the productivity of
both factors of production. Following Wickens sect. 3.2, the pace of technical
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progress is supposed to be given by a constant positive rate of shift µ of the
technology such that, taking s = 0 as the base-year for the technology, at
each successive date s > 0

Ys = (1 + µ)sKα
s L

1−α

The last equation can also be written as

Ys = Kα
s

�
(1 + µ)

s
1−α L

�1−α

From this, define
Ls ≡ (1 + µ)

s
1−α L

where Ls can be interpreted as labour measured in "efficiency units", i.e. the
equivalent in base-year labour of L labourers equipped with the technology
available at s. If we use the usual linear approximation

(1 + µ)
s

1−α =
�
(1 + µ)

1

1−α

�s
≃

1 +

µ

1− α

�s

the rate η ≡ µ

1−α
represents the (per-period) rate of increase of labour effi-

ciency due to technical progress at (per-period) rate µ.
Let us now redefine capital, output and consumption in per-efficiency-

head terms exactly as we did in the model of demographic growth. In the
technological progress model the rate of increase of efficiency η replaces the
rate of demographic growth n, but all the equations of the two models are
formally identical. Therefore, the optimal growth path will be characterized
by the two necessary (Euler and budget) conditions represented by equations
(17) and (16) with only η in the place of n. Convergence to steady state and
properties of the latter remain unchanged, in particular

c∗ = (k∗)α − (δ + η) k∗

α (k∗)α−1 = δ + θ + ση

There is a difference, however, regarding consumption and capital per
(physical) head. Indeed, from

Cs = c∗Ls = c∗L (1 + η)s

Ks = k∗Ls = k∗L (1 + η)s

it turns out that consumption, capital (and implicitly output) per labourer
grow at the constant rate η determined by technical progress.

Exercise 8 Combine demographic and technological growth in a single model
as in Wickens sect. 3.4.1.
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3 Tools for dynamic maximization

In this chapter we consider how to analyze dynamic systems by means of lin-
ear approximations in neighbourhoods of particular points. We recall some of
the mathematics necessary to deal with at least the simplest types of systems
of linear difference equations. Lastly, we introduce methods of maximization
especially designed for recursive dynamic problems.

3.1 Linear approximations to nonlinear dynamics

The dynamic system defined by equations (14) and (15) of section 2.5 is non-
linear. While an intuitive graphic analysis of the dynamics is still possible
and reasonably simple, non-linearity may complicate the algebraic analysis
a lot. In order to make it simpler we follow Wickens, section 2.4.7, and
take advantage of the general possibility of approximating the behavior of a
given nonlinear system by means of a different, linear system that in limited
neighborhoods of particular states behaves ‘almost in the same way’. In
particular we focus on the neighborhood of the steady state (C∗,K∗) because
it indicates the long run tendency of the optimal paths of the economy.

The possibility of building a satisfactory local linear approximation to a
given nonlinear dynamics in the neighborhood of its fixed points is granted by
a theorem known as Hartman-Grobman (H-G) theorem. [A user-friendly in-
troduction to the theorem, Scott Zimmerman “An undergraduate’s guide
to the Hartman-Grobman and Poincaré-Bendixon theorems”, referred to
continuous-time dynamic systems, is freely downloadable from the web.]

Consider a generic first-order dynamic system in Rn of the type

xs+1 = ϕ (xs)

where the x are n-dimensional vectors and the transition rule ϕ is a continu-
ously differentiable nonlinear function with domain and range in some open
subset of Rn. Take a fixed point x∗ of ϕ, x∗ = ϕ (x∗), and approximate ϕ in
the neighbourhood of x∗ by taking the first two terms of the Taylor expansion

ϕ (x) ≃ ϕ (x∗) +∇ϕ∗ (x− x∗) = x∗ +∇ϕ∗ (x− x∗)

where ∇ϕ indicates the n × n Jacobian matrix of the partial derivatives of
ϕ, and ∇ϕ∗ the Jacobian at steady state x∗.

The Rn → R
n function

ψ (x) = x∗ +∇ϕ∗ (x− x∗)
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is an affine approximation of ϕ with the same fixed point x∗ = ψ (x∗) =
ϕ (x∗). The H-G theorem affirms that, provided the Jacobian ∇ϕ at steady
state x∗ has no purely imaginary eigenvalues, there is an open neighborhood
of x∗ in which the dynamics according to ϕ and the dynamics according to ψ
are ‘topologically conjugate’ or, translated into non-technical language, can
be considered to be qualitatively equivalent.

Now we apply this technique to the study of the dynamic properties of the
(14)-(15) system near the steady state (C∗,K∗). First, rewrite the system
with (Cs+1, Ks+1) as an explicit function of (Cs, Ks) by taking advantage of
the fact that the marginal utility function u′ is invertible. Call v ≡ (u′)−1 the
inverse of marginal utility and rewrite the equations (14)-(15) in the form

Cs+1 = v


u′ (Cs)

β [F ′ (F (Ks) +Ks (1− δ)− Cs) + 1− δ]

�

Ks+1 = F (Ks) +Ks (1− δ)− Cs

Now compute the Jacobian of the function at the steady state point,
where we know that the following equations hold

β (F ′ (K∗) + 1− δ) = 1

F (K∗)− δK∗ − C∗ = 0

Recall that, from our definition, v′ = 1
u′′
. By way of calculus we get the

Jacobian �
1 + β u′(C∗)

u′′(C∗)
F ′′ (K∗) − u′(C∗)

u′′(C∗)
F ′′ (K∗)

−1 1
β

�

Using the abbreviation B∗ ≡ u′(C∗)
u′′(C∗)

F ′′ (K∗) > 0 we rewrite it as

�
1 + βB∗ −B∗

−1 1
β

�

Exercise 9 Prove that the Jacobian matrix has two distinct real and positive
eigenvalues.

The solution to exercise 9 makes sure that our system satisfies the condi-
tions of the H-G theorem. We therefore proceed to define the approximating
affine system (in vector-matrix form)

�
Cs+1

Ks+1

�
=

�
C∗

K∗

�
+

�
1 + βB∗ −B∗

−1 1
β

� �
Cs − C∗

Ks −K∗

�
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By taking the deviations of C and K from their steady state values

ζs = Cs − C∗

ηs = Ks −K∗

as the variables of our dynamic system, the approximating transition rule is
given by the linear system

�
ζs+1
ηs+1

�
=

�
1 + βB∗ −B∗

−1 1
β

� �
ζs
ηs

�
(18)

with the transition rule identified by a fixed-coefficient matrix. Since the
determinant is non-zero, the matrix is non-singular, which means that the
trasition rule can be operated in the reverse direction, from s+ 1 to s.

As is easy to see, if the state of the system at a certain date s is known,
the state at any other previous or successive date can be computed simply by
applying the transition rule, i.e. the Jacobian matrix, the required number
of times. Call B the matrix in formula (18), and fs the bi-dimensional vector
of deviations at s. Then

fs+t = Btfs

with t either positive or negative. Thus, the dynamics of (18), and in par-
ticular its tendency to converge to, or diverge from the steady state (now
identified by f = 0), can be investigated simply by studying the behavior of
successive (positive or negative) powers of a matrix.

3.2 Solving a system of linear fixed-coefficient first-

order difference equations: the homogeneous case

The two-equation system (18) is an example of a system of linear fixed-
coefficient first-order difference equations. Given the state of the system at
a certain date, fs, the corresponding particular solution to the system is a
sequence of points in R2 extending from −∞ to +∞.

In general, a system of the kind

fs+1 = Bfs or fs = B−1fs+1

with the f vectors in Rn and B an n × n non-singular matrix is called a
homogeneous linear system. If the transition from/to s to/from s + 1 is
also affected by some other known vector of n variables, as in the following
example

fs+1 = B (fs + gs+1) or fs = B−1fs+1 − gs+1
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where the sequence of the terms gs+1 ∈ Rn is known, then the (linear, fixed-
coefficient, first-order) system is said to be non-homogeneous. Every non-
homogeneous system has an ‘auxiliary’ homogeneous system which is ob-
tained simply by putting the known sequence of vectors gs equal to zero.

We study the homogeneous case first. As anticipated in 3.1, from fs+t =
Btfs for any positive or negative integer t, it follows that the dynamics of f
depends entirely on the behavior of the successive powers of B. This behavior
is better understood if we exploit the possibility of ‘diagonalizing’ B, i. e.
of transforming it into a block-diagonal matrix J called its ‘Jordan normal
form’. We know from theorems of linear algebra that, given the non-singular
n×nmatrix B, there exists a non-singular n×nmatrix V that allows the two
similarity transformations V −1BV = J and V −1B−1V = J−1. The entries of
the main diagonal of J and J−1 are the characteristic roots, or eigenvalues,
of B and their inverses, repeated according to their multiplicities if there are
multiple roots. The columns of V are called the generalized characteristic
vectors, or eigenvectors, of B and constitute a basis in Rn. Once the matrix
has been diagonalized, from B = V JV −1 and B−1 = V J−1V −1 it follows
that all positive and negative powers of B can be computed from

Bs = V JsV −1

In the case in which B has n distinct roots (like the GDE case analyzed
in 3.1), J is the diagonal matrix of the roots and the columns of V are the
corresponding eigenvectors. In this case the convenience of resorting to this
transformation of the original B matrix is particularly evident . The sequence
of the powers of B comes to depend on the sequence of the powers of its n
eigenvalues, a sequence of numbers rather than matrices, something which is
much simpler to analyze.

Let us consider this case more in detail in the hypothesis that all the
eigenvalues (and therefore, all the eigenvectors) are real numbers λi, i =
1, ...n, with v(i) to indicate the eigenvector associated with λi. Call Λ the
diagonal matrix of the eigenvectors. Assume that at s = 0 the position of
the system is fo. The general solution fs = Bsfo can be rewritten as

fs = V ΛsV −1fo

or, equivalently
V −1fs = Λ

sV −1fo (19)

Recall that the columns of V represent a basis for Rn alternative to the
standard orthogonal unit basis. If the vectors fs represent the coordinates
of points in Rn with respect to the standard basis, their coordinates with

30



respect to the alternative V basis are given by vectors xs such that

V xs = fs

Thus, the product V −1fs = xs is simply the same vector that fs identifies by
means of orthogonal unit coordinates, but expressed by means of a different
system of coordinates, corresponding to the eigenvectors in V .

If we rewrite equation (19) in the x-coordinates

xs = Λ
sxo

the analysis of long-run behavior of the system becomes quite simple and in-
tuitive. Each of the n coordinates xis = λs

ixio depends entirely on the powers
of the corresponding root λi. The main considerations for the purposes of
stability analysis are: (i) whether λi is positive or negative (in the latter case
the powers alternate in sign); (ii) whether the norm of λi is greater or smaller
than one (the norm of the successive positive powers converge to infinity or to
zero respectively). For powers s > 0 a root λi is said to be stable if |λi| < 1,
unstable in the opposite case. If λi is stable, the i-th component of xs tends
to 0 as s→∞, in other words the “projection” of xs on the eigenvector v(i)

gets nearer and nearer 0, a fixed point of the dynamics; in that case v(i) is
also said to be stable. If λi is unstable, the reverse holds.

For powers s < 0 (s going backwards, from 0 to −∞) the above discussion
and terminology must be reversed because, if λi is an eigenvalue of B, the
eigenvalue of B−1 associated with the same eigenvector v(i) is (λi)

−1. Thus,
if λi is stable for s > 0 it must be unstable for s < 0 (and vice versa). As for
the associated eigenvector v(i), if it is stable for s moving forward it must be
unstable for s moving backwards (and vice versa).

Just to consider two extreme cases, take the globally stable case in which
max

i
|λi| < 1: in the forward dynamics xs converges asymptotically to the

fixed point 0 no matter what the initial position xo is; in backwards dynamics
instead xs (with s < 0) diverges from 0 in directions that depend on xo. In the
opposite, globally unstable case in which min

i
|λi| > 1, the forward dynamics

is divergent while, looked at backwards, all the paths come from a smaller
and smaller neighborhood of 0.

Mixed cases with both stable and unstable roots present a variety of types.
As an example consider the following exercise.

Exercise 10 Go back to system (18) in 3.1. Show that the system has one
stable and one unstable root. Construct the two-dimensional phase diagram
showing the ‘saddle’ with the corresponding stable and unstable path.
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3.3 The same: non-homogeneous case

Consider now the non-homogeneous system

fs = B (fs−1 + gs)

or in the opposite direction

fs−1 = B−1fs − gs

where gs ∈ Rn is a vector whose behavior from −∞ to +∞ is known. We
assume the sequence of the gs to be bounded in the sense that there exists a
finite positive scalar G such that at all s the condition |gs| ≤ G holds. This
sequence is also called the ‘driver’ of the system. The homogeneous system

fs = Bfs−1

in which gs is assumed to be uniformly zero is called the ‘auxiliary’ system
of the original one.

Let the state of the system at s = 0 be fo. Then, by simply operating on
the system 1, 2... s times either forward or backward, we see that the position
at any later or earlier date s or −s is given by, respectively, the first or the
second of the following formulas

fs = Bsfo +
s−1�

h=0

Bs−hgh+1

f−s = B−sfo +
s−1�

h=0

(−B)h+1−s g−h

This is called the general solution to the system. According to a theorem
which applies to linear non-homogeneous difference and differential systems
alike, general solutions consist of the sum of two parts: a particular solution
for a particular choice of fo, added to the general solution to the homogeneous
auxiliary system associated with the given one. We know that the latter is
given by fs = Bsfo for s both positive and negative. As to the particular
solution, take fo = 0: resorting to iterated computation again, we find that
the second part of the right-hand side of the two formulas represent the
particular sequence (entirely ruled by the driver g) that satisfies the system.

After diagonalization of the matrix B the general solution can be rewrit-
ten as

fs = V

�
ΛsV −1fo +

s−1�

h=0

Λs−hV −1gh+1

�

f−s = V

�
Λ−sV −1fo +

s−1�

h=0

(−Λ)h+1−s V −1g−h

�
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or, equivalently

V −1fs = ΛsV −1fo +
s−1�

h=0

Λs−hV −1gh+1

V −1f−s = Λ−sV −1fo +
s−1�

h=0

(−Λ)h+1−s V −1g−h

Now rename the coordinates of the f and g vectors with respect to the
eigenvectors in V as

V xs = fs and V ys = gs

so that the last two equations can be rewritten as

xs = Λsxo +
s−1�

h=0

Λs−hyh+1

x−s = Λ−sxo +
s−1�

h=0

(−Λ)h+1−s y−h

The analysis of the system follows along the lines of section 3.2. Let us
consider only the forward dynamics for brevity. If all the roots are stable the
part of the forward solution that depends on xo and is independent of the
dynamics of the driver tends to 0 for s→∞. So, in the long run the driver
takes the lead and comes to govern xs almost entirely. Notice however that
the influence of the driver decreases with the passing of time, in the sense
that a vector ys has the maximum effect on xs, a bit less on xs+1 and so on,
with its influence on xs+t tending to zero as t→∞.

In case of unstable roots instead both the initial state xo and the oldest
realizations of the driver tend to prevail in determining the current state.
The influence of a given ys is smallest on xs but increases with the passing
of time and tends to infinity on xs+t as t→∞.

3.4 Basics of dynamic programming

Problems of dynamic maximization like those we have been considering so far
can be solved by means of methods of static constrained maximization such
as the Lagrangean method. They are treated more appropriately, however,
by using completely different methods devised for explicitly dynamic appli-
cations like the methods elaborated in the theory called ‘optimum control
theory’. The foundations of optimal control were laid by Richard Bellman
in The Theory of Dynamic Programming, 1957. An essential feature of this
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theory is that it applies to problems in which the objective function is recur-
sive. The methods based on it are therefore called ‘recursive methods’. The
classic reference for economic applications is the book by Nancy Stokey and
Robert Lucas, Recursive Methods in Economic Dynamics, 1989.

In general, an optimum control problem (OCP) consists of the following
items. A vector of n ‘state’ variables, call it x, and a vector of m other
variables called ‘controls’, call it y. A ‘law of motion’ connecting the state
at a given date to the state-control pair at the previous date, represented by
a system of n first-order difference equations

xs+1 = g (xs, ys)

where g : Rn+m → R
n indicates the transition rule. A sequence {xs, ys}∞0

beginning at a given state xo is said to be ‘feasible’ in the system if it satisfies
the law of motion at every step s.

Control variables are so called because they are supposed to be under the
control of the planner or manager of the system: given xs, the planner has
the power to determine xs+1 by choosing the level of controls ys. The aim is
to operate the controls from, say, s = 0 to∞, so as to maximize an objective
function that depends on the infinite state-control sequence.

Let the objective of the planner be represented by the function
F ({xs, ys}∞0 ). This is supposed to be a recursive function (see the defini-
tion in sect. 2.4) of the kind

F ({xs, ys}∞0 ) = W (ϕ (xo, yo) , F ({xs, ys}∞1 ))

where ϕ represents the instantaneous return (or benefit, or utility or ...)
at each date. The aggregator W is supposed to be strictly increasing with
respect to both its arguments. In addition, we will assume that the F function
satisfies the hypothesis called ‘complete separability’ in section 2.4

F ({xs, ys}∞0 ) =
= lim

t→∞
W
�
ϕ (xo, yo) ,W

�
ϕ (x1, y1) , ...W

�
ϕ (xt, yt) , F

�
{xs, ys}∞t+1

��
...
��
=

= W (ϕ (xo, yo) ,W (ϕ (x1, y1) ,W (... ...)))

This allows us to consider the total return F as entirely determined by the in-
finite sequence of the instantaneous returns ϕ (xo, yo) , ϕ (x1, y1) , ϕ (x2, y2) ....

Given an initial state x = xo, and given that the dynamics is constrained
by the law of motion at each step, the OCP problem is solved by finding
the infinite sequence {yo, y1, ...} that maximizes F . Instead of setting out
directly to maximize under constraint, dynamic programming methods follow
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an indirect route and try to identify the solution starting from the properties
that, if it exists, the solution must necessarily satisfy.

Thus, assume that one particular sequence {x̂, ŷ} solves our OCP for given
xo; then, x̂s+1 = g (x̂s, ŷs) for all s = 0, 1, ... and F ({x̂s, ŷs}∞0 ) is a maximum
with respect to all the feasible sequences that start from xo. Define ‘value of
the problem’, and call it V (xo), the maximum return one can get by solving
the OCP with initial state xo

V (xo) ≡ F ({x̂s, ŷs}∞0 )
If the set up of the model to which we want to apply optimal control

methods is such that for all the initial states x belonging to a set X ⊂ R
n

the OCP has a solution; and if, moreover, X is closed with respect to the
law of motion g, in the sense that

for any y, if x ∈ X then g (x, y) ∈ X

then there exists a ‘value function’ V : X → R that for each state x ∈ X
indicates the maximum return obtainable from the optimal plan having x
as initial state. Closure with respect to g guarantees that this function is
defined also at all the states any plan may meet at some stage.

A first property of the value function is recursivity according to the same
aggregator W that applies to F , i. e. the property

V (xs) =W (ϕ (xs, ŷs) , V (x̂s+1)) (20)

where the ‘hat’ above the variables indicates that these belong to an optimal
path starting at xs. To see that this must be the case, consider that, on the
basis of our definitions and hypotheses,

V (xs) = F ({x̂t, ŷt}∞s )
= W

�
ϕ (xs, ŷs) , F

�
{x̂t, ŷt}∞s+1

��

Now, if {x̂t, ŷt}∞s solves the OCP with initial state xs, then {x̂t, ŷt}∞s+1 must
solve the same OCP with initial state x̂s+1 = g (xs, ŷs) (just reflect: were
it not so, the former problem would have a better solution than {x̂t, ŷt}∞s ,
against the hypothesis). For this reason, we can also write

F
�
{x̂t, ŷt}∞s+1

�
= V (x̂s+1)

replace it in the previous formula, and thus get property (20).
A second property of the value function is its step-by-step optimization

with respect to the control y, as we are now going to show. Take again xs as
given, and consider W as a function of y — given xs — as follows

W (y | xs) ≡ W (ϕ (xs, y) , V (g (xs, y)))
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From (20) it clearly follows that, for any control vector y,

V (xs) = W (ŷs | xs) ≥ W (y | xs)

i. e. an optimal plan chooses y at each state xs so as to maximize W (y | xs).
Hence the property of step-by-step optimization, according to which, at all
xs,

V (xs) = max
y

W (ϕ (xs, y) , V (g (xs, y))) (21)

The last property introduces a necessary characterization of an optimal
plan — a plan that solves an OCP for given xo — as a plan that must follow
a ‘policy rule’ consisting in maximizing the W (y | xs) function at each date,
starting at s = 0 from xo and continuing up to infinity.

We now prove that the reverse also holds, that is that the policy rule of
step-by-step optimization expressed by (21) provides also a sufficient char-
acterization of an optimal plan, in the following sense: if we can identify a
function U : X → R such that

U (x) = max
y

W (ϕ (x, y) , U (g (x, y)))

then, starting from any given xo and maximizing step-by-step, we can as-
semble a plan {xs, ys}∞0 that is optimal and such that U (x) = V (x) at all
the states met by the plan itself.

Here is a proof of this last proposition. Let {x̃s, ỹs}∞0 be a plan beginning
at xo and such that (21) is satisfied at all s for some function U (x). And
consider another plan {x̂s, ŷs}∞0 that also starts at xo and that we assume
to be optimal. From recursivity and the hypothesis of complete separability
(section 2.4, recalled above) we know that we can write

U (xo) = W (ϕ (xo, ỹo) , U (g (xo, ỹo)))

= W (ϕ (xo, ỹo) ,W (ϕ (x̃1, ỹ1) ,W (... ...)))

= F ({x̃s, ỹs}∞0 )

Since the other plan {x̂s, ŷs}∞0 is optimal by assumption, given V (xo) =
F ({x̂s, ŷs}∞0 ) we must have

V (xo) ≥ U (xo)

But from the fact that {x̃s, ỹs}∞0 satisfies (21) at all s, we also have

U (xo) ≥ W (ϕ (xo, ŷo) , U (g (xo, ŷo))) = W (ϕ (xo, ŷo) , U (x̂1))

U (x̂1) ≥ W (ϕ (x̂1, ŷ1) , U (g (x̂1, ŷ1))) = W (ϕ (x̂1, ŷ1) , U (x̂2))
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and so on. And since W is increasing in both its arguments, this implies

U (xo) ≥ W (ϕ (xo, ŷo) ,W (ϕ (x̂1, ŷ1) ,W (... ...)))

= F ({x̂s, ŷs}∞0 ) = V (xo)

In conclusion, we have proved that

U (xo) ≥ V (xo) ≥ U (xo)

which of course can hold only if U (xo) = V (xo). Therefore, either {x̃s, ỹs}∞0
and {x̂s, ŷs}∞0 coincide, or they are different plans but both solve the same
OCP with initial state xo.

It thus turns out that a plan satisfies the property (21) if and only if
it is optimal: in other words, optimality of a plan as a whole or piecewise
optimality as expressed by (21) are equivalent. This proposition is known as
Bellman’s ‘Principle of Optimality’.

3.5 Bellman equations, Euler conditions and transver-

sality

From now on, we restrict ourselves for simplicity to an OCP with n = m = 1,
one state and one control variable only (extension to multivariate functions
does not create conceptual difficulties, only longer formulas). In addition, we
take the particular case of a linear aggregator of the type W = ϕ+ βF with
β < 1 (subjective discount factor). Finally, we assume the objective function
to be a function of the control variable alone. As we know, this means an
objective function in the form

F ({ys}∞0 ) = ϕ (yo) + βF ({ys}∞1 )
= ϕ (yo) + βϕ (y1) + β2F ({ys}∞2 )

...

= lim
n→∞

�
n�

s=0

βsϕ (ys) + βn+1F
�
{ys}∞n+1

��

If F ({y}) is bounded, the term βn+1F (·) approaches 0 for n → ∞ and
therefore

F ({ys}∞0 ) = lim
n→∞

n�

s=0

βsϕ (ys)

This is equivalent to saying that the function is completely separable, as
explained in section 2.4.

Condition (20) takes the form

V (xs) = ϕ (ŷs) + βV (x̂s+1)
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and step-by-step optimization (21) requires

V (xs) = max
y
[ϕ (y) + βV (g (xs, y))]

In all the cases in which ϕ+βV is differentiable and concave with respect
to y, an equivalent formulation of condition (21) is in terms of f.o.c. of
maximum

ϕ′ (y) + β
dV (xs+1)

dxs+1

g2 (xs, y) = 0 s = 0, 1, ... (22)

where g2 (xs, y) indicates the partial derivative of g with respect to y. This
equation is called Bellman equation and is used as an alternative character-
ization of solutions to OCP whenever differentiability and concavity occur.
Written in the form

β
dV (xs+1)

dxs+1
= − ϕ′ (y)

g2 (xs, y)

equation (22) can be read in economic terms as: the discounted marginal
benefit/cost of a change in xs+1 (left-hand side of the equation, depend-
ing on whether positive/negative) must equal its instantaneous marginal
cost/benefit measured by

− dϕs

dxs+1

= −ϕ′dy

g2dy
= −ϕ′

g2

If the state variable x affects positively the value of the optimal plan, as in
all the economic applications we shall meet, having more of x must involve
a positive cost, therefore the optimal plan must have negative ϕ′

g2
ratio at all

dates.

It may be useful to compare Bellman’s characterization of optimal plans
with the conditions that we know by the name ‘Euler conditions’. We found
the latter as a result of the application of Lagrange method to a dynamic
maximization problem, but they actually owe their name to a different max-
imization procedure devised by the XVIIIth Century Swiss mathematician
Leonhard Euler in order to solve problems of the optimal control type. Dif-
ferently from Lagrange and Bellman, Euler’s method is based on the so-called
‘calculus of variations’. We briefly review it here, with reference to the OCP
set up at the beginning of the section.

Euler elaborated on the simple idea that a sequence {x̂, ŷ}∞0 starting from
given xo is optimal if and only if there is nothing to gain from deviating from
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it in all possible directions (but keeping the initial state xo unchanged). In
order to model the effects of deviations he introduced the notion of ‘variation’
from a given sequence, i.e. a sequence {x̂+ ζ, ŷ + η}∞0 such that {ζ, η}∞0 ,
with ζo = 0, represents a sequence of deviations, arbitrary except for the fact
of satisfying the law of motion g. Euler’s method consists in (i) computing
the variation of the objective function, ∆F , associated with each variation
{ζ, η}∞0 ; (ii) finding necessary and sufficient conditions that rule out the
possibility of obtaining ∆F > 0.

Step (i). Using the usual linear approximation

ϕ (ŷs + ηs)− ϕ (ŷs) ≃ ϕ′ (ŷs) ηs

we can write

∆F = lim
n→∞

n�

s=0

βsϕ′ (ŷs) ηs (23)

The deviations ηs must be linked to the deviations ζs through the law of
motion g, because in general

x̂s+1 + ζs+1 = g (x̂s + ζs, ŷs + ηs)

By using the same type of approximation, we have (g1 and g2 indicate partial
derivatives of g with respect to first and second argument)

ζs+1 = g (x̂s + ζs, ŷs + ηs)− g (x̂s, ŷs)

≃ g1 (x̂s, ŷs) ζs + g2 (x̂s, ŷs) ηs

from which (assuming always g2 (x̂s, ŷs) �= 0)

ηs ≃
1

g2 (x̂s, ŷs)
ζs+1 −

g1 (x̂s, ŷs)

g2 (x̂s, ŷs)
ζs

By replacing this formula in (23) we get

∆F ≃ lim
n→∞

n�

s=0

βsϕ′ (ŷs)

�
1

g2 (x̂s, ŷs)
ζs+1 −

g1 (x̂s, ŷs)

g2 (x̂s, ŷs)
ζs

�

It takes some patience to check it, but by disassembling and reassembling its
terms (remember that ζo = 0) the summation in the last formula can also be
written as

n−1�

s=0

βsζs+1

�
ϕ′ (ŷs)

g2 (x̂s, ŷs)
− g1 (x̂s+1, ŷs+1)

g2 (x̂s+1, ŷs+1)
βϕ′ (ŷs+1)

�
+ ζn+1

βnϕ′ (ŷn)

g2 (x̂n, ŷn)
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so that, finally

∆F ≃ lim
n→∞

n−1�

s=0

βsζs+1

�
ϕ′ (ŷs)

g2 (x̂s, ŷs)
− g1 (x̂s+1, ŷs+1)

g2 (x̂s+1, ŷs+1)
βϕ′ (ŷs+1)

�
+

+ lim
n→∞

ζn+1
βnϕ′ (ŷn)

g2 (x̂n, ŷn)
(24)

Now on to step (ii). It is easily seen that necessary and sufficient condi-
tions for ∆F to be non-positive, no matter what the choice of the deviations
ζs may be, are the following: first, for all s from 0 to infinity

ϕ′ (ŷs)

g2 (x̂s, ŷs)
− g1 (x̂s+1, ŷs+1)

g2 (x̂s+1, ŷs+1)
βϕ′ (ŷs+1) = 0 (25)

These are called Euler conditions in generalized form and are necessary
conditions of optimality. As is easy to check, if these do not hold, it is always
possibile to find deviations ζs such that ∆F > 0. If they do hold, then for
any deviation {ζ} the summation in formula (24) equals zero and∆F reduces
to

∆F ≃ lim
n→∞

ζn+1
βnϕ′ (ŷn)

g2 (x̂n, ŷn)
= lim

n→∞
βn ϕ′ (ŷn)

g2 (x̂n, ŷn)
(xn+1 − x̂n+1)

However, without one further condition concerning this limit we cannot rule
out the possibility of finding deviations such that the limit turns out to be
positive. Here is why Euler conditions (25) are generally not sufficient. The
additional condition needed at this point is the one usually called ‘transver-
sality’.

The specific form of transversality may vary depending on the characteris-
tics of the problem. With negative ϕ′

g2
(see above, a necessary characterization

of the optimal plans in all the problems in which the state variable affects
positively the value of the plan), and with x bound to be non-negative, we
have

βn ϕ′ (ŷn)

g2 (x̂n, ŷn)
(xn+1 − x̂n+1) ≤ −βn ϕ′ (ŷn)

g2 (x̂n, ŷn)
x̂n+1

therefore

∆F ≤ − lim
n→∞

βn ϕ′ (ŷn)

g2 (x̂n, ŷn)
x̂n+1

the expression on the right-hand-side being non-negative. The transversality
condition must in this case take the form

− lim
n→∞

βn ϕ′ (ŷn)

g2 (x̂n, ŷn)
x̂n+1 = 0 (26)
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As lim
n→∞

βn = 0, transversality here simply requires that the ‘cost’ of increasing

the state variable, −ϕ′

g2
x, be bounded.

Finally, as to the relationship between Bellman and Euler conditions. If
a sequence {x̂, ŷ}∞0 solves an OCP then both Bellman equations (22) and
Euler equations (25) must be satisfied at all s. This clearly implies

dV (x̂s+1)

dxs+1

= −g1 (x̂s+1, ŷs+1)

g2 (x̂s+1, ŷs+1)
ϕ′ (ŷs+1) (27)

or in other words, if in Bellman equation we replace the term dV
dx

with the
right-hand-side of this equation, Bellman is transformed into Euler.

In spite of this apparent substitutability, however, the two conditions
are not equivalent. We have just seen that Bellman provides necessary and
sufficient conditions for optimality, while Euler without transversality is only
necessary (therefore weaker). To see the reason for this lack of equivalence,
consider that in formula (27) the ratio

−g1 (x̂s+1, ŷs+1)

g2 (x̂s+1, ŷs+1)

measures at all dates the marginal rate of substitution between x and y, i.e.
the variation in ys+1 that compensates for a unit variation in xs+1 so as to
leave xs+2 unchanged. Writing dV

dx
as in (27) therefore means considering the

effect of a variation in xs+1 on the value of the optimal plan beginning at
s + 1 in the particular hypothesis that the variation is entirely offset by a
variation in ys+1 such that from s + 2 on things continue as if nothing had
changed. The whole effect of the variation is contained in period s+ 1.

Looking at it in this light, the interpretation of Euler equation is: if at s
there is a variation in ys from a given plan, and the effect of this variation
on xs+1 is entirely absorbed in period s + 1 so that from s + 2 on we are
back to the original plan, the effect of this two-period deviation must be nil.
Thus, there is nothing to gain from such a particular deviation, and this is
clearly a necessary condition of optimality of the given plan. The condition
is not sufficient, however, for the simple reason that one could deviate from
the original plan in many other ways, different from the one tested by means
of Euler’s method.

Bellman equation confirms Euler’s necessary condition if dV
dx

is interpreted
in the particular way we saw above. But Bellman equation as such tells much
more than this. What it says is: there is nothing to gain if you deviate at s
by choosing a different ys and then, from s+1 on, you follow an optimal plan
starting from the xs+1 resulting from the previous deviation. This may be a
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two-period deviation, as with Euler, or any other possible kind of deviation.
The proposition is clearly much stronger than Euler’s, stronger enough to
turn into a sufficient condition with no need to resort to transversality.

3.6 Application to the optimal path of consumption

and accumulation

Just to see how Euler and Bellman conditions work in a simple case, we go
back to the optimal consumption-accumulation plan seen in section 2.5. Take
K in the role of the state variable we have called x and C in the role of the
control y. The instantaneous return function ϕ coincides with instantaneous
utility u (C) and is independent of K. Finally, the law of motion is given by
the budget equation Ks+1 = F (Ks) +Ks (1− δ)−Cs, with g1 = F ′ + 1− δ,
g2 = −1.

In this particular case equation (25) becomes

u′
	
Ĉs



− βu′

	
Ĉs+1


	
F ′
	
K̂s+1



+ 1− δ



= 0 s = 0, 1, ...

in which we recognize Euler condition (14) of 2.5.
Bellman equation instead derives from condition (21), that in this case

takes the form

V
	
K̂s



= max

Cs

�
u (Cs) + βV

	
F
	
K̂s



+ K̂s (1− δ)− Cs


�

The expression maximized on the right-hand side of the formula is differen-
tiable and concave, so we get directly Bellman equation in the form

u′
	
Ĉs



− β

dV
	
K̂s+1




dKs+1

= 0 s = 0, 1, ...

Comparison between this equation and Euler condition shows that

dV
	
K̂s+1




dKs+1
= u′

	
Ĉs+1


	
F ′
	
K̂s+1



+ 1− δ



(28)

as in (27). The change in the value of the optimal sequence due to a variation
dKs+1 is measured by the marginal utility of the variation in consumption
that leaves the stock of capital from Ks+2 on unchanged.

Just to confirm — from a different point of view — that Euler and Bellman
are conditions of different force, consider the following. Rewrite the two types
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of conditions as difference equations in one of the two variables, for example
in terms of the state variable K. Bellman equation gives

u′
	
F
	
K̂s



+ K̂s (1− δ)− K̂s+1



− β

dV
	
K̂s+1




dKs+1
= 0

which is a first-order difference equation with one degree of freedom; Euler
condition instead gives

u′
	
F
	
K̂s



+ K̂s (1− δ)− K̂s+1



−

− βu′
	
F
	
K̂s+1



+ K̂s+1 (1− δ)− K̂s+2


	
F ′
	
K̂s+1



+ 1− δ



= 0

a second-order difference equation with two degrees of freedom. Thus, fix one
state arbitrarily by taking the initial state as given, Ko = K̂o: the solution to
the Bellman equation determines a unique sequence, while the solution to the
Euler condition is still undetermined and in order to identify the optimum
sequence some other condition is needed. This confirms that Euler condition
alone is insufficient to characterize the solution and must be accompanied by
the transversality condition.

3.7 Dynamic maximization through Hamiltonians

Hamiltonian functions provide still another method to deal with an OCP of
the kind we have seen in section 3.5. The underlying mathematical theory
(Pontryagin et al., The Mathematical Theory of Optimal Processes, Wiley,
N.Y. 1962) needn’t concern us here. We start from the principle, demon-
strated by Pontryagin, that if an OCP has a solution, that solution maximizes
also an ‘auxiliary’ function called Hamiltonian that depends on the state and
control variables of the problem plus other auxiliary variables called ‘costate’
variables. We take this principle for granted and simply illustrate how to put
it in operation in working out the solution to an OCP.

Take an OCP with all the characteristics listed in 3.5. Only one state
variable x and one control variable y, objective function in the form

F ({y}∞0 ) = lim
n→∞

�
n�

s=0

βsϕ (ys)

�

law of motion defined by
xs+1 = g (xs, ys)

and initial state xo = x̂o.
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The first step consists in defining the ‘costate’ auxiliary variables, say ps,
one for each date, with the only restriction that ps ≥ 0. The Hamiltonian
function is a function in the three arguments x, y, p defined as follows

H (xs, ys, ps) ≡ ϕ (ys) + psg (xs, ys) (29)

As is easy to check, if a sequence {x, y} is feasible, i.e. satisfies the law
of motion at all s, then

ϕ (ys) = H (xs, ys, ps)− psxs+1

and therefore the problem of maximizing the objective function of the original
OCP is the same as maximizing

lim
n→∞

�
n�

s=0

βs (H (xs, ys, ps)− psxs+1)

�

with respect to x, y, p and with the only constraint xo = x̂o. This is because
the dynamic constraint represented by the function g has been embodied into
the objective function.

We deal with this modified OCP problem by means of Euler’s variational
method. If a sequence {x̂s, ŷs, p̂s}∞o solves the problem, then there must be no
gain ∆ > 0 in deviating from it. Let us indicate variations with the symbols
ηs = xs − x̂s, θs = ys − ŷs, and ζs = ps − p̂s. The optimal sequence will be
characterized by the impossibility of creating a positive total differential

∆ = lim
n→∞

�
n�

s=0

βs
�
H1sηs +H2sθs +H3sζs − xs+1ζs − psηs+1

��

(notation: the second subscript of H refers to date, the first subscript to
partial derivative with respect to which argument) by arbitrarily choosing
a sequence of variations {ηs, θs, ζs} with the only restriction ηo = 0 (the
deviation must in any case take x̂o as given). Besides, from the definitional
non-negativity of the costate variable, if ps happens to be zero the only
admitted variation is ζs > 0.

By rearranging the terms under summation in the total differential above
we get the following form

∆ = lim
n→∞

�
n−1�

s=0

βs (−ps + βH1,s+1) ηs +
n�

s=0

βs [H2sθs + (H3s − xs+1) ζs]

�
−

− lim
n→∞

βnpnηn+1 (30)

In order to exclude the possibility of creating a positive ∆ by varying
either the x or the y sequence it is both necessary and sufficient that the
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multipliers of all the ηs and θs in this expression are zero. The analogous
condition for the multipliers of the ζs would be sufficient but not necessary:
we know that ζs can only be positive when ps = 0, therefore the only nec-
essary condition in such a case would be that the multiplier of ζs is non
positive.

Summing up, the necessary and sufficient conditions that grant that the
sequence {x̂s, ŷs, p̂s} maximizes the objective function are the following:

−ps + βH1,s+1 = 0

H2s = 0

H3s − xs+1 ≤ 0 and (H3s − xs+1) ps = 0

− lim
n→∞

βnpnxn+1 = 0

The third group of conditions is weaker for the reason explained above (if
H3s − xs+1 is negative, ps must be zero; if ps > 0, H3s − xs+1 must be zero).
The last condition, transversality, is specified in the hypothesis that x is
bound to be non-negative as seen in 3.5.

Now we go back to definition (29) and rewrite the partial derivatives of
the Hamiltonian as

H1s = psg1s

H2s = ϕ′s + psg2s

H3s = g (xs, ys)

Substitute from the latter into the conditions of maximum and get

−ps + βps+1g1,s+1 = 0 (31)

ϕ′s + psg2s = 0 (32)

g (xs, ys) ≤ xs+1 with equality if ps > 0. (33)

From (32) we derive an interpretation of the costate variables as the
marginal cost of increasing xs+1 in terms of instantaneous benefit

ps = −
ϕ′s
g2s

as in 3.5. The non-negativity of ps implies that in the optimal plan there
must be a trade-off between future state and instantaneous benefit, given the
present state xs.

By substitution from (32) into (31), and dividing by g2s, we get

ϕ′s
g2s

− βϕ′s+1
g1,s+1
g2,s+1

= 0
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which corresponds exactly to the generalized Euler condition (25) of 3.5.
Condition (32) also implies that (unless ϕ′s = 0) costate ps is generally

positive and therefore, from (33), g (xs, ys) = xs+1.
Lastly, from the interpretation of ps as the marginal cost of xs+1, we

rewrite transversality as

− lim
n→∞

βnpnxn+1 = lim
n→∞

βn ϕ
′
n

g2n
xn+1 = 0

Just to see this method at work, apply it to the usual optimal consumption-
accumulation path. The Hamiltonian function of the problem is

H (Ks, Cs, ps) = u (Cs) + ps (F (Ks) + (1− δ)Ks − Cs)

with partial derivatives

H1s = ps (F
′ (Ks) + 1− δ)

H2s = u′ (Cs)− ps

H3s = F (Ks) + (1− δ)Ks − Cs

The first two maximum conditions give

−ps + βps+1 (F
′ (Ks+1) + 1− δ) = 0

ps = u′ (Cs)

from which Euler condition is immediately derived. Transversality is given
by the usual asymptotic condition

− lim
n→∞

βnpnKn+1 = − lim
n→∞

βnu′ (Cn)Kn+1 = 0
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4 Introduction to uncertainty

Economic agents make intertemporal choices but the actual context of these
choices is not a world of perfect knowledge of the future (‘perfect forecast’)
of the kind assumed in all the models presented so far. The latter are mere
didactic devices used for introducing the basic features of theories, such as
DGE, based on optimization and coordination of plans in as simple as pos-
sible idealized environments. But there comes a stage at which theory must
shed the fiction of perfect forecast and come to grips with the inescapable
uncertainty that surrounds the agent at the moment of choosing alternative
courses of action.

Uncertainty as a subjective state of mind is represented in economic mod-
els by means of probability distributions on events that may be true or false,
without the agent knowing which one is the case. Probability of an event is
supposed to measure the degree of subjective belief in the truth of it — its
actual occurring. The fact that belief is less than complete may derive from
mere ignorance on the part of the agent, or reflect the presence of stochastic
factors in the causal processes by which the event is determined. In all cases,
probabilities allow the subject to form expectations on the basis of which to
make decisions, and also to appreciate the level of risk involved in relying on
expected values that are accompanied by higher or lower variance. In case the
theoretical model of the economy takes the presence of objective stochastic
factors into explicit account there is the further issue of the correspondence,
or the lack of it, between subjective beliefs and objective probabilities. This
opens a range of models, with expectations being assumed to be more or
less ‘rational’ depending on their closeness to the actual stochastic processes
affecting the state of the economy.

Most of the basic notions on probability utilised in macroeconomic models
are explained in intermediate textbooks of statistics, econometrics or proba-
bility theory. The following sections contain a quick summing up of the main
concepts with no claim of completeness.

4.1 Probability spaces and distribution functions

A probability measure is a special case of measure, i.e. a function with values
in R and the domain of which is a set endowed with a particular mathematical
structure called sigma-algebra or sigma-field. To constitute a sigma-algebra
we need a set of states (‘state space’), call it Ω, and a collection of subsets of
Ω, call it A, such that (i) Ω belongs to A, and (ii) A is closed with respect
to the set-theoretic operations of complementation (a ∈ A iff ac ∈ A, the
superscript c standing for ‘complement of’) and countable union (if all the
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terms of the countable sequence {ai : i = 1, 2, ...} belong to A, their union
belongs to A as well). A pair such as (Ω,A), composed of a state space and
a sigma-algebra based on it, is called a measurable space.

In applications to probability measures the elements of A are interpreted
as events. Set-theoretic operations have obvious counterparts in linguistic
operations (‘negation’, ‘conjunction’, ‘disjunction’) on propositions. Closure
with respect to complementation and countable union is easily seen to imply
closure with respect to countable intersection; and from Ω ∈ A it obviously
follows φ ∈ A, where φ, the empty set, is interpreted as ‘impossibility’, the
opposite of ‘necessity’ represented by Ω.

A probability function P is a function mapping A into the unit real
interval [0, 1], P : A → [0, 1], endowed with two properties, (i) normalization
to 1, and (ii) additivity over countable unions of disjoint sets. Property (i)
means that the function is scaled so as to have P (Ω) = 1 (no event can have
higher probability than Ω, called the ‘universal event’). Property (ii) means
that if {ai ∈ A : i = 1, 2, ...} is a collection of events pairwise disjoint, then

P


�

i

ai

�
=
�

i

P (ai)

A triple such as (Ω,A, P ), composed of a measurable space joined to a prob-
ability measure, is called a probability space.

In discrete time macrodynamics the points of the state space, ω ∈ Ω, are
typically interpreted as sequences or time series, covering a stretch of time
of any length, {Xs : s ∈ T } where X is an economic variable or vector of
variables and T a set of integers, possibly extended from −∞ to +∞, pro-
viding all the needed time indexes. Events of the sigma-algebra A may take
shapes such as (Xs = x), meaning ‘the set of all ω ∈ Ω having Xs = x at the
s-th place’; or (Xs = x and Xv = y), meaning the intersection of (Xs = x)
and (Xv = y); or (Xs ∈ [q, r]), meaning the union of all the (Xs = x) where
x ∈ [q, r], and so on. A singleton {ω} ∈ A will consist of a complete list of
realisations of Xs, one for each s ∈ T , i.e. a fully specified time series.

Xs is a random variable, or random vector if it is a vector. In this presen-
tation I consider the case of a variable for simplicity. The probabilities of its
possible realisations can be derived from (Ω,A, P ) by means of a convenient
mathematical device called distribution function, as follows. Let S ⊆ R rep-
resent the set of all the values that Xs may possibly take on. Since in each
state ω ∈ Ω (fully specified sequence) Xs will take a definite numerical value,
we can consider Xs as a function that maps the points of Ω onto the set of
real numbers S, Xs : Ω→ S, with S = {x ∈ R : ∃ω ∈ Ω (x = Xs (ω))}.

In order to construct a distribution function we have now to assume that
the function Xs has a property called ‘measurability with respect to A’,
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meaning the following: for a suitably defined sigma-algebra on S (‘suitably
defined’ in a sense that will be specified below), call it B, the pre-image of
each numerical event b ∈ B according to Xs, i.e. the set defined as

X−1
s (b) ≡ {ω : Xs (ω) ∈ b}

is an event that belongs to A. If this property is granted, then the prob-
ability measure P can be transferred from A to B simply by associating
the probability P (X−1

s (b)) to each event bǫB. The composite function just
defined

P ◦X−1
s : B → [0, 1]

is called a ‘distribution function’ and serves the purpose of attaching well-
defined probabilities to all kinds of events included in B. In fact, we have
constructed a new probability space (S,B, P ◦X−1

s ) derived from (Ω,A, P )
and tailored to represent the probabilities of numerical events concerning our
random variable Xs. For each random variable we can construct one such
probability space, all of these being derived from the same original space
(Ω,A, P ).

Exercise 11 Show that P ◦X−1
s is a true probability function, i.e. satisfies

the properties of (i) normalization to 1, and (ii) countable additivity over
unions of disjoint events.

A few words of explanation about B. A natural candidate for B would
seem to be the set of all subsets of S, i.e. the power set of S, which is always
the largest (meaning ‘most inclusive’) sigma-algebra that can be based on
any set. However, when Xs is a continuous random variable and S is an
interval or the whole of R, referring to such a large set may create problems
with measurability. To avoid these, the most suitable choice is a ‘smaller’
sigma-algebra known as Borel algebra. If defined on R, the Borel algebra
B (R) is the set of all the subsets of R that can be generated by way of
complementation and countable union starting from semi-closed intervals of
the kind (−∞, x]. These can be thought of as the basic building materials,
the elementary ‘bricks’ that serve to construct all the elements of B (R). As
can be checked simply by trying, practically all kinds of intervals in the real
line, including degenerate closed ones (such as [x, x]), can be constructed by
way of complementation and countable union of the elementary intervals, so
that B (R) comes to coincide with the set of almost all the real intervals in
R. If S is a proper subset of R, its Borel algebra B will be the so-called
restriction of B (R) to S, that is the set of the intersections of all the sets of
B (R) with S. Since B (R) is a sigma-algebra in R, it can be proved that its
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restriction to S, B ⊂ B (R), is a sigma-algebra on S. This obviously covers
the cases in which Xs is a discrete variable taking on finitely many values,
with S being a countable subset of R too.

For simplicity, from now on we reason in the hypothesis that S = R unless
otherwise specified. If we restrict the distribution function to the elementary
‘bricks’ in B (R), i.e. to the events of the kind bx = (−∞, x], we obtain what
is commonly known as the ‘cumulative distribution function’ of Xs. Indeed,
X−1

s (bx) is the event {ω : Xs (ω) ≤ x}; its probability P ◦ X−1
s (bx) can be

written as an ordinary algebraic function from R into [0, 1] as follows

Fs (x) ≡ P ◦X−1
s (bx)

The properties of cumulative distribution functions, especially its positive
monotonicity, are known from statistics and probability theory. To recall,
once we have the cumulative distribution function Fs, the probability of all
types of numerical non-elementary events can be reconstructed starting from
it. For example, take an event such as b = (y, x] with y < x. Since, as is
easy to check, b is equal to the complement of the union of two disjoints,
(−∞, y] (whose probability is Fs (y)) and (x,+∞) (probability 1 − Fs (x)),
then simple computation gives

P ◦X−1
s (b) = 1− [Fs (y) + 1− Fs (x)]

= Fs (x)− Fs (y)

In general, a distribution function may or may not be continuous, de-
pending on the properties of Xs. This makes a big difference when it comes
to attributing probabilities to single values of Xs, i.e. to numerical events
corresponding to degenerate intervals of the kind [x, x]. A degenerate interval
can be seen as a countable intersection of the kind

[x, x] =
∞�

n=1


x− 1

n
, x

�

= lim
t→∞

t�

n=1


x− 1

n
, x

�

In terms of probability, for each term of the intersection we have

P ◦X−1
s

�
t�

n=1


x− 1

n
, x

��

= Fs (x)− Fs


x− 1

t

�

Continuous functions have the property f (lim ·) = lim f (·). Thus, if the
distribution function is continuous, we have

P ◦X−1
s ([x, x]) = Fs (x)− lim

t→∞
Fs


x− 1

t

�
= 0
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i.e., with continuous distributions the probability of single values is always
zero. For [x, x] to have positive probability, Fs must have a discontinuity at
x. The latter is certainly the case when Xs is a discrete random variable,
its range S being a finite set of ‘isolated’ points of R. In that case, as is
known, Fs is a step function, each ‘jump’ representing the probability of the
value at which the jump occurs. When Xs is non-discrete, instead, dealing
with probabilities of single values requires attention (see the problems with
conditional probability in the next section).

In the case of a distribution function Fs continuous and differentiable the
first derivative is called ‘density function’

fs (x) ≡ lim
δ→0

Fs (x+ δ)− Fs (x)

δ

Density indicates the limit of the average probability mass concentrated in in-
tervals (x, x+ δ] as the interval collapses to a point. The mass in point x is of
course zero, but the limit of the average mass can be any non-negative value.

From the definition of density it obviously follows that Fs (x) =
x�
fs (u) du,

from which the designation of Fs as a ‘cumulative’ function.
The expected value (or mean value, or first moment) of Xs, usually in-

dicated with the notation EXs can be computed as a sum or as an integral
depending on whether the distribution ofXs is discrete or continuous and dif-
ferentiable. The same as regards variance (second moment of Xs−EXs) and
covariance between Xs and any other random variable that can be extracted
out of Ω, such as Xv where v is a date different from s (‘autocovariance’),
or Ys where Y measures a different phenomenon from X, and the like. The
formulas are well-known and needn’t be recalled here.

Recalling that Xs has been defined as a measurable function from the
state space Ω onto S ⊆ R, it is also possible to integrate Xs directly on Ω
by means of a notion of integral, called Lebesgue integral, that turns out
to be more general than the usual linear or Riemann integral (in the sense
that Lebesgue and Riemann integrals coincide when the latter happen to
exist, while Lebesgue may exist when Riemann don’t, for example with non-
continuous functions). We cannot expand on this subject here, the present
hint is only for information and reference. Suffice it to say that if in construct-
ing the Lebesgue integral of Xs on Ω the events in A are measured by means
of the probability function P , the resulting integral, variously indicated with
the notation �

Ω

Xs (ω)P (dω) or

�

Ω

XsdP

coincides with the expected value EXs. For further examination of this
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subject see Stokey and Lucas, cit., chapter 7; John Stachurski, Economic
Dynamics: Theory and Computation, MIT Press, 2009, chapter 7.

4.2 Information and conditioning

With the passing of time, time series turn uncertainty into certainty in the
sense that one Xs after another takes on a definite value and randomness
is progressively confined to the dates that have yet to come. Consequently,
at each date t the (unconditional, or ‘a priori’, or simply ‘prior’) probability
function P must be updated by making it conditional to what has become
certain at t according to the ordinary rules of probabilistic conditionalization.

Let {xs : s ≤ t} be the sequence of realisations of all the random variables
Xs up to t. This identifies an event in A, corresponding to the set of all the
time series ω ∈ Ω characterized by the given {xs : s ≤ t} sequence up to
t. Let us call Dti ∈ A this particular event. Had the sequence up to t
been different for just one realisation, or more than one, the corresponding
event in A would have been a different one, call it Dtj, and of course no
time series ω ∈ Ω could possibly belong to both events, i.e. Dti ∩Dtj = φ.
Considering now all the possible different sequencies up to t, it is not difficult
to convince oneself that the corresponding events must constitute a partition
of Ω, call it Dt ⊂ A. Now repeat the exercise taking a later date v > t. The
longer sequences of realisations up to v will generate a ‘finer’ (or ‘less coarse’)
partition Dv ⊂ A, in the sense that each event D ∈ Dt will now correspond
to a union of more specific events D′ ∈ Dv (these will have the same sequence
up to t in common, and differ from each other for the sequence from t+1 to
v). And so on, as the date index slides forward.

At any date t, given a particular realization D ∈ Dt, the state space Ω
shrinks to D and the algebra of events A to

AD := {a ∩D : a ∈ A} ⊂ A

Together with a conditional probability function PD : AD → [0, 1] (see be-
low), this defines a conditional probability space (D,AD, PD), one for each
D ∈ Ds.

If P (D) > 0, the conditional probability PD is derived from P through
the well-known Bayes rule: for any a ∈ A, a ∩D ∈ AD and

PD (a ∩D) :=
P (a ∩D)

P (D)
= P (a | D) (34)

The corresponding conditional distribution and cumulative conditional
distribution of a random variable Xs with date index s > t come directly
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from these definitions. The domain of Xs is now restricted to D but the
range S is unchanged: X−1

s now maps B into AD, with distribution function
PD ◦X−1

s . The cumulative conditional distribution function is given by

Fs (x | D) ≡ PD ◦X−1
s (bx)

If instead Xs is a random variable with s ≤ t, at t it has become a
degenerate random variable in the following sense: let x̄ be the (now uniquely
determined) value of Xs, then the event Xs = x̄ coincides with D and of
course PD (D) = 1, while for any x �= x̄ the event Xs = x coincides with
the nil event φ with PD (φ) = 0. Moreover, Fs (x | D) = 0 for x < x̄, and
Fs (x | D) = 1 for x ≥ x̄.

The application of these definitions, in particular of the definition of con-
ditional probability (34), to the case of continuous random variables is not
banal since in this case the prior probability P of events such as Xs = x̄ may
easily turn out to be zero and therefore, with P (D) = 0, formula (34) does
not apply, although the concept of conditional probability may continue to
make sense. See the example here below.

Example 12 The state space is the set of two-period sequences of the type
{X1,X2}, where each Xs is a random variable taking values in the [0, 1] inter-
val. The cumulative joint distribution function F : ([0, 1])2 → [0, 1] is contin-
uous. At date 1 information about X1 induces a partition D of the domain of
the function, ([0, 1])2, into events of the kindDx ≡ {x1, x2 : x1 = x, x2 ∈ [0, 1]},
with x a real number in the [0, 1] interval. As recalled in the previous section,
with continuous F the probability of events (pieces of information) such as
Dx is zero. Thus, take a generic event a ≡ {x1, x2 : x1 ∈ [0, 1] , x2 ≤ y} with
prior probability F (1, y). The intersection a∩Dx has probability zero as well,
so that the conditional probability of a given Dx cannot be determined. Yet
it may make sense to search for such a probability. As soon as we consider a
‘perturbation’ of the information represented by Dx, for example the slightly
different event

Dx,ε ≡ {x1, x2 : x1 ∈ (x− ε, x+ ε] , x2 ∈ [0, 1]}

with ε > 0 no matter how small (the smaller ε, the better the approximation
to Dx), both Dx,ε and a∩Dx,ε have generally non-nul probability, respectively
F (x+ ε, 1) − F (x− ε, 1) and F (x+ ε, y) − F (x− ε, y). If these are both
positive and ε sufficiently small, the ratio

F (x+ ε, y)− F (x− ε, y)

F (x+ ε, 1)− F (x− ε, 1)
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may be considered a satisfactory estimate of the conditional probability of a
given Dx.

The example provides an intuitive sketch of the general procedure that
may be followed in order to obviate the difficulty of conditioning on events
that, because of continuity, have necessarily zero prior probability. Let Dt

be the information partition at t, with each D ∈ Dt having nil probability.
Call At the sigma-algebra generated by Dt by way of countable union and
complementation of its members, with Dt⊂ At ⊂ A. Take a generic event
b ∈ A and for each a ∈ At write the equation

P (a)P (b | a) = P (b ∩ a)

It can be shown, on the basis of measure-theoretic arguments that here we
must omit, that the equation allows to calculate a well-defined value P (b | a)
for ‘almost all’ the a ∈ At, in the precise sense that the events a for which
P (b | a) cannot be determined (typically, but not only, all the eventsD ∈ Dt)
have probability zero.

Now form a partition of Ω by assembling a collection of events with pos-
itive probability in At. This can always be done, and can be done in such
a way as to approximate the unusable original partition Dt as much as is
needed. In the case of example 12 above, one may take a finite set of n+ 1
numbers in [0, 1], {i0, i1, ...in} with i0 = 0, in = 1 and such that the [0, 1]
interval is subdivided into n intervals of equal length 1

n
. The collection of

events
Dh ≡ {x1, x2 : x1 ∈ (ih, ih+1] , x2 ∈ [0, 1]}

with h = 1...n− 1, together with the event

Do ≡ {x1, x2 : x1 ∈ [i0, i1] , x2 ∈ [0, 1]}

make up a partition of the domain of events ([0, 1])2. This is coarser than the
D partition of our example, but the latter can be approximated more and
more closely simply by increasing the number n of slices into which ([0, 1])2

is subdivided. In addition, we may make so that all the slices have positive
prior probability.

In general, by constructing ‘surrogate’ partitions of this kind it is always
possible to define a conditional probability function that can be interpreted as
an estimate of what the probability conditional on the available information
would be if it were not indeterminate. In the following, we shall always refer
to conditional probabilities at some date t with reference to some partition
Dt, either directly suggested by the setup of the model or suitably constructed
with the approximating procedure seen here.
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Considered from an ‘a priori’ point of view, i.e. before the uncertainty
concerning information available at t is resolved, conditional probability is as
uncertain as the information on which it depends. Take a generic event a ∈
A, and call P (a | Dt) the function “conditional probability of a at t”, where
Dt ⊂ A is the partition whose members represent pieces of information that
may possibly be known at t. This is a function, actually a random variable,
from Ω into [0, 1] that can be computed starting from the unconditional
probability function P by means of formula (34). As a consequence, the
random variable P (a | Dt) must possess two characteristics:

(i) For each D ∈ Dt and all the ω ∈ D, P (a | Dt) (ω) has constant
value.

(ii) The unconditional expected value EP (a | Dt) coincides with the
unconditional P (a).

Property (i) is obvious. Property (ii) can be proved easily from formula
(34), as can be seen solving the following

Exercise 13 Assume that the partition Dt is countable and that P (D) > 0
for all D ∈ Dt. By using formula (34) demonstrate that for any a ∈ A

P (a) = EP (a | Dt)

[Hint: take into account the fact that

a =
�

D∈Dt

(a ∩D)

and the property of countable additivity of P .]

Notice that property (ii), that connects the prior probability of a given
event to its conditional probability at a date t, can be generalized so as to
connect conditional probabilities at any two different dates. Take two dates
t and t + n, with n a positive integer. Consider that the relevant partition
at t + n will generally be finer than the partition at t. Following the same
track as in exercise 13, prove that for each D ∈ Dt and a ∈ A

P (a | D) = E (P (a | Dt+n) | D) (35)

where the expected value on the right hand side is computed using probabil-
ities conditional on D. The last formula shows that an important property
of Bayesian expectations — expectations based on probabilities updated with
respect to information according to Bayes rule (34) — is their “consistency”
through time. From t to t + n probabilities will most likely change as time
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usually brings new information, but the way they may change is already
taken into account at t. Indeed, one can see, directly from formula (35), that

E (P (a | Dt+n)− P (a | D) | D) = 0

i.e., future corrections of probability are expected on average to amount to
zero.

4.3 Restriction to weakly stationary processes

In macroeconomic applications we are interested in sequences of random
variables (time series) of the type {Xs : s = 0, 1, ...} with X standing for a
macroeconomic variable or vector of variables. Assuming that the probability
distribution of Xs remains the same at all dates s seems excessively restric-
tive and at odds with economic experience. On the other hand, leaving it
free to change without restrictions of any sort seems also scarcely plausible,
beyond introducing excessive volatility into the model. What is needed is
an intermediate position which avoids the extreme of absolute stationarity of
the probability distributions while admitting that their variability is subject
to restrictions that grant a certain degree of time-homogeneity. The latter
serves to keep the complexity of the theory within reasonable limits, and also
to design a context in which agents can learn from experience by estimat-
ing the probabilities ruling their economic environment from the statistics of
past realizations.

This aim can be achieved in various ways. The most common consists in
assuming that Xs is ruled by a law of motion of the kind

Xs+1 = g (Xs, εs+1) (36)

where g is a deterministic function and εs a random variable (‘shock’) of the
‘White Noise’ (WN) kind, ε ∼WN . To recall, this means that ε has positive
variance but zero mean and autocovariance across intervals of any length.

Such a law of motion generates a first-order autoregressive process (AR),
the underlying probabilities of which depend exclusively on the distribution
of ε. At each s the conditional distribution of Xs+1 changes according to the
realisation of Xs but, as is easily seen, the probability of transition from any
given value x to any y between two successive dates

P (Xs+1 = y | Xs = x) = P ({εs+1 : g (x, εs+1) = y})

is always the same independently of the date s, unless the distribution of ε
changes as well. This property is common to all so-called ‘Markov processes’
or ‘stochastic recursive sequences’.
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Frequently the function g in the process (36) is assumed to be linear, in
the form

Xs+1 = αXs + εs+1

If |α| = 1 the process is a random walk. Let us take the case |α| < 1:
admitting that the process is bounded and extends backwards to −∞, we
can write it in the moving average (MA) form

Xs = lim
n→∞

�

αnXs−n +
n−1�

h=0

αhεs−h

�

=
∞�

h=0

αhεs−h

(this can be checked simply by substituting Xs backwards indefinitely, or by
means of the methods illustrated in the next section).

As can be seen from the MA representation the process has unconditional
first moment EXs = 0, and all the second order unconditional moments for
n = 0, 1, ...

Cov (Xs+n, Xs) =
αn

1− α2
V arε

(again, check this as an exercise).
A process like this, with all its moments up to second order constant

independently of the date s, is called ‘weakly’ or ‘second-order’ stationary.
Notice that in the case |α| = 1 the process, a random walk, does not belong
to the weakly stationary class.

In order to make sure that the stochastic processes we shall deal with
satisfy this mild condition of time-homogeneity it is not strictly necessary to
assume that the probability distribution of the basic chance factor ε remains
unchanged through time. Changes in the distribution of ε may be reflected
in the probabilities of transition as defined above: but as far as ε remains
WN and its variance does not change, mean variance and autocovariances
of Xs remain unchanged too. From the point of view of macroeconomic
applications this is almost always all that matters.

4.4 The ‘lag’ operator

Before we proceed to apply these notions to economic models, we use this
last section to introduce a new operator typically used by econometricians
to analyze time series and to solve linear difference equations that include
stochastic factors. This is the operator called ‘lag’ or ‘backshift’ and denoted
with the symbol L.

By definition, the application of L to a term xt of a time series transforms
it into its immediate predecessor, Lxt = xt−1. Applying L to the whole series
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{xt} generates the series itself shifted one position backwards (if the series
goes from −∞ to +∞ nothing changes). If the series is multiplied by a
constant a, then lag and product commute with each other Laxt = aLxt; the
same in the case of addition, L (xt + yt) = Lxt+Lyt. The last two properties
taken together show that L is a linear operator.

In general, the power of an operator is the number of times it is applied:
in the case of L, Lhxt means taking xt−h. Power zero coincides with identity
(doing nothing) L0xt = 1xt = xt. From this, there follows the definition of
the inverse operator for any h = 1, 2, ...

L−h
�
Lhxt

�
= L0xt = xt

which of course implies L−hxt = xt+h.
Combinations of operations on time series can be defined simply by form-

ing polinomial expressions in L. See for example the following, corresponding
to first, second, third order differences (∆) between the terms of a time series

∆ = 1− L

∆2 = (1− L)2 = 1− 2L+ L2

∆3 = (1− L)3 = 1− 3L+ 3L2 − L3 etc

In general, applying a ‘polinomial lag’ to a time series generates a time
series of weighted moving averages. For example, from the polinomial lag
a0 + a1L+ a2L

2 applied to the series {xt} with t running from −∞ to +∞,
obtain the series {a0xt + a1xt−1 + a2xt−2}.

A notable polinomial lag, particularly useful in solving linear systems of
difference equations, is the following

P =
∞�

h=0

ahLh

Applied to each xt of a series extending backwards to −∞ it results in the
infinite expansion

Pxt =
∞�

h=0

ahxt−h

If this summation is finite, then it is also true that

aLPxt =
∞�

h=1

ahxt−h = Pxt − 1xt

from which it follows that (1− aL)Pxt = xt, and thus

Pxt = (1− aL)−1 xt
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When the sequence {xt} is bounded, meaning that there exists a finite
positive X such that X ≥ |xt| at all t, a sufficient condition for P to be equal
to the inverse of (1− aL) is |a| < 1. Under this condition

Pxt ≤ X
∞�

h=0

ah =
X

1− a

which guarantees that Pxt is finite.

(I) Use of L in solving a system of first-order difference equations
As a first example of the use of L in solving a system of non-homogeneous

linear difference equations we apply it to the system used as an illustration
in sections 3.2 and 3.3. Let ft = B (ft−1 + gt) be the system on n equations,
with the sequence of the known terms {gt} going back to −∞ and forward
to +∞.

Here the lag operator L must be understood as the square matrix of
dimension n having L on the main diagonal and zero elsewhere, so that
applying L to an n-vector ft transforms it into ft−1. Thus Bft−1 = BLft
and the system becomes

(I −BL) ft = Bgt (37)

Now we apply the operator (I −BL)−1 to both members of (37) and get

ft = (I −BL)−1Bgt

=
∞�

h=0

Bh+1gt−h (38)

If the sequence {gt} is bounded, for the summation on the right-hand side
to have a finite value it is enough to assume that

lim
h→∞

Bh = 0

This requires as a necessary and sufficient condition that all the characteristic
roots of B have absolute value smaller than one (all ‘stable’ roots).

As is easy to check, if it exists, the function on the right-hand side of
(38) is a particular backward solution to the original system. As with all
non-homogeneous linear systems, the general solution is found by adding
a particular solution to the general solution to the auxiliary homogeneous
system

(I −BL) ft = 0
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The latter is easily solved by substitution: from

ft = BLft = (BL)2 ft = (BL)3 ft = ...

choosing an arbitrary vector fo at t = 0 (or any other date) we get the
solution

ft = (BL)t ft = Btfo

The general backward solution to (37) can therefore be written as

ϕt = Btfo +
∞�

h=0

Bh+1gt−h

= Bt

�

fo +
∞�

h=0

Bh+1g−h

�

+
t−1�

h=0

Bh+1gt−h

= Btϕo +
t−1�

h=0

Bh+1gt−h

For the particular choice fo = 0 this coincides with the particular solution
(38).

The backward solution is non viable if the value of the summation in
formula (38) is infinite. Even in that case, however, we can write a ‘truncated’
backward solution such as, for example (truncating at date s = 0)

ϕt = Btfo +
t�

h=0

Bh+1gt−h

= Btϕo +
t−1�

h=0

Bh+1gt−h

with ϕo = fo+Bgo as a free parameter (compare similar formulas in section
3.3).

In order to get the forward solution rewrite (37) as

�
I −B−1L−1

�
ft = −gt+1

from which obtain

ft = −
�
I −B−1L−1

�−1
gt+1

= −
∞�

h=0

B−hgt+1+h
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Recalling that the characteristic roots of B−1 are the inverse of the charac-
teristic roots of B, the summation on the right-hand side converges to a finite
value if and only if all the roots of B are unstable. In that case, the function
on the right-hand side provides a particular forward solution.

The corresponding general forward solution (check as an exercise) will be,
for an arbitrary choice ft+n at any future date t+ n

ψt = B−nft+n +
∞�

h=0

B−hgt+1+h

In case not all roots of B are unstable this solution is not viable, but we
can always resort to a truncated solution such as

ψt = B−nft+n +
n�

h=0

B−hgt+1+h

= B−nψt+n +
n−1�

h=0

B−hgt+1+h

with ψt+n = ft+n + gt+n+1 as a free parameter.

(II) Use of L in solving a second-order difference equation
As a second example, we apply L to the solution of a (linear, fixed co-

efficients) second order difference equation. We take a single equation for
simplicity.

Let the generic form of the equation be

aft + bft−1 + ft−2 = gt

with a and b fixed coefficients and a �= 0. Rewritten by means of L the
equation becomes �

a+ bL+ L2
�
ft = gt (39)

Notice that the coefficients a and b of the polinomial lag in parentheses
can be expressed as functions of the roots of the characteristic equation (the
‘auxiliary’ characteristic equation) a+ bx+ x2 = 0. The roots are

ρ1 =
−b+

√
b2 − 4a
2

ρ2 =
−b−

√
b2 − 4a
2

from which
ρ1 + ρ2 = −b and ρ1ρ2 = a
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By replacing the latter in (39) we get

�
ρ1ρ2 − (ρ1 + ρ2)L+ L2

�
ft = gt

and, through obvious steps,


1− 1

ρ1
L

�
1− 1

ρ2
L

�
ft =

gt
ρ1ρ2

(40)

Now take the auxiliary homogeneous equation associated with (39),
(a+ bL+ L2) ft = 0. By operating the same transformations on it we get


1− 1

ρ1
L

�
1− 1

ρ2
L

�
ft = 0

It is easy to check that this equation is satisfied by the functions ft =
	
1
ρ1


t
,

ft =
	
1
ρ2


t
, and therefore also by any function

ft = α


1

ρ1

�t

+ β


1

ρ2

�t

with α and β arbitrarily chosen. This is the general solution to the homoge-
neous auxiliary equation. The two dof are well in evidence in the formula.

At this point, insert


1− 1

ρ1
L

�
1− 1

ρ2
L

��

α


1

ρ1

�t

+ β


1

ρ2

�t
�

= 0

into (40), which is rewritten as


1− 1

ρ1
L

�
1− 1

ρ2
L

�
ft =

=
gt

ρ1ρ2
+


1− 1

ρ1
L

�
1− 1

ρ2
L

��

α


1

ρ1

�t

+ β


1

ρ2

�t
�

By applying the double operator
	
1− 1

ρ2
L

−1 	

1− 1
ρ1
L

−1

to both sides of

this equation we get the general backward solution to (39)

ψt =


1− 1

ρ2
L

�−1
1− 1

ρ1
L

�−1
gt

ρ1ρ2
+ α


1

ρ1

�t

+ β


1

ρ2

�t
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The free parameters of the solution are α and β, while the roots ρ1 and ρ2
derive from the parameters a and b of the original equation (39).

The polinomial lags
	
1− 1

ρi
L

−1

converge to finite values if the sequence

{gt} is bounded and the two roots ρi have modulus greater than one (i.e.
1
|ρi|

< 1). This is called the ‘stable’ case. If both roots have modulus smaller
than one we have the ‘unstable’ case, which is however stable in the forward
solution (see below). The mixed case, with the modulus of one root greater
and the other smaller than one, is called a ‘saddle’.

Let us consider the stable case. By developing the double polinomial lag
sequentially, at the first step we get


1− 1

ρ1
L

�−1
gt

ρ1ρ2
=
1

ρ2

∞�

h=0


1

ρ1

�h+1

gt−h

and at the second

1− 1

ρ2
L

�−1
1− 1

ρ1
L

�−1
gt

ρ1ρ2
=


1− 1

ρ2
L

�−1
1

ρ2

∞�

h=0


1

ρ1

�h+1

gt−h

=
∞�

k=0


1

ρ2

�k+1 ∞�

h=0


1

ρ1

�h+1

gt−h−k

or, after rearranging


1− 1

ρ2
L

�−1
1− 1

ρ1
L

�−1
gt

ρ1ρ2
=

∞�

h=0

gt−h

h�

j=0


1

ρ1

�j+1
1

ρ2

�(h−j)+1

By using the last formula we rewrite the general solution as

ψt =
∞�

h=0

gt−h

h�

j=0


1

ρ1

�j+1
1

ρ2

�(h−j)+1

+ α


1

ρ1

�t

+ β


1

ρ2

�t

(41)

In case the modulus of one, or of both characteristic roots is smaller than
one the first summation on the right-hand side is infinite and the backward
solution is available only in truncated form. With both roots unstable, how-
ever, we can resort to the forward solution.

Exercise 14 Work out the general forward solution to equation (39) [Hint:
rewrite the equation in the form

L−2gt =
�
ρ1ρ2L

−2 − (ρ1 + ρ2)L
−1 + 1

�
ft

=
�
1− ρ1L

−1
� �
1− ρ2L

−1
�
ft
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Finally, a form of mixed solution, partly forward and partly backward,
called ‘partial adjustment’ can be applied in the case of a saddle. This is
used for example by Wickens in the study of a dynamic equation of prices in
section 9.4.4 (formula 9.28 on p 236 of the first edition).

Call ρ1 the stable root, ρ2 the unstable one

|ρ1| > 1, |ρ2| < 1

Rewrite equation (39) as

L−1gt =
�
ρ1ρ2L

−1 − (ρ1 + ρ2) + L
�
ft

and transform it as follows

gt+1 =
�
ρ1
�
ρ2L

−1 − 1
�
− L

�
ρ2L

−1 − 1
��

ft

= −ρ1

1− L

ρ1

��
1− ρ2L

−1
�
ft

As |ρ2| is smaller than one we can write


1− L

ρ1

�
ft = − 1

ρ1

�
1− ρ2L

−1
�−1

gt+1

= − 1
ρ1

∞�

h=0

ρh2gt+1+h

with the summation giving a finite value.
The left-hand side of the last equation is


1− L

ρ1

�
ft = ft −

ft−1
ρ1

hence

ft − ft−1 =
1− ρ1
ρ1

ft−1 −
1

ρ1

∞�

h=0

ρh2gt+1+h

=
ρ1 − 1
ρ1

�
1

1− ρ1

∞�

h=0

ρh2gt+1+h − ft−1

�

(42)

Define the new variable

γt ≡
1

1− ρ1

∞�

h=0

ρh2gt+1+h
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According to this definition, γt can be taken as a moving average of the
future behavior of gt, an index that charges the realizations from gt+1 on with
weights that decrease as the distance from t increases, tending to zero as the
distance tends to infinity. Equation (42) now becomes

ft − ft−1 =
ρ1 − 1
ρ1

(γt − ft−1)

which explains each variation in f between consecutive dates as a fraction
of the difference between f and the indicator γ, with f being increasing,
stationary or decreasing depending on whether γ is greater than, equal to or
smaller than f . Since the ratio ρ1−1

ρ1
is always positive (from |ρ1| > 1), the

formula shows that γ works as a moving attractor of f .
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5 Expectations

Expectation formation is a most controversial topic in macroeconomic mod-
elling. Theories dealing with expectations range from the extremely rational
to the extremely empirical and descriptive of professional practices and rules
of thumb. In all cases, it is acknowledged that expectations affect economic
behavior and consequently the movements of the variables with which expec-
tations are concerned. In the opposite direction, systematic gaps between
actual and expected movements of economic variables will lead to revisions
in the manner in which expectations are formed. Consequently, until some
kind of equilibrium between the two sides, expectations and realizations, is
reached the economy will be in a more or less volatile state of flux. Equi-
librium requires expectations to induce behavior the consequences of which
to a certain degree confirm expectations themselves. But not all methods
for expectation formation have such self-confirming power. This is why eco-
nomic theory focuses on a limited number of models of expectation, those
that possess it to some degree.

Here we examine two of the most commonly used models in macroeco-
nomic applications: the one called ‘rational expectations’, and the model
called ‘adaptive expectations’. The former assumes expectations to be spec-
ified in the form of probabilities, and updated with respect to information
according to Bayes rule: it is therefore a case of Bayesian expectations. The
latter, although entirely based on information, is instead non-Bayesian, and
not only so but also non-probabilistic. It may be considered the extreme
opposite to rational expectations. But before entering into the differences
between the two, we discuss briefly what it means to have Bayesian expec-
tations even if not necessarily of the ‘rational’ kind.

5.1 Bayesian expectations

If we assume, first, that the economic environment is one in which agents
can learn about current events as soon as these occur, so that at each s the
realisation of Xs becomes a piece of information; and second, that whatever
their prior beliefs may have been, agents update these to current informa-
tion consistently with Bayes rule of conditionalization of probabilities; then
subjective beliefs will evolve with time in a way that parallels the evolution
of objective probabilities as seen above in section 4.2. Let the probability
measure P represent the a priori subjective beliefs of the representative agent
on the measurable space (Ω,A) described in 4.1; and let us pay no attention
to whether P does or does not reflect the objective probability P defined
on the same space. The representative agent may have wrong beliefs. But
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information at s will in any case be represented by the same partition Ds of
Ω seen above, with the partition becoming finer and finer as the time index s
goes up. Thus, passing from s to t > s, the subjective probability of the same
event a ∈ A will change from P (a | D), where D ∈ Ds represents what the
agent knows at s, to any P (a | D′) where D′ ∈ Dt is one of the subsets into
which D will be partitioned due to additional information made available by
the passing of time from s to t. As in formula (34), the relationship between
the two is given by

P (a | D′) =
P (a ∩D′ | D)
P (D′ | D)

Although subjective beliefs P are allowed to diverge from objective proba-
bility P , updating according to this formula implies that P and P should not
diverge to such an extent that an objectively possible piece of information D′

receives a priori subjective probability P (D′ | D) = 0. In other words, this
kind of Bayesian updating requires that what one learns through experience
is never in absolute contradiction with previous beliefs, as it might be the
case if objective possibilities were subjectively deemed to be impossible.

Besides, the same demonstration used in solving exercise 13 may be ap-
plied here to show that

P (a | D) = E (P (a | Dt) | D)

Present probability equals the (presently) expected value of the random vari-
able future probability. This characteristic of Bayesian updating has the two
implications that can be seen by solving the following two exercises.

Exercise 15 (Second order expectations) Let E (Xs+n | D) represent the sub-
jective conditional expectation of random variableXs+n at s; and E (Xs+n | D′)
the corresponding conditional expectation for each D′ ∈ Dt, with s+ n > t >
s. Show that

E (Xs+n | D) = E (E (Xs+n | Dt) | D)

Exercise 16 (Consistency) Call ‘expectation revision’ the random variable
δs+n ≡ E (Xs+n | Dt) − E (Xs+n | D) where D ∈ Ds. Demonstrate that
Bayesian updating implies

E (δs+n | D) = 0

The second proposition parallels the similar property of conditional prob-
abilities expressed by formula (35) in section 4.2. Here too, while acknowledg-
ing that expectations are going in general to change due to new information,
expectation revision is expected to be on average zero.
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In macroeconomic modelling of the DSGE kind the representative agent’s
subjective expectations are relevant in that they affect the agents’ choices,
and these in turn affect the objective probabilities underlying the stochastic
processes that determine the dynamics of the economy. This being the case,
however, a representative rational economic agent should be aware of the
influence of his beliefs on the very events with which beliefs are concerned,
and adjust these in accordance with this principle of mutual influence or, as
is often called, self-referentiality. Beyond the minimal consistency between
subjective beliefs and objective probabilities required by Bayesian updat-
ing, therefore, the assumption of economic rationality compels the theory
to consider a stronger notion of consistency in order to take the problem of
self-referentiality of expectations into consideration. Perhaps the strongest
in this line of consistency notions is the one embodied in the model of ratio-
nal expectations, still one of the most popular models although the financial
crisis of 2007 has somewhat shaken confidence in its validity.

5.2 Rational expectations and actual dynamics

In order to discuss definition, characteristics and implications of rational
expectations we refer to a simple model of a dynamic process driven by
the expectations themselves and by an independent stochastic process. The
stochastic process provides the objective standard necessary to assess the
‘rationality’ of expectations.

Assume that a macroeconomic variable x is determined by the expecta-
tions of economic agents and by an external causal factor z according to the
law

xt = αxe
t + βzt (43)

where xe
t indicates the expected value of xt on the basis of information avail-

able at t− 1. Randomness enters the system through the law of motion that
regulates z. This is described by the first order AR process

zt = a+ bzt−1 + εt (44)

where εt ∼WN, a and b are positive parameters and b is supposed to be
smaller than 1.

A possible interpretation of the model is: x represents aggregate invest-
ment, positively dependent on expectations on aggregate investment (invest-
ment creates demand which provides further incentive to invest) and on tech-
nical progress. The latter is represented by z, the flow of innovations applied
to productive processes. This in turn is affected by a systematic structural
component represented by the constant parameter a, by innovations realized
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in the recent past, and by a random factor which may play either positive or
negative role.

Equation (44) is a first order, linear, fixed coefficients difference equation
with a stochastic component. It can be solved directly by using the L opera-
tor as seen in section 4.4. Write the equation in the form (1− bL) zt = a+εt.
The auxiliary characteristic equation 1−bx = 0 has the unique root x = 1

b
. In

the hypothesis 0 < b < 1 the operator (1− bL)−1 is convergent and therefore

zt = (1− bL)−1 (a+ εt)

= a
∞�

h=0

bh +
∞�

h=0

bhεt−h

=
a

1− b
+

∞�

h=0

bhεt−h (45)

This backward solution provides the moving average (MA) representation
of the AR process from which we started. It can be checked that mean,
variance and autocovariance of any order are constant with respect to t, with
autocovariances of order h tending to zero as h → ∞. The process is thus
weakly stationary and asymptotically independent. In particular, as can be
checked from (45), EZt =

a
1−b

and varZt =
V arε
1−b2

. Autocovariance of order h
is given by

Cov (Zt, Zt+h) =
V arε

1− b2
b|h|

which converges to zero as h→∞. The intuition is that, in the long period,
the independence of the shocks εt tends to outweigh the correlation between
each zt and zt−1.

Notice that, if one abstracts from the stochastic component εt, the process
described by equation (44) has a unique steady state, i.e. a unique value z
such that zt+1 = a + bzt = zt. This coincides with the constant trend a

1−b

around which zt oscillates according to equation (45). Thus, defining the
steady state value of z as

z∗ =
a

1− b

equation (45) becomes

zt = z∗ +
∞�

h=0

bhεt−h (46)

Strictly defined, rational expectations means the hypothesis that xe
t coin-

cides with E (Xt | Dt−1), the conditional mean value of the random variable
Xt computed on the basis of the model represented by equations (43) and
(44), with xe

t = E (Xt | Dt−1) in the former equation and Dt−1 being the
element of the information partition at t − 1 identified by the sequence of
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realisations xs, zs and εs up to s = t − 1. In other words, E (Xt | Dt−1) is
the best estimate that a statistician having full knowledge of the structural
features and past history of the system would be capable of doing.

According to this definition,

E (Xt | Dt−1) = αE (Xt | Dt−1) + β (a+ bzt−1) + E (εt | Dt−1)

=
β

1− α
(a+ bzt−1) (47)

Alternatively, by substituting the MA representation (46) for zt−1 and
performing obvious steps, we can write

E (Xt | Dt−1) =
β

1− α
a+

β

1− α
b


z∗ +

∞�

h=0

bhεt−1−h

�

=
β

1− α
z∗ +

β

1− α

∞�

h=1

bhεt−h

If we now define the steady state value of x as the value that, if correctly
predicted, would be realised when zt = z∗,

x∗ = αx∗ + βz∗ =
β

1− α
z∗

we have

E (Xt | Dt−1) = x∗ +
β

1− α

∞�

h=1

bhεt−h (48)

which shows that the expectation of xt differs from its steady state value
only to an extent justified by the observed past fluctuations of z around its
own steady state. The formulas (48) and (47) are obviously equivalent.

If expectations are formed in the way described by (48), the actual dy-
namics of x is determined as follows:

xt = αE (Xt | Dt−1) + βzt

= α


x∗ +

β

1− α

∞�

h=1

bhεt−h

�
+ β


z∗ +

∞�

h=0

bhεt−h

�

= x∗ +
β

1− α

∞�

h=1

bhεt−h + βεt (49)

= E (Xt | Dt−1) + βεt (50)

From (49) we learn that x fluctuates around its steady state trend in line
with the fluctuations of z around its own steady state. The unconditional
mean of the process is x∗, constant through time. The same is true of its un-
conditional variance and autocovariances of all orders, the latter converging
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to zero as the order increases. The process ruling x under rational expecta-
tions is therefore weakly stationary and asymptotically independent, exactly
like the process ruling z.

Equation (50) indicates that the expectation error equals βεt, i.e. repli-
cates the white noise that generates uncertainty. This implies that rational
expectations will almost always be wrong, but the expected error is zero and
errors at different dates are uncorrelated. This means that with these ex-
pectations error has no systematic bias, predictions do not fail to take all
systematic factors into account. Intuitively, rational expectations take ad-
vantage of all the autoregressivity existing in the system and surrender only
in the face of the unpredictable residuum.

From (50) we can also verify that rational expectations are Bayesian in
the sense explained in section 5.1. Indeed, if expectations are rational, they
must be consistent with all the implications of the model including equation
(50). Thus, in forming expectations on Xt+n (n = 1, 2, ...) on the basis of
information available at any previous date, take for example date t− 1, from
(50) it follows

E (Xt+n | Dt−1) = E (E (Xt+n | Dt+n−1) | Dt−1) (51)

i.e. the rule concerning second order expectations that characterizes expecta-
tions based on Bayesian updating, as showed by the formula found in solving
exercise 15 above. Remember that this implies that the expected expectation
revision in the sense specified in the next exercise 16 is always zero.

In the last equation Dt+n−1 indicates all the possible pieces of information
the subject expects to come to acquire from t−1 to t+n−1, i.e. his/her ex-
pectations about zt, ...zt+n−1. Thus, by using formula (47) we can transform
the right-hand side of the equation as follows

E (Xt+n | Dt−1) = E


β

1− α
(a+ bZt+n−1) | Dt−1

�

=
β

1− α
(a+ bE (Zt+n−1 | Dt−1))

Now notice that expectations consistent with knowledge of equation (44)
imply the following

E (Zt+n−1 | Dt−1) = a+ bE (Zt+n−2 | Dt−1)

and so on recursively until, after going backwards n times, we arrive at

E (Zt | Dt−1) = a+ bzt−1
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By substituting in the original equation, then, we get

E (Xt+n | Dt−1) =
β

1− α

�
a+ ab+ ab2 + ...+ abn + bn+1zt−1

�

=
β

1− α

a

1− b
(1− bn) +

β

1− α
(a+ bzt−1) b

n

Finally, recalling the definition of x∗ and using formula (47)

E (Xt+n | Dt−1) = (1− bn) x∗ + bnE (Xt | Dt−1) (52)

which expresses long term rational expectation as a weighed average, with
weights depending on the length of the time horizon n, of the short term ex-
pectation and the steady state value x∗. Since b < 1, the formula also shows
that, while expectations for the immediate future are what they are depend-
ing on recent experience, long term rational expectations tend to approach
x∗, the unconditional mean of the process, as n→∞.

The property expressed by equation (50) suggests the possibility of defin-
ing rational expectations in an alternative way, a less demanding definition
than the strict definition given above in this section. Assuming the repre-
sentative agent to be endowed with all the knowledge and technical exper-
tise necessary to compute the conditional means E (· | ·) of the model seems
hardly credible. In most cases it may be sufficient to define rational expec-
tations as simply the capacity of forming expectations that, taken in long
series, turn out to be correct on average and not to neglect systematic causal
factors. As we have seen from equation (50), the strict definition entails this
capacity as a consequence of excessively strong epistemic assumptions, but
the reverse implication does not generally hold: agents may come to acquire
this capacity, for example through protracted professional practice, without
need to assume that they know everything and are able to run complex com-
putations.

It must be noticed, however, that this ‘weak’ definition of rational expec-
tations supports many of the properties that can be deducted from the strict
definition, but not all of them. In particular, one cannot prove properties
(51) and (52) without assuming that subjective conditional expectations co-
incide with the objective E (· | ·) of the model. In this sense, one may say
that weakly defined rational expectations are not Bayesian in the same sense
as strict rational expectations.

According to the weak definition, ‘rational expectation’ is any prediction
xe
t such that the difference

xt − xe
t ≡ ηt
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behaves like WN and is uncorrelated with εt in the sense that

Cov
�
εt, ηt+n

�
= E

�
εtηt+n

�
= 0

for all n = 0, 1, ....
By inserting this definition into (43) and by utilizing (44) and (47) we get

xe
t = αxe

t − ηt + βzt

=
−ηt
1− α

+
β

1− α
(a+ bzt−1 + εt)

=
β

1− α
(a+ bzt−1) +

βεt − ηt
1− α

= E (Xt | Dt−1) +
βεt − ηt
1− α

(53)

from which we see that the only difference between ‘strict’ and ‘weak’ rational
expectations is given by the last term on the right-hand side of the last
equation. From the solution of the next

Exercise 17 Show that, if ηt is WN uncorrelated with εt, also βεt − ηt is
WN.

it turns out that the difference between strictly and weakly rational expec-
tations is entirely made of WN.

Also the actual dynamics of xt maintains the characteristics of the dy-
namics generated by strict rational expectations with the only difference of
a WN. To prove this, insert the weak definition into (43) and develop

xt = α (xt − ηt) + βzt

= − αηt
1− α

+
β

1− α
(a+ bzt−1 + εt)

=
β

1− α
(a+ bzt−1) +

βεt − αηt
1− α

= E (Xt | Dt−1) +
βεt − αηt
1− α

Now indicate with xo
t the actual dynamics when expectations are strictly

rational and conform to (50): in the last formula we have

xt = xo
t − βεt +

βεt − αηt
1− α

= xo
t + α

βεt − ηt
1− α
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from which (see (53) above)

xt − xo
t = α [xe

t − E (Xt | Dt−1)] = α
βεt − ηt
1− α

Thus, the difference between the two dynamics, like the difference between
the expected values, is only a matter of WN.

Exercise 18 Show that xt and xo
t have the same unconditional mean x∗ but

xt has greater unconditional variance and autocovariances than xo
t .

If the differences pointed out in the solution to this exercise play no
role in the economic model one is using, then from the point of view of
that model it appears that adopting a strict or a weak definition of rational
expectations does not make much difference. As mentioned above, however,
the weak definition does not guarantee that second order expectations and
long term expectations behave in accordance with formulas (51) and (52). If
these properties do play a role in the model, then the definition of rational
expectations must be the strict one.

5.3 Adaptive expectations

If the formation of expectations conforms to a model different from rational
expectations, then also the dynamics of the system will develop according to
generally different rules, although the structure of the economy remains the
same described by the equations (43) and (44) of the previous section. We ex-
amine this issue by means of a non-rational, non-Bayesian, non-probabilistic
model of expectation formation called ‘adaptive’ or ‘extrapolative’ expecta-
tions. This is still used in macroeconomic literature as a radical alternative
to rational expectations.

Expectations about an economic variable are said to be adaptive when
they are entirely based on knowledge of the past history of the variable
without taking the characteristics of the stochastic process that drives it
into account — either because these characteristic are unknown, or because
agents are supposed to be unable to utilize them in a technically adequate
way. Of course, even the simple extrapolation of past observations onto future
realizations implicitly utilizes indirect knowledge of the underlying stochastic
process, but this is done unaware and not by means of statistical methods,
contrary to what happens with rational expectations.

An example of adaptive expectations on the variable x in the model
formed by equations (43) and (44) is represented by the following rule

xe
t − xe

t−1 = φ
�
xt−1 − xe

t−1

�
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with φ, a number included in the (0, 1) interval, playing the role of the factor
by which the last observed error

�
xt−1 − xe

t−1

�
is used to correct the current

prediction. Correction will be faster or slower depending on φ being nearer
to 1 or to 0. This is an exclusively “backward looking” rule, and also a naive
rule in that it does not use any statistical estimator, nor even the notion of
probability. It allows for updating with respect to new information, but of
course not updating of the Bayesian kind.

A change in the structure of the system, for example a change in the
parameters a or b of equation (44), would be absorbed in a rational expec-
tations world as soon as agents become aware of it, as is shown by equation
(47). With adaptive expectations, instead, the change would be absorbed
only gradually and indirectly, through the cumulated observations of the
time series generated by the modified process. In the case of changes due
to new operative rules or new targets being followed by policy-makers such
as Central Bank or Government, assuming rational rather than adaptive ex-
pectations means assuming two different kinds of response of the public to
changes in the criteria regulating economic policy. With rational expectations
the public will react as soon as the new policy is perceived and will embody
it entirely in the formation of expectations and consequent behavior. The
response of an adaptive public will instead be delayed and gradual.

The differences just mentioned are important enough to justify different
theories concerning the effects of macroeconomic policies on the basis of
different assumptions on expectations. But if we look at the working of the
system inside a given policy regime, i.e. with all the parameters controlled
by policy-makers remaining constant, the consequences of choosing the one
or the other assumption on expectations turn out to be less dramatic than
one might expect. The dynamics in the two cases is of course different but,
as we are going to see, the differences are not extreme.

From the adaptive rule we derive the following first order difference equa-
tion in the xe variable

xe
t = (1− φ)xe

t−1 + φxt−1

Solving the equation by means of the usual methods we get

xe
t = φ

∞�

h=0

(1− φ)h xt−1−h

From this we see that current expectation is determined by a moving average
of all past observations, the weights tending to zero as the observations go
back further and further into the past. Notice that all past observations refer
to x, not to the realizations of the shock ε as in equation (48).
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Now the actual dynamics of xt induced by adaptive expectations. Starting
from the process (46) that governs zt, and using the definitions of steady state
values z∗ and x∗, we find

xt = α

�

φ
∞�

h=0

(1− φ)h xt−1−h

�

+ β


z∗ +

∞�

h=0

bhεt−h

�

= (1− α) x∗ + αφ
∞�

h=0

(1− φ)h xt−1−h + β
∞�

h=0

bhεt−h (54)

Notice that in the last equation we can write
∞�

h=0

(1− φ)h xt−1−h = (1− (1− φ)L)−1 xt−1

and therefore, multiplying both sides of equation (54) by (1− (1− φ)L)

(1− (1− φ)L) xt = (1− (1− φ)L)

�
(1− α) x∗ + β

∞�

h=0

bhεt−h

�
+ αφxt−1

(55)
where

(1− (1− φ)L) xt = xt − (1− φ) xt−1

(1− (1− φ)L) (1− α)x∗ = φ (1− α)x∗

(1− (1− φ)L) β
∞�

h=0

bhεt−h = β
∞�

h=0

bh (εt−h − (1− φ) εt−h−1)

= β
∞�

h=0

bh (1− (1− φ)L) εt−h

By replacing the last four lines into (55) we get

xt = φ (1− α)x∗ + (1− φ (1− α)) xt−1 + β
∞�

h=0

bh (1− (1− φ)L) εt−h

or, more simply, using the abbreviation θ ≡ 1− φ (1− α)

xt = (1− θ)x∗ + θxt−1 + β
∞�

h=0

bh (1− (1− φ)L) εt−h

This difference equation can be solved either backwards or forward. Let
us assume that 0 < θ < 1, i.e. (with α > 0) α < 1, and solve backwards in
successive steps. After n steps we have

xt = θnxt−n +
�
1 + θ + ...+ θn−1

�
(1− θ) x∗+

+ β
∞�

h=0

bh
n−1�

j=0

θj (1− (1− φ)L) εt−h−j
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As the number of steps n becomes larger and larger, θn → 0 and�
1 + θ + ...+ θn−1

�
→ 1

1−θ
; the sequence x being by hypothesis bounded,

the solution is

xt = x∗ + β
∞�

h=0

bh
∞�

j=0

θj (1− (1− φ)L) εt−h−j

Using L, and rearranging the terms under summation, the last formula
becomes

xt = x∗ + β
∞�

h=0

bh

�

εt−h + (θ − (1− φ))
∞�

j=0

θjεt−h−(j+1)

�

= x∗ + β
∞�

h=0

bh

�

εt−h + αφ
∞�

j=0

θjεt−h−(j+1)

�

= x∗ + β
∞�

h=0

bhAhεt−h (56)

where

A0 = 1

A1 = 1 + αφb−1

A2 = 1 + αφb−1 + αφb−2θ

... ... ...

Ah = 1 + αφ
h�

j=1

b−jθj−1

If we compare the dynamics described by (56) with the rational expecta-
tions dynamics (xo

t ) of equation (49) we find

xt − xo
t = β

∞�

h=1

bh

Ah −

1

1− α

�
εt−h

= αβ
∞�

h=1

bh

�

φ
h�

j=1

b−jθj−1 − 1

1− α

�

εt−h

Summing up: the two processess have the same trend and unconditional
mean x∗. Both are weakly stationary and asymptotically independent. The
only differences between them concern variances and autocovariances, as may
be checked with some calculus.

An interesting comparison is provided by the ‘impulsive response coeffi-
cients’, the coefficients that, by measuring the impact of a shock εt−n on xt,
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indicate the ‘memory’ of the process at a distance n. With rational expecta-
tions, as is seen from (49), the impact is given by

βbn

1− α

and converges towards zero as n→∞. With adaptive expectations the same
impact is measured by (see (56))

βbnAn = βbn

�

1 + αφ
n�

j=1

b−jθj−1

�

which also converges to zero for n → ∞ but at different speed. In the
difference

βbn

1− α
− βbnAn = αβbn

�
1

1− α
− φ

n�

j=1

b−jθj−1

�

the expression in square brackets may have any sign for small values of n but
it surely declines as n increases. It is not difficult to check that, even if it is
positive for small n, the expression in square brackets must become negative
from some value of n on (just show this for b > θ). Thus, in the long run the
‘memory’ of adaptive expectations turns out to be more persistent than in
the case of rational expectations. This explains why the autocorrelation of
the actual dynamic process is higher with the former than with the latter.

Finally, as to prediction error with adaptive expectations: taking xe
t =

xt−βzt
α

from equation (43) and using (46) and (56) in sequence

xe
t − xt =

1− α

α
xt −

β

α
zt

=
1− α

α
xt −

β

α


z∗ +

∞�

h=0

bhεt−h

�

=
1− α

α
(xt − x∗)− β

α

∞�

h=0

bhεt−h

=
β

α

∞�

h=0

[(1− α)Ah − 1] bhεt−h

The last equation shows that, differently from rational expectations, pre-
diction errors with adaptive expectations are not WN but a MA process,
although its unconditional mean remains zero. Differently from the case of
rational expectations, therefore, autocovariance between errors at t and at
t + n is never zero no matter how great the value of n. It remains true,
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however, that autocovariance approaches zero as n → ∞ (asymptotic inde-
pendence). As one might have expected intuitively, adaptive predictions may
fail not only because of the presence of the unpredictable chance factor ε, but
also because they do not account for the systematic autocorrelation embodied
in the structure of the model underlying the dynamics of the system.
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6 Optimization under uncertainty, with ap-

plications

6.1 Optimal control in a stochastic environment

Consider a generic optimal control problem along the lines seen in sections
3.4 and 3.5 above. The setup of the problem is as usual: xs and ys indicate
respectively the state and control variable of the problem, the objective is
the recursive function

F =
∞�

h=0

βhϕ (yh) (57)

As in 3.5, the instantaneous benefit ϕ is made to depend on control alone.
The only difference with respect to the deterministic case is that the law of
motion is now of the ‘Markov’ or ‘stochastic recursive’ kind (see section 4.3
above), like the following

xs+1 = g (xs, ys, εs+1) (58)

with ε ∼WN a stochastic shock independent of the decision maker’s actions.
At the moment of choosing a plan, s = 0, xo is taken as given. The deci-
sion maker chooses the sequence of controls {yo, y1, y2...} but has no way of
knowing the resulting sequence {x1, x2...}. This fact has two implications:

(i) Apart from the action (level of control) chosen at s = 0, all successive
actions at s = 1, 2... will be conditional on the actual states x1, x2... occurring
at the successive dates (and supposedly known once a date is reached). Thus,
a plan is not simply a sequence of actions (‘at s, do ys’) but a sequence of
actions conditional on information available at the moment of carrying them
out (‘at s, do y′s if you observe x′s; y

′′
s if x′′s ; etc...’). Differently said, a plan

is a sequence of decision functions, one for each date, mapping information
available at that date into actions. This is usually called a ‘contingent plan’
or a ‘policy rule’. One may notice that this notion of policy corresponds
to the game-theoretic notion of ‘strategy’. In making the prescription at s
conditional on the sole value xs, and not on the whole sequence of values from
0 to s, we are in fact restricting the range of policies/strategies admitted but,
as we shall see, in the recursive approach to optimal control this restriction
is inessential.

(ii) As a consequence of (i), both xs and ys for s ≥ 1 become random vari-
ables, Xs and Ys, with probability distributions depending on the probability
distribution of ε and on the chosen plan itself (the distribution of X1 depends
on the distribution of ε and on the chosen yo; and so on...). Consequently,
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also the instantaneous benefit at each s ≥ 1 becomes a random variable,
Φs = ϕ (Ys), and so also the objective F =

�
βhΦh.

This framework describes the objective structure of a situation of choice
under uncertainty. The standard approach of economic theory to this type of
situations consists in assuming that the decision-maker is aware of the uncer-
tainty, forms expectations on the random variables involved, and chooses a
policy that maximizes the expected value of the objective F, expectations be-
ing based on information available at the moment of choosing, i.e. at s = 0.
This approach raises a first fundamental issue, the so-called time-consistency
of the plan.

Call σ a policy, consisting of a sequence of decision functions {σo, σ1, σ2, ...},
each σs mapping the values of Xs into Ys. For each sequence of random
shocks {ε1, ε2, ε3, ...} the policy σ determines (through (58)) a unique se-
quence of realizations {xs, ys = σs (xs) : s = 0, 1, 2...}, hence (through (57))
a value F = Fσ,ε, the value that the objective function takes on if the agent
applies policy σ and if ε is the sequence of shocks that actually occur. Con-
sequently, having subjective expectations of some sort on ε, at s = 0, with
information limited to xo, the agent can attach an expected value to σ, call
it E (F | σ, xo), and look for the σ that maximizes it.

Now imagine σ̂ to be the optimal policy as evaluated at s = 0. At a
successive date s > 0 the agent knows xs and according to his policy should
perform the action ŷs = σ̂s (xs). Since at s the agent knows more than at
0, his expectations at s may in general be different from those he had at 0.
Will ‘do ŷs if xs’ be still an optimal choice on the basis of these generally
different expectations? In other words, will action ŷs maximize the expected
value E (F | σ̂, xs) if the policy is re-assessed on the basis of the new state of
information? If, as it seems to be generally possible, the answer happens to
be ‘no’, then the policy σ̂ is time-inconsistent. As soon as the agent realizes
this, he will no longer act according to it. Hence, σ̂ will not characterize the
agent’s behavior over time. Its validity will in general be limited to s = 0,
losing all intertemporal reliability.

For a dynamic theory of behavior based on optimal planning to make
sense, therefore, it is necessary that policies are both optimal at the time of
conception and time-consistent, i.e. optimal at all times from conception to
end. We now show that a sufficient condition for this is that expectations are
Bayesian in the sense explained in section 5.1 above: under this condition,
optimality and time-consistency come to be one and the same thing in the
sense that a plan is optimal if and only if it is consistent.

Start from the property of second order Bayesian expectations proved in
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the solution to exercise 15

E (· |Do) = E (E (· |Ds) |Do) (59)

where Do is information at s = 0 and Ds information available at s > 0, a
random variable if looked at from date 0. Now decompose the value of the
objective function, given σ̂ and a sequence of shocks ε, into value from 0 to
s− 1 plus value from s to ∞ as follows

Fσ̂,ε =
s−1�

h=0

βhϕ (σ̂h (xh)) + βs
∞�

n=0

βnϕ (σ̂s+n (xs+n))

= Fσ̂,ε|s−10 + βs Fσ̂,ε|∞s
Its expected value can be decomposed accordingly

E (F | σ̂, xo) = E
�
F
s−1
0 | σ̂, xo

�
+ βsE (F∞s | σ̂, xo) (60)

At date s the agent’s information includes the time series of the realiza-
tions of X from 0 to s. Thus, the first term of the sum on the right-hand side
of (60) is by now a known quantity, call it fs−1. The second term remains
an expected value but, since xs is known, it can be updated to the available
information, so that we can write

E (F | σ̂, xs) = fs−1 + βsE (F∞s | σ̂, xs) (61)

If expectations are bayesian we can apply (59) to (60), and by using equation
(61) get

E (F | σ̂, xo) = E (E (F | σ̂, Xs) |σ̂, xo)

= E
�
F
s−1
0 |σ̂, xo

�
+ βsE (E (F∞s | σ̂,Xs) |σ̂, xo)

Now go back to the problem of time-consistency. If the action ŷs = σ̂s (xs)
is part of the optimal policy as assessed at s = 0, and if expectations are
bayesian, it cannot be the case that ŷs is no longer optimal if re-assessed
at s > 0 on the basis of information xs. For, if this were the case, then by
choosing some action ys �= ŷs, hence a policy σ �= σ̂ from date s onwards,
the agent would realize an expected value greater than E (F∞s | σ̂, xs) in (61);
and since this would not affect fs−1, this different policy would lead to

E (F | σ, xs) = fs−1 + βsE (F∞s | σ, xs) > E (F | σ̂, xs)

The last formula shows that this different choice would also increase the
expected value at 0 resulting in (from (60))

E (F | σ, xo) = E
�
F
s−1
0 | σ̂, xo

�
+ βsE (F∞s | σ, xo) > E (F | σ̂, xo)

contradicting the hypothesis that σ̂ is an optimal policy at s = 0.
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Exercise 19 The last step in the previous argument assumes implicitly that
the probability of the event Xs = xs conditional on the adoption of policy σ̂
is positive (with the usual caveat if Xs is continuous, see 4.2): explain why.

Exercise 20 The previous argument shows that, with bayesian expectations,
time-consistency is a necessary condition of optimality. Show that it is also
a sufficient condition.

Bayesian expectations thus provide the appropriate environment for a
theory of optimal planning under uncertainty based on the maximization of
expected value. First of all, the perfect overlapping between optimality and
time consistency serves to extend the recursive property from the objective
function to the value function of the optimal control problem, in a way similar
to what we saw in section 3.5 with reference to deterministic problems. A
further consequence is the possibility of analyzing solutions by means of
Bellman methods of dynamic programming.

Assuming σ̂ to be an optimal policy, we define the value function as in 3.5
as V (xo) ≡ E (F | σ̂, xo). Take any date s, and operate the decomposition

E (F∞s | σ̂, xs) = ϕ (σ̂s (xs)) + βE
�
F
∞
s+1 | σ̂,Xs+1

�

From the property of time consistency of σ̂ it follows that the last formula
can be rewritten as (in the next formulas we omit conditionalization bars)

V (xs) = ϕ (σ̂s (xs)) + βEV (g (xs, σ̂s (xs) , εs+1)) (62)

≥ ϕ (ys) + βEV (g (xs, ys, εs+1))

for any ys. This shows that the recursive property of the objective function is
extended to the expected value of the solution to the optimal control problem.

If the function ϕ + βEV is differentiable and concave with respect to y,
we can also characterize the last inequality by means of Bellman equation in
the form

0 = ϕ′ (σ̂s (xs)) + βE

�
∂g (xs, σ̂s (xs) , εs+1)

∂ys
V ′

�

where V ′ is the random variable ‘derivative of the value function with respect
to the random variable Xs+1’.

For expository reasons, we find it convenient to introduce a further re-
striction on expectations: not only will they be assumed to be bayesian, but
also to be based on full knowledge of the structure of the model, i.e. of the
motion equation (58) and of the stochastic process that rules ε. This is equiv-
alent to setting the optimal control problem in an environment characterized
by rational expectations. The reason for this restriction is because in such
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an environment the properties of the optimal plan come out in the simplest
form.

A first simplification consists in the fact that we can limit the search
for optimal policies to stationary policies, ‘stationary’ meaning that a policy
σ = (σo, σ1, σ2, ...) is composed of the same decision function at all dates,
σo = σ1 = σ2 = .... Why that? The argument starts from the fact that the
εs are i.i.d. (independent and identically distributed) variables, so that the
probability distribution (both conditional and unconditional) of sequences
(εs, εs+1, ...) from s to ∞ is independent of s. If the subjective probabilities
are formed in accordance with the objective stochastic process, this fact im-
plies that, given a policy σ and an initial state xs = x, also the expected value
E (F∞s | σ, x) associated with following policy σ from s to ∞ is independent
of s. Hence, provided the initial state is the same xt = xs = x, following
the same policy from, say, t > s to ∞, guarantees the same expected value
E (F∞t | σ, x) = E (F∞s | σ, x). As a consequence, if the action y = σs (x) is
optimal at s, the same action must be optimal at t. Thus, nothing prevents
an optimal policy from including the same decision function at the two dates
s and t, σs = σt. As this argument can be replicated for all pairs of dates, the
conclusion is that the decision function that is optimal for one date can also
be optimal for all dates, making up a stationary optimal policy. In this con-
text, the terms ‘policy’ and ‘decision function’ almost coincide in the sense
that a policy is simply a repeated decision function.

Following from this simplification, the recursive property (62) of the value
function can be rewritten dropping some of the date subscripts

V (xs) = ϕ (σ̂ (xs)) + βEV (g (xs, σ̂ (xs) , εs+1))

and the same in Bellman equation

0 = ϕ′ (σ̂ (xs)) + βE

�
∂g (xs, σ̂ (xs) , εs+1)

∂ys
V ′

�

Again as a consequence of assuming rational expectations, notice that
the expected value of a policy applied from date s to∞ depends only on the
state of the system at s, and not on the previous history of the state variable
xt with t < s: here xs represents all that is necessary to know in order to
form rational expectations. This justifies the comment made above at the
end of point (i) about restricting the admitted policies.

One last important point concerns the issue of the existence of solutions
to an optimal control problem of the kind outlined in this section. Up to now
we have proceeded as if a solution were always available without inquiring
into the conditions that guarantee its existence and, in the case of existence,
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whether the solution is unique or not. Existence theorems in this (however
simplified) context involve a considerable amount of mathematics and cannot
be considered here. For those interested, see below an intuitive outline of the
main mathematical argument and a reference for further reading.

[Optional ] Briefly, the argument for existence can be outlined thus. Given
a generic function v : R → R, and assuming ϕ (y) + βEv (g (x, y, ε)) to be
bounded, construct a policy σ (this too an R→ R function) associated with
v by means of the definition

σ (x) := argmax
y

[ϕ (y) + βEv (g (x, y, ε))]

(assuming that a max exists for all x; otherwise use arg sup
y

). Here Ev is

computed on the basis of the stationary distribution of ε. Call T the operator
on the space of R→ R functions defined by

Tv (x) := ϕ (σ (x)) + βEv (g (x, σ (x) , ε))

Suppose that the functional operator T has a fixed point, i.e. that a function
v∗ exists such that v∗ = Tv∗. We then have

v∗ (x) = ϕ (σ (x)) + βEv∗ (g (x, σ (x) , ε))

for some policy σ such that

σ (x) = argmax
y

[ϕ (y) + βEv∗ (g (x, y, ε))]

As a consequence

v∗ (x) ≥ ϕ (y) + βEv∗ (g (x, y, ε))

As is clear from the last three formulas, together with a fixed point v∗ we
have found a value function, v∗ itself, and an optimal (stationary) policy σ
at one stroke. It is easily seen that the reverse is also true, an optimal policy
together with its corresponding value function clearly defines a fixed point
of the T operator. The mathematical problem of defining conditions for the
existence and uniqueness of the solution to an optimal control problem is
therefore the same as defining conditions for the existence and uniqueness
of fixed points of an operator in a function space. If T has a unique fixed
point, the value function is also unique and at least one (but not necessarily
unique) optimal policy exists. An exposition of most of the theorems rele-
vant in developing the argument sketched here can be found in Stachurski,
Economic Dynamics, cit., chapter 10. According to a fixed point theorem
by Banach, the proof of the existence and uniqueness relies on T being a
uniform contraction in the space of bounded R → R functions. [End of the
optional part ]
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6.2 A model of optimal portfolio choice

We now apply these notions to the portfolio choice model of Wickens chapter
10 (11 in the 2nd edition).

In the DGE model of Wickens chapter 4 there is only one financial asset
available as an instrument for accumulating wealth, and its return is known in
advance with certainty. Now we assume that financial markets trade a variety
of assets with different characteristics and uncertain future returns. In trying
to maximize total discounted utility the representative household must not
only distribute its income between consumption and savings each period, but
also choose how to distribute its savings among the existing assets knowing
the prices at which they are currently traded but ignoring their future prices
and returns. This is an example of optimal control problem in a stochastic
environment.

Assume that there are N + 1 financial assets named with numbers from
0 (conventionally referred to the risk-free asset) to N . At date s the price
of each asset h, phs, is known. The ‘payoff’ of h, i.e. the yield from keeping
one unit of h in portfolio from s to s+1, is indicated by xh,s+1 and becomes
known only at s+ 1. The payoff is determined by the market price at s+ 1,
ph,s+1, plus the cash flows (if any) to which the owner may be entitled, such
as dividends, interest payments and other instalments the maturity of which
expires at s+ 1. The reasons why payoffs may not be known in advance are
obvious. Both the asset prices and the actual cash flows paid are assumed to
be regulated by an unpredictable random process about which agents may
only have expectations. Thus, at s, xh,s+1 is a random variable indicated with
Xh,s+1. And the (gross) rate of return from keeping one unit of h between s
and s+ 1, defined by

1 + rh,s+1 ≡
xh,s+1

phs
is also a random variable, indicated withRh,s+1. Of courseXh,s+1 ≡ phsRh,s+1.
In this presentation, we assume that all the hypotheses of the previous section
concerning the underlying stochastic process and expectations still hold.

The household’s portfolio at date s is the N + 1 components vector as =
(aos, a1s, ...aNs), with each component ahs ≥ 0 representing the number of
units of asset h held from s to s + 1. For the sake of simplicity we assume
that returns from assets are the only source of income of the household.
Thus, cs being consumption expenditure at s, the budget constraint

�

h

phsah,s+1 =
�

h

xhsahs − cs (63)

(income available at s is either spent in consumption or saved in the form of
assets purchased at s and held in portfolio until s+1) represents the equation
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of motion of the state vector as as regulated by the control variable cs. Notice
that in equation (63) prices and payoffs are measured in units of consumption
goods. The model we are considering is ‘real’; the corresponding ‘nominal’
model will be examined later.

As usual, we define the objective function of the representative household
as

∞�

s=0

βsu (cs)

(consistently with the budget constraint, households provide no labour).
At s = 0 the initial portfolio ao is given. According to what we have seen

in the previous section, the optimal policy is a stationary decision function
that maps information available at each date s, i.e. as, current payoffs xs

and prices ps, into consumption cs and the composition of the portfolio as+1
transferred from s to the next date. Let us mark with a ‘hat’ ·̂ the values of
variables determined in accordance with the optimal policy. In this particular
case, the general recursive condition (62) that characterizes the value function
takes the special form

V (âs) = u (ĉs) + βEV (âs+1) (64)

In the formula, âs has a hat because it is the result of past optimal choices up
to s; ĉs and âs+1 indicate the current optimal choice at s, given information
âs, xs, ps. This choice must of course be consistent also with the budget con-
straint (63). Notice that, although âs+1 is known at s, V (âs+1) is uncertain
because future consumption ĉs+1 depends on future payoffs and prices.

Since ĉs maximizes V (âs), by differentiating (64) with respect to cs we
get Bellman equation

0 = u′ (ĉs) + β
dEV (âs+1)

dcs

= u′ (ĉs) + βE
dV (âs+1)

dcs

= u′ (ĉs) + βE


N�

h=0

∂V (âs+1)

∂ah,s+1

dah,s+1
dcs

�
(65)

At the first step we have used the linearity of the E operator (dEV = EdV );
at the second step we have used the formula of the total differential for
dV (âs+1). Now we take advantage of the fact that, according to the budget
constraint,

−dcs =
N�

h=0

phsdah,s+1 (66)

87



or, equivalently

−1 =
N�

h=0

phs
dah,s+1
dcs

This allows us to rewrite the form (65) of Bellman equation as follows

0 = −u′ (ĉs)
N�

h=0

phs
dah,s+1
dcs

+ βE


N�

h=0

∂V (âs+1)

∂ah,s+1

dah,s+1
dcs

�

=
N�

h=0


−u′ (ĉs) phs + βE

∂V (âs+1)

∂ah,s+1

�
dah,s+1
dcs

Notice that this modified Bellman equation must hold for all the admissi-
ble vectors of N +1 ratios

dah,s+1
dcs

, i.e. independently of the way in which the
variation in consumption dcs is offset by variations in the amounts of assets
held in portfolio provided equation (66) is satisfied. It is easy to check that
this is equivalent to imposing the condition that for each asset h = 0, 1, ...N
the following equation holds

−u′ (ĉs) phs + βE
∂V (âs+1)

∂ah,s+1
= 0 (67)

Exercise 21 Prove that condition (67) for h = 0, 1...N is necessary (suffi-
ciency is obvious) for Bellman equation to hold for all the admissible plans
of investment (or disinvestment) of the positive (or negative) saving due to
a variation −dcs.

The intuition behind formula (67) is the following: along the optimal
plan the discounted marginal contribution of each asset h to the expected
future value of the plan must equal the variation in present utility due to the
purchase or sale of one unit of h at its current price (remember that in this
model prices are measured in units of consumption goods).

As a last step, in order to arrive at a characterization of the optimal
policy in terms of Euler equation, we compute the partial derivatives ∂V (âs+1)

∂ah,s+1

in (67) following the Euler procedure that was described in section 3.5. This
procedure requires that, after a variation dcs, the subsequent variation dah,s+1
in the amount held of each asset h is offset by a variation dcs+1 such that
at s + 2 the portfolio composition is brought back to the composition âs+2
that we would have had if no variation of plans had occurred at s and s+1.
This means that, whatever payoff xh,s+1 realizes at s+ 1, consumption must
absorb the differential income xh,s+1dah,s+1 so that

dah,s+2 = xh,s+1dah,s+1 − dcs+1 = 0
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This implies
dcs+1
dah,s+1

= xh,s+1 = phs (1 + rh,s+1) (68)

From the recursive condition (64) applied at s+ 1

V (âs+1) = u (ĉs+1) + βEV (âs+2)

we have also
∂V (âs+1)

∂ah,s+1
= u′ (ĉs+1)

dcs+1
dah,s+1

This is because, according to Euler’s procedure, EV (âs+2) is constant with
respect to ah,s+1. By replacing from (68) into the last equation we get

∂V (âs+1)

∂ah,s+1
= u′ (ĉs+1) (1 + rh,s+1) phs

Now we can go back to Bellman equations (67) and, using the last equa-
tion (and dividing by phs), transform them into the following

−u′ (ĉs) + βE
�
U ′

s+1Rh,s+1

�
= 0 (69)

where both u′ (ĉs+1) and (1 + rh,s+1), if looked at from the standpoint of
information available at s, are random variables indicated respectively as
U ′

s+1 and Rh,s+1. This is the form taken by Euler condition when returns to
financial investment are uncertain..

Recall from section 3.5 that Euler conditions are not equivalent to Bell-
man’s: they are necessary but in general not sufficient for dynamic max-
imization. In order to make these two sets of conditions equivalent each
Euler condition (for each asset h) should be supplemented with a transver-
sality condition

Exercise 22 Check that the transversality condition in this problem of opti-
mal portfolio choice is, for each asset h,

lim
n→∞

βnE (u′nphnahn+1) = 0

6.3 CAPM utility-based and consumption-based

From Euler condition (69) the optimal portfolio choice model can be devel-
oped in two ways, leading to two parallel versions of the classical Capital As-
set Pricing Model (CAPM) of the theory of financial markets. These two de-
velopments are called CAPM ‘utility-based’ (UBCAPM) and ‘consumption-
based’ (CBCAPM).
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We examine UBCAPM first. Go back to Euler equations (69) and rewrite
them, using the definition of covariance between the two random variables
U ′ and Rh, as

0 = −u′ (ĉs) + β
�
cov

�
U ′
s+1, Rh,s+1

�
+ EU ′

s+1ERh,s+1

�
(70)

Remember that we have assumed that a risk-free asset exists, the one
indicated by the name h = 0. The risk-free asset pays a fixed amount of
consumption goods (our units of account for prices) to its owner with absolute
certainty. Therefore, its future payoff xo,s+1 = (1 + ro,s+1) po,s is known with
certainty or, which is the same, its rate of return Ro,s+1 is a ‘degenerate’
random variable with ERo,s+1 = (1 + ro,s+1) and varRo,s+1 = 0. Thus, in
the case of h = 0 equation (70) takes the form

0 = −u′ (ĉs) + β (1 + ro,s+1)EU ′
s+1

Use the last equation to replace the term u′ (ĉs) in all the Euler equations
(70) for h �= 0. After some rearrangement of terms we have

ERh,s+1 − (1 + ro,s+1) = −
cov

�
U ′
s+1, Rh,s+1

�

EU ′
s+1

(71)

The difference on the left-hand side of the equation is recognizable as the
risk premium provided by asset h, call it

ρh,s+1 ≡ ERh,s+1 − (1 + ro,s+1)

(notice that ρ is an expected value). The equation implies that h is held in
the optimal portfolio from date s to s+1 provided ρh,s+1 equals the negative
of the relative (relative to expected marginal utility) covariance between its
return and marginal utility.

This condition becomes clearer if we consider the expected return of the
whole optimal portfolio. This is given by

ERs+1 =

E
N�

h=0

xh,s+1ah,s+1

N�

i=0

pisai,s+1

=

N�

h=0

(phsERh,s+1) ah,s+1

N�

i=0

pisai,s+1

≡
N�

h=0

ωhs+1ERh,s+1 (72)
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where the symbol ωhs+1 stands for the share of the value of the entire portfolio
occupied by asset h evaluated at the prices current at s

ωhs+1 ≡
phsah,s+1
N�

i=0

pisai,s+1

The next step is left as an exercise.

Exercise 23 Demonstrate that

E (Rs+1)− (1 + ro,s+1) = −
cov

�
U ′
s+1, Rs+1

�

EU ′
s+1

(73)

[Hint: start from (72); replace ERh,s+1 from (71); develop using the linearity
property of covariance

�

h

ωhcov (X, Yh) = cov


X,
�

h

ωhYh

�

As in equation (71), the risk premium of the entire portfolio, ρs+1 ≡
ERs+1− (1 + ro,s+1), is expressed in (73) as a function of the negative of the
relative covariance between portfolio return and marginal utility.

From (73) we get

EU ′
s+1 = −

cov
�
U ′

s+1, Rs+1

�

ρs+1

which can be used to replace EU ′
s+1 in (71) with the result that

ρh,s+1 =
cov

�
U ′
s+1, Rh,s+1

�

cov
�
U ′
s+1, Rs+1

� ρs+1 (74)

In this formula the equilibrium risk premium of each asset h is shown as
a proportion of the portfolio risk premium, with a proportionality coefficient
which depends on the ratio between two covariances between returns (to h,
and to portfolio) and marginal utility. In the language of CAPM, this ratio
is called the ‘beta’ of asset h with respect to portfolio.

Formula [74] represents the fundamental equation of UBCAPM. Notice
that according to this approach to portfolio choices the risk associated with
the presence of an asset in portfolio, and with the portfolio as a whole, is
indicated by the negative of the covariance between the rate of return (of
the asset, or the portfolio) and marginal utility (see formulas (71) and (73)).
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Since marginal utility is inversely related to the level of consumption, the
sign of this covariance indicates whether returns tend to vary in the same
direction or in the opposite direction with respect to the consumption level.
In general, a positive covariance implies that the asset (portfolio) acts as a
stabilizer of the time profile of consumption, in the sense that its yield tend
to be greater when this is more needed, i.e. in situations of low consumption,
and smaller when less needed, as in situations of high consumption. Indeed,
such an asset (or portfolio), as shown by formulas (71) and (73), commands
a negative risk premium. With negative covariance, instead, yields tend to
be greater (smaller) when less (more) needed; this is taken as a the essential
feature of risky assets (portfolios), assets that act as destabilizers of the
consumption time profile.

In the case of a risky portfolio, i.e. a portfolio with ρs+1 > 0, or equiva-
lently with cov

�
U ′
s+1, Rs+1

�
< 0, a ‘safe’ asset is simply an asset whose ‘beta’

is less than one. This implies

cov
�
U ′
s+1, Rh,s+1

�
> cov

�
U ′
s+1, Rs+1

�

and includes cases of both stabilizing assets (with cov
�
U ′
s+1, Rh,s+1

�
> 0 or,

equivalently, ρh,s+1 < 0) and destabilizing assets (cov
�
U ′

s+1, Rh,s+1

�
< 0)

which, however, are less risky than the whole portfolio.

CBCAPM provides an alternative formulation of the same model, based
on variations in consumption instead of marginal utility. The relationship
between the two can be obtained starting from the linear approximation

u′ (cs+1) ∼= u′ (cs) + u′′ (cs) (cs+1 − cs)

This can be rewritten as

u′ (cs+1) ∼= u′ (cs)

�
1 +

u′′ (cs)

u′ (cs)
(cs+1 − cs)

�

= u′ (cs)

�
1 + cs

u′′ (cs)

u′ (cs)
gs+1

�

where gs+1 stands for the rate of growth of consumpt between s and s+ 1

gs+1 ≡
cs+1 − cs

cs

We know from section2.7 above that the term

σs ≡ −cs
u′′ (cs)

u′ (cs)
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a measure of the elasticity of marginal utility, is also used as an index of ‘Rel-
ative Risk Aversion’ (RRA). If for the sake of simplicity we assume the utility
function to be a CRRA (‘constant RRA’) function, with σs = σ ranging in
the semi-closed interval (0, 1] (0 corresponds to linear utility, equivalent to
indifference to risk; 1 corresponds to logarithmic utility, which we take to
represent the maximum level of risk aversion), then we can write (still within
the limits of linear approximation)

u′ (cs+1) = u′ (cs) (1− σgs+1)

From the last formula it is clear that, given the level of information avail-
able at s, the random variable U ′

s+1 depends on two known parameters, u
′ (cs)

and σ, and the random variable Gs+1, the rate of growth of consumption,
unknown at s, between s and the next date

U ′
s+1 = u′ (cs) (1− σGs+1)

From this, by exploiting the properties of mean value and covariance, it is
easy to get

EU ′
s+1 = u′ (cs) (1− σEGs+1)

and
cov

�
U ′

s+1, Rh,s+1

�
= −σu′ (cs) cov (Gs+1, Rh,s+1)

Now we are able to replace all the occurrences of U ′
s+1 in formulas (71),

(73) and (74) with the appropriate expression in terms of Gs+1. In particular,
we get

ERh,s+1 − (1 + ro,s+1) =
σcov (Gs+1, Rh,s+1)

1− σEGs+1

for the risk premium ρh,s+1, and

E (Rs+1)− (1 + ro,s+1) =
σcov (Gs+1, Rs+1)

1− σEGs+1

for the portfolio risk premium ρs+1. From these two formulas we get the
CAPM formula in terms of the ‘beta’ of each asset h

ρh,s+1 =
cov (Gs+1, Rh,s+1)

cov (Gs+1, Rs+1)
ρs+1

The interpretation of the CBCAPM formulas confirms the interpretation
of risk and security, based on the sign of the covariance between return and
consumption, given above for the UBCAPM formulas. Notice in particular
the following
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Exercise 24 Check that, while the ‘beta’ of an asset is independent of the
degree of RRA as measured by the parameter σ, the risk premium of any
asset increases or decreases with σ depending on whether its return covaries
positively or negatively with the rate of growth of consumption.

6.4 Nominal CAPM

In the model considered so far all values (prices, payoffs and rates of return)
are ‘real’ values in the sense that they are referred to units of consumption
goods. The same model can be expressed in terms of nominal (monetary)
values by using a nominal consumption price index pcs. The definitions of
the nominal variables corresponding to the real variables that we have called
phs, xh,s+1 and (1 + rh,s+1) are the following:

n
phs ≡ pcsphs

n
xh,s+1 ≡ pc,s+1xh,s+1 ≡ (1 + πs+1) pcsxh,s+1

1 +
n
rh,s+1 ≡

n
xh,s+1
n
phs

≡ (1 + πs+1)xh,s+1

phs
≡ (1 + πs+1) (1 + rh,s+1)

In the definitions, πs+1 is the rate of inflation between s and s+1 as measured
by the consumption price index

1 + πs+1 ≡
pc,s+1
pcs

The rest of the model can be developed according to these definitions.
Notice that, given all the information available at s, ‘nominal’ uncertainty
depends on all the factors that contribute to ‘real’ uncertainty plus the ad-
ditional uncertainty concerning future inflation πs+1 (at s, future inflation is
a random variable). A consequence of this fact is that the risk-free asset (by
definition, the asset called ‘0’ in the model) cannot be the same asset in the
real and the nominal model. A nominal risk-free asset must be one which
pays a fixed nominal payoff

n
xs+1 known in advance with certainty, while a

real risk-free asset must be one whose nominal payoff varies in the same pro-
portion as the nominal consumption price index pc,s+1. Thus, in the formulas
of nominal CAPM, nominal risk premia are referred to a nominal risk-free
return which is generally different from the one used in the real CAPM, both
UB and CB.

The development of the formulas for equilibrium risk premia and the ‘be-
tas’ is left as an exercise. Hint: for the UBCAPM start from Euler equation
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(69); call Πs+1 the random variable (1 + πs+1) and rewrite (69) as

0 = −u′ (ĉs) + βE



U ′
s+1

n

Rh,s+1

Πs+1





= −u′ (ĉs) + βcov


U ′
s+1

Πs+1
,
n

Rh,s+1

�
+ βE


U ′
s+1

Πs+1

�
E


n

Rh,s+1

�

Apply this to the (nominal) risk-free asset h = 0 and replace

u′ (ĉs) = β
	
1 +

n
ro,s+1



E


U ′
s+1

Πs+1

�

In the end, in the UB formulation the nominal risk premium of asset h turns
out to be

n
ρh,s+1 = −

cov


U ′s+1
Πs+1

,
n

Rh,s+1

�

E
	

U ′s+1
Πs+1




and, for the entire portfolio

n
ρs+1 = −

cov


U ′s+1
Πs+1

,
n

Rs+1

�

E
	

U ′s+1
Πs+1




6.5 Contingent claims

According to a different approach to portfolio choices known as the ‘contin-
gent claims approach’, trading in securities in order to obtain an equilibrium
portfolio composition can be thought of as trading in money (or any other
asset that can be exchanged for final commodities) conditional on possible
‘states of the world’ in order to obtain an equilibrium profile of one’s own
wealth conditional on the same states. The underlying idea is that uncer-
tainty means that there are features of the surrounding world that are (at
least temporarily) unknown, so that from the point of view of the available
information the ‘true’ world that a generic individual inhabits is one of many
possible worlds, as many as the possible realizations of the unknown fea-
tures. When the unknown features are related to the value of the assets that
constitute the individual’s wealth, we have the typical case of economic un-
certainty. The implications of this way of looking at uncertainty for portfolio
choices can be shown by a simple example.
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Example 25 Suppose that, on the basis of today’s information, tomorrow’s
payoff (in monetary units) of security i may be either xi = 30 or xi = 10,
while the payoff of a different security j may be xj = 0 or xj = 40. We can
describe this situation as being in a world which may take on 4 possible forms
or ‘states’ corresponding to the 4 pairs of payoffs (30, 0), (30, 40), (10, 0) and
(10, 40). Call the 4 states (respectively) α, β, γ and δ. Each security can be
considered as a bunch of claims on future money, each claim being conditional
(‘contingent’) on the occurring of one state out of the 4 possible states of the
world. Hence the expression ‘contingent claims’. Choosing to keep given
amounts of i and j in portfolio is equivalent to choosing to keep the resulting
bunch of contingent claims.
The example shows that exchanging one security for the other at the ruling
market prices is the same as exchanging value across the 4 states at rates
of exchange that are determined by the market prices of the securities. For
example, with prices pi and pj such that pi =

3
4
pj, 3 units of j can be sold

in exchange for 4 units of i. This transaction is equivalent to selling 80
units of value conditional on the occurring of state δ in exchange for 40 units
conditional on γ plus 120 conditional on α. Looked at in this way, a financial
transaction is similar to an insurance policy (buying money conditional on
the occurring of a specified state by paying a premium in all the other states)
or more generally to a wager. The risk profile of the portfolio is modified
accordingly. At the prices of the example, and assuming that securities can
be traded in fractions, the risk profile of a portfolio containing 3 units of j
can be transformed into any risk profile of the type

State α β γ δ
Value of portfolio 120 (1− y) 120 40 (1− y) 40 + 80y

with y ranging from 0 (only i in portfolio) to 1 (only j).

This representation of trading in uncertain securities as trading across
states of the world reveals a ‘hidden side’ of financial transactions and pro-
vides an insight into aspects that might otherwise escape notice. One such
aspect is the possibility of arbitraging activities that are not immediately
obvious from the point of view of the exchange of securities. In the previous
example we have seen the possibility of transferring value from δ to α and
γ, or vice versa, at a ratio of exchange that depends on the prices of the two
securities involved in the operation. May be the same possibility is afforded
by exchanging a security h for a security k, with the prices ph and pk de-
termining a different rate of exchange. In such a case an arbitrageur might
devise a transaction scheme involving all the four securities so as to transfer
value from δ to α and γ and the reverse, and realize a net arbitrage gain
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in the process thanks to the difference in the rates of exchange. It is clear
that security prices that allow the carrying out of a transfer of value between
states simultaneously at different rates of exchange cannot be equilibrium
prices. A number of arbitrageurs would embark on schemes of purchasing
and selling that would inevitably end by affecting the existing prices.

This argument emphasizes an implicit property of equilibrium prices in
financial markets: the prices of securities should be such that, if a transfer
of value across given states can be carried out in more than one way (i. e.,
through different securities), the implicit rates of exchange across states are
the same whatever the chosen way may be.

A second aspect emphasized by the contingent claims approach concerns
the ‘degree of completeness’ of the financial structure. In the above example
there are inter-state exchanges that, with whatever prices pi and pj, cannot
be carried out if i and j are the only two securities traded in the financial
market. Think, for example, of a transfer of value from α to δ or viceversa,
with the amount of value available at β and γ remaining unchanged. While
value at β may not be affected by a transaction involving i and j provided
the rate of exchange is pi

pj
= 3

4
, value at γ is inevitably modified whatever

the prices of the two securities may be. In a case like this we can say that
the financial structure is incomplete because there are inter-state transfers of
value that the existing assets do not allow. To see what a complete financial
structure may look like, imagine that, with the same two securities, the set of
possible states of the world were reduced to 2, for example by assuming that
the returns on i and j are known to be positively (negatively) correlated,
so that states α and δ (β and γ) are excluded a priori. In such a case, all
transactions in securities would coincide with transfers of value between the
residual two states.

Exercise 26 Check that, in the case of a positive correlation between returns,
the ratio of exchange between value in β and value in γ (how many euros in
β are worth one euro in γ) equals

3− 4pi
pj

Argue that a price ratio pi
pj
≥ 3

4
could not be an equilibrium price ratio because

of arbitrage. Compute the ratio of exchange between α and δ, and the no
arbitrage limit to the equilibrium pi

pj
ratio, in the case of a negative correlation.

Both issues, uniqueness of inter-state rates of exchange and completeness
of the financial structure, can be analyzed in more general terms under the
simplifying assumption that the number of possible states of the world is
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finite (quite a strong simplification with respect to the analysis of the previ-
ous sections, in which we dealt with continuous random variables, implying a
continuum of possible states of the world). The analysis utilizes a convenient
device called ‘Arrow securities’ (from Nobel laureate Ken Arrow who intro-
duced it in the 1950s), i.e. fictional securities that pay a positive amount of
money if one and only one state occurs, zero in all the other cases.

Let N +1 be the number of financial assets, as usual, and W the number
of possible states of the world. Each asset i is associated with a list of possible
payoffs xiw, one for each state w = 1, ...W , i.e. with a payoff vector xi with
W components. Uncertainty about payoffs is represented by the variance of
the components of xi. The risk-free asset (i = 0 by convention) is the only
one characterized by xow constant with respect to w.

By aligning vertically the payoff row vectors of all the N + 1 assets we
get a payoff matrix, call it X, of dimension (N + 1) ×W . A transaction in
securities is represented by an N + 1 (row) vector, call it δ, such that each
component δi indicates the amount of i bought (if δi > 0) or sold (if δi < 0),
with δi = 0 indicating that i is not involved in the transaction. The W -
component (row) vector δX is the vector of transfers of value across states
consequent on the transaction, i.e. the change in the portfolio risk profile
following from the purchases and sales of securities indicated by δ. If we call
p the N + 1 component (column) vector of the current security prices, the
product δp represents the cost of the operation.

Let us define a notional Arrow security relative to state w as a security
having payoff 1 in state w and 0 in all the other states. The unit vector u(w) (1
at place w and all zeros elsewhere) is its payoff vector. If a complete array of
Arrow securities existed, one for each state w and each one with its own price,
call it qw, then by buying and selling Arrow securities it would be possible to
carry out any desired transfer of value between states at well-defined prices.
In such a case the financial structure would obviously be complete.

In general, Arrow securities do not actually exist, or only some of them
exist but in very special circumstances, so that this definition of complete-
ness may sound completely abstract. Actual existence is not that relevant,
however, because an Arrow security may be ‘replicated’ by a transaction in
the actually existing securities provided there are enough securities in the
market and the payoff matrix X has a suitable structure. As is easily seen,
the notional Arrow security w can be replicated by the existing securities if
the system of W equations in the N + 1 unknowns δi

δX = u(w) (75)

has at least one solution. In the end, it all depends on the structure of the
payoff matrix. If a solution to the system exists, call it δ(w), then agents can
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buy or sell one euro conditional on state w by carrying out the transaction
δ(w) or −δ(w) at cost δ(w)p or with proceeds −δ(w)p, as if the Arrow security
w with its price qw actually existed.

A definition of complete financial structure follows naturally from this
discussion: a financial market that works as if a complete array of Arrow
securities were available (whether or not they exist in fact), enabling agents
to transfer value across states in all conceivable ways at well-defined prices,
is what we mean by a ‘complete financial structure’. The mathematical
condition implied by this definition is that the system (75) must have at
least one solution δ(w) for each w = 1, ...W . Selecting W solutions and
arranging the corresponding δ vectors in a single W × (N + 1)-dimensional
matrix, call it D, we must therefore have

DX = I (76)

with I the W -dimensional identity matrix. As is clear from the last formula,
the issue of the existence of a matrix like D is strictly related to the existence
of the inverse of matrix X, or the inverse of a submatrix of the latter.

Let r indicate the rank of X. Clearly, r ≤ min {N + 1,W}, but r < W
is easily seen to exclude completeness.

Exercise 27 Show that, with r < W , no matrix of transactions D can sat-
isfy the system (76) [Hint: consider that the hypothesis implies that at least
one column of X is a linear combination of other columns; check that it is
impossible to find a matrix of transactions D such that all the products Dx(w)

(where the x(w) are columns of X) are unit vectors.]

Completeness therefore requires r = W ≤ N + 1, i.e. (i) a number of
securities not smaller than the number of states, and (ii) a minimum degree
of diversification among securities, in the sense that at least W out of the
N + 1 securities must have linearly independent payoff vectors.

In the case r = W = N + 1, X is a square nonsingular matrix and the
system (76) has one and only one solution D = X−1. In this case, an Arrow
security w is replicated by the vector of transactions

δ(w) = u(w)X−1 =
�
X−1

�(w)

where (X−1)
(w)

stands for the w-th row of X−1. The price of one euro
conditional on w is given by the notional price of the corresponding Arrow
security

qw = δ(w)p =
�
X−1

�(w)
p
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and the whole vector of Arrow prices is

q = Dp = X−1p (77)

Transfers of value between any two states w and v may be carried out com-
bining the two transaction schemes δ(w) and δ(v), at a unique rate of exchange
determined by the ratio between qw and qv.

When r =W < N + 1 we still have completeness but in a more complex
situation, one that may be open to arbitrage. With X having more rows
than columns, or in other words a ‘redundancy’ of securities, there is more
than one nonsingular square submatrix of dimensionW that can be extracted
out of X. This is the same as saying that there is more than one set of W
securities that can provide a replica of a complete array of Arrow securities.

Consider for example one such case with two groups of securities, A andB,
corresponding to the two submatrices XA and XB, both nonsingular square
matrices of dimensionW . Correspondingly, we have two transaction matrices
DA = X−1

A and DB = X−1
B , and two vectors of Arrow prices,

qA = X−1
A pA and qB = X−1

B pB

where pA and pB are the price vectors of the securities belonging respectively
to group A and group B.

Equilibrium requires security prices to leave no room for arbitrage. An
implication of the no-arbitrage condition is therefore that there is no state
w such that qAw �= qBw, because in such a case arbitrageurs would gain from
the difference in Arrow prices by carrying out transactions δ

(w)
A and δ

(w)
B in

opposite direction at the same time. Thus, qA = qB, which means, in terms
of security prices, DApA = DBpB, or indifferently one of the following

pA = XAX
−1
B pB

pB = XBX
−1
A pA

In other words, the prices of securities in the two groups must be linked to
each other by the linear transformation XAX

−1
B or its inverse XBX

−1
A .

One last implication follows from the last condition. Consider any security
h with its W -component payoff vector xh. Form a group A of W securities
with linearly independent payoff vectors taking care to include h in the group
(we know from elementary linear algebra that this is always possible). Then,
as we have just seen, in an equilibrium of a complete financial market we
must have

pA = XAq

100



with the h component of the pA vector given by

ph = xhq

The value of security hmust equal the value of its contingent claims evaluated
at Arrow prices. As this must be true of any security, in a complete market
equilibrium security prices and Arrow prices must satisfy the system

p = Xq (78)

6.6 A contingent claims interpretation of optimal port-

folio choice

In the hypothesis of a complete financial structure, the contingent claims
approach to portfolio choice provides a slightly different view of the conditions
that characterize the equilibrium choice.

Although Arrow securities may not exist as such, a complete market
provides perfect replicas in the form of transaction schemes δ(w) with well-
defined prices qw = δ(w)p for all states w = 1, ...W . Let us then define the
expected rate of return of an Arrow security w (or of its replica) as

ERw =
W�

v=1

πv

xwv

qw
=

πw

qw

In the formula we have indicated the probability of each state v with πv, and
taken account of the fact that the payoff vector xw has xwv = 1 for v = w
and xwv = 0 for all v �= w.

Following Wickens, ch 10 p 235 (ch 11 in the second edition), we now in-
troduce the definition of the ‘stochastic discount factor’ of an Arrow security
w as the inverse of its expected return

mw ≡
1

ERw

=
qw
πw

from which of course we have qw = πwmw.
The stochastic discount factormw can be interpreted as the current ‘price’

of the probability of two simultaneous events, the occurring of state w and
getting 1 euro. While in general a stochastic discount factor will be strictly
less than 1 (why should anybody pay 1 euro or more for an uncertain euro?),
its higher or lower value reflects the implicit utility of money in the state to
which it is linked. If, of two states v and w, it turns out for example that
mv > mw, this means that the market evaluates the probability of 1 euro in v
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more highly than the same probability in w. This may be taken as evidence
of the fact that, for reasons that remain unspecified, money is commonly
held to be more useful in v rather than in w.

Equipped with these definitions we go back to the equilibrium condition
(78) and rewrite it for each security h as

ph =
�

w

πwxhwmw

= ph
�

w

πw

xhw

ph
mw

= ph
�

w

πw (1 + rhw)mw

Indicating with Rh and M respectively the random variables (1 + rh) and
m — they are random variables at the current state of information because
which state w will occur is still unknown — we rewrite the last formula as

1 = E (RhM)

= cov (Rh,M) + E (Rh)E (M)

The last equation comes from the security prices equilibrium condition
and applies to all securities h from h = 0 to h = N . But in the case of h = 0
— conventionally, the risk-free security with payoff (rate of return) constant
in all states — the equation reduces to

1 = RoE (M)

and allows us to replace the term E (M), equal to the inverse of the risk-free
rate of return Ro, in all the equations with h �= 0. After some rearranging
we thus get

E (Rh)−Ro = −Ro cov (Rh,M) (79)

Formula (79) expresses the equilibrium risk premium, ρh, of a generic
asset h as determined by the negative of the covariance between the asset’s
return and the stochastic discount factor. A risky asset is one the return
to which covaries inversely with m, i.e. pays more (less) in states in which
m is lower (higher); according to the interpretation given above, this means
that on average the asset pays more/less in cases in which, for any reason,
money is commonly considered to be less/more useful. This somehow con-
firms the interpretation of risk premia that we reached with utility based and
consumption based CAPM (see above), but is more general in that it does
not require the utility of money to depend on the level of consumption.

If an equilibrium condition like (79) holds for all assets h (including h =
0), then it is easy to check (go back to section 6.3, exercise 23) that the
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following condition holds for portfolio as a whole (with R for the return to
portfolio)

E (R)−Ro = −Ro cov (R,M)

From (79) and the latter formula we obtain

E (Rh)−Ro =
cov (Rh,M)

cov (R,M)
(E (R)−Ro)

which emphasizes the CAPM ‘beta’ of asset h as determined by the covari-
ance between Rh and M relative to the covariance between the portfolio
return and M .
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