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Patterns formation in nature

Investigating the dynamical evolution of an ensemble made of
microscopic entities in mutual interaction constitutes a rich and
fascinating problem, of paramount importance and
cross-disciplinary interest (biology, ecology, physics, chemistry).

Complex microscopic interactions can eventually yield to
macroscopically organized patterns.
Temporal and spatial order manifests as an emerging
property of the system dynamics
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Self-organized phenomena are ubiquitous in nature

A system is said to self-organized when...

..it is composed by a large set of homologous constituents

..regular, collective feautures emerge spontaneously.
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The Belousov-Zhabotinsky reaction.

Highlighting the peculiarities:

First system to display self-organization
Regular oscillations between homogeneous
states.

Experimental evidence
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The Belousov-Zhabotinsky reaction.

Highlighting the peculiarities:

First system to display self-organization
Regular oscillations between homogeneous
states.

Experimental evidence

Belousov e Zhabotinsky
Med. Publ. Moscow (1959) - Biofizika (1964)
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The Belousov-Zhabotinsky reaction.

Highlighting the peculiarities:

First system to display self-organization
Regular oscillations between homogeneous
states.

Experimental evidence

Spatially organized patterns develop (Turing
instability) - Vanag e Epstein

Phys. Rev. Lett. (2001)
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Alan Turing (1912-1954)

1 Turing machine, a
general purpose
computer: concepts of
algorithm and
computation with the
Turing machine.

2 Pivotal role in cracking
intercepted coded
messages during II
world war.

3 Mathematical biology:
chemical basis of
morphogenesis.
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Morphogenesis

Morphogenesis is the biological process that causes an
organism to develop its shape.

Morphogenesis addresses the problem of biological form at
many levels, from the structure of individual cells, through the
formation of multicellular arrays and tissues, to the higher order
assembly of tissues into organs and whole organisms.
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The complete and fine detailed understanding of the
mechanisms involved in actual organisms required the
discovery of DNA and the development of molecular biology
and biochemistry.

Although the mechanism must be genetically controlled , the
genes themself cannot create the patterns. They only provide a
blue print or recipe, for the pattern generation.

Turing suggested that under certain conditions, chemicals can
react and diffuse in such a way as to produce steady state
heterogeneous spatial patterns of chemical or morphogen
concentration.
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Two books
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The theoretical frameworks

Model the dynamics of the population involved
(family of homologous chemicals)

From the microscopic picture ...

Assign the microscopic
rules of interactions

Discrete, many particles
model

Deterministic
formulation (continuum

limit hypothesis)
Differential equations
No fluctuations allowed

Stochastic model
(respecting the intimate

discreteness)
Stochastic processes
Statistical, finite sizes
fluctuations
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The deterministic (continuum) picture

The law of mass action
From chemical equations to ordinary differential equations:

X λ→ ∅ =⇒ φ̇ = −λφ

The a-spatial Brusselator
Continuum concentration{
φ = φ(t) species X
ψ = ψ(t) species Y

Equations{
φ̇ = a− (b + d)φ+ cφ2ψ

ψ̇ = bφ− cφ2ψ

a = d = c = 1 b = 3
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t
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6
ΦHtL, ΨHtL

D. Fanelli Patterns formation



The deterministic (continuum) picture

The law of mass action
From chemical equations to ordinary differential equations:

X λ→ ∅ =⇒ φ̇ = −λφ

The a-spatial Brusselator
Continuum concentration{
φ = φ(t) species X
ψ = ψ(t) species Y

Equations{
φ̇ = a− (b + d)φ+ cφ2ψ

ψ̇ = bφ− cφ2ψ

a = d = c = 1 b = 3

5 10 15 20
t

1

2

3

4

5

6
ΦHtL, ΨHtL

D. Fanelli Patterns formation



Deterministic reaction-diffusion systems

Alan Turing

The Turing instability (1952)

∂tφ = f (φ, ψ) + Dφ ∇2φ

∂tψ = g(φ, ψ) + Dψ ∇2ψ

where:

1 φ(r, t) and ψ(r, t) are the
species concentrations.

2 Dφ and Dψ denote the
diffusion coefficients

Assume a stable homogeneous fixed point of the dynamics to
exist and label it (φ∗, ψ∗).
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An informative albeit unrealistic image (Murray) (1)

1 Consider a field of dry grass with a large number of
grasshoppers which can generate moisture by sweating if
they get warm.

2 Suppose the grass is set alight at some point and the front
starts to propagate.

3 When the grasshoppers get warm enough they can
generate enough moisture to dampen the fire: when the
flames will reach the pre-moistened area the grass will not
burn.
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An informative albeit unrealistic image (Murray) (2)

1 The fire starts to spread. When the grasshoppers ahead of
the flame front feel it coming they move well ahead of it
(DG > DF ).

2 The grasshoppers sweat profusely, generate moisture and
prevent the fire to spread into the moistened area.

3 The burned area is hence restricted to a given domain
which depends on the parameters of the game.

4 If instead of a initial single fire there was a random
scattering of them, the process would result in a final
spatially inhomogeneous distribution of burnt and
preserved patches.

5 Notice that the inhibitors (grasshopers) diffuse faster the
the activator (fire).
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I. Stable fixed point of the aspatial model

Assume a stable
homogeneous fixed point of
the dynamics to exist and
label it (φ∗, ψ∗):

f (φ∗, ψ∗) = 0
g(φ∗, ψ∗) = 0

The Jacobian matrix

J =

(
fφ fψ
gφ gψ

) The stability of the fixed point
implies TrJ < 0 and
detJ > 0.
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II. The perturbation.

Introduce a small non homogeneous perturbation of the fixed
point:

w =

(
φ− φ∗
ψ − ψ∗

)
.

and linearize the reaction-diffusion equations to get:

ẇ = Jw + D∇2w,

where

D =

(
Dφ 0
0 Dψ

)
.
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III. Laplacian’s eigenfunctions

To solve the linearized system one introduces Wk (x) such that:

∇2Wk (x) = −k2Wk (x),

Expand the perturbation w as

w(x, t) =
∑
k∈σ

ckeλ(k)tWk (x),

1 ck refer to the initial condition.
2 Equivalent to Fourier transforming the original equation.
3 λ(k) defines the dispersion relation
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Substituting the ansatz in the linear system yields:

λWk = JWk − k2DWk

or equivalently:(
fφ − Dφk2 − λ fψ

gφ gψ − Dψk2 − λ

)
Wk = 0

We require non trivial solutions for Wk which implies that λ is
determined by the roots of the characteristic polynomial:

det(λ(k)I− J − Dk2) = 0
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The Turing instability occurs if one can isolate a finite domain in
k for which Re(λ(k)) > 0.

A simple calculation (done on the blackboard) yields the
following general condition for the Turing instability to sets in:

(Dφgψ + Dψfφ)
2 > 4DφDψ (fφgψ − fψgφ)

(Dφgψ + Dψfφ) > 0

which sum up to the aforementioned conditions:

fφ + gψ < 0 fφgψ − fψgφ > 0
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Important remarks

1 fφ and gψ must be of opposite sign.
2 Assume fφ > 0 (activator) and gψ < 0 (inhibitor). Then,

fφ + gψ < 0 implies:
fφ < |gψ|

and thus:

Dψ

Dφ
>
|gψ|
fφ

> 1

the inhibitor must diffuse faster than the activator.
3 Boundary conditions do matter.
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The Brusselator model

0 1 2 3 4

k
-10

-5

0

λ

1 Species φ is the
activator,

2 ψ play the role of
the inhibitor.

f (φ, ψ) = a− (b + d)φ+ cφ2ψ

g(φ, ψ) = bφ− cφ2ψ
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From a random perturbation of the homogeneous fixed point to
a stationary pattern.
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Turing patterns are widespread
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