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Patterns formation in nature

Investigating the dynamical evolution of an ensemble made of
microscopic entities in mutual interaction constitutes a rich and
fascinating problem, of paramount importance and
cross-disciplinary interest (biology, ecology, physics, chemistry).

@ Complex microscopic interactions can eventually yield to
macroscopically organized patterns.

@ Temporal and spatial order manifests as an emerging
property of the system dynamics
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Self-organized phenomena are ubiquitous in nature

A system is said to self-organized when...
@ ..itis composed by a large set of homologous constituents
@ ..regular, collective feautures emerge spontaneously.

D. Fanelli Patterns formation



The Belousov-Zhabotinsky reaction.

Highlighting the peculiarities:

@ First system to display self-organization

@ Regular oscillations between homogeneous
states.

Experimental evidence

D. Fanelli Patterns formation



The Belousov-Zhabotinsky reaction.

Highlighting the peculiarities:
@ First system to display self-organization

@ Regular oscillations between homogeneous
states.

Belousov e Zhabotinsky
Med. Publ. Moscow (1959) - Biofizika (1964)
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The Belousov-Zhabotinsky reaction.

Highlighting the peculiarities:
@ First system to display self-organization

@ Regular oscillations between homogeneous
states.

Spatially organized patterns develop (Turing
instability) - Vanag e Epstein
Phys. Rev. Lett. (2001)
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Alan Turing (1912-1954)

@ Turing machine, a
general purpose
computer: concepts of
algorithm and
computation with the
Turing machine.

© Pivotal role in cracking
intercepted coded

cast who gave messages during I
ernworld == world war.

; @ Mathematical biology:
chemical basis of
morphogenesis.
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Morphogenesis

Morphogenesis is the biological process that causes an
organism to develop its shape.

Morphogenesis addresses the problem of biological form at
many levels, from the structure of individual cells, through the
formation of multicellular arrays and tissues, to the higher order
assembly of tissues into organs and whole organisms.
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Morphogenesis

Morphogenesis is the biological process that causes an
organism to develop its shape.

Morphogenesis addresses the problem of biological form at
many levels, from the structure of individual cells, through the
formation of multicellular arrays and tissues, to the higher order
assembly of tissues into organs and whole organisms.

Developing limb Micromass culture
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The complete and fine detailed understanding of the
mechanisms involved in actual organisms required the
discovery of DNA and the development of molecular biology
and biochemistry.

Although the mechanism must be genetically controlled , the
genes themself cannot create the patterns. They only provide a
blue print or recipe, for the pattern generation.

Turing suggested that under certain conditions, chemicals can
react and diffuse in such a way as to produce steady state
heterogeneous spatial patterns of chemical or morphogen
concentration.
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Two books

J.D.Murray

Mathematical
Biology

Andrew Hodges

Alan Turing

Storia di un enigma

Bollati Boringhieri
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The theoretical frameworks

Model the dynamics of the population involved
(family of homologous chemicals)

From the microscopic picture ...

@ Assign the microscopic @ Discrete, many particles
rules of interactions model

Deterministic Stochastic model

(respecting the intimate
discreteness)
@ Stochastic processes

@ Statistical, finite sizes
fluctuations

formulation (continuum
limit hypothesis)
@ Differential equations
@ No fluctuations allowed
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The deterministic (continuum) picture

The law of mass action

From chemical equations to ordinary differential equations:

X550 =  d=-x
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The deterministic (continuum) picture

The law of mass action
From chemical equations to ordinary differential equations:

X550 =  d=-x

The a-spatial Brusselator

Continuum concentration ‘Mt) ()
a=d=c=1 b=3

o(t) species X 5

%b w(t) species Y 4

Equations 3

_ 2

gi?:a—(b+d)¢+c¢2¢ 1
) = bp — c¢?ep ¢
‘ 5 10 15 20
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Deterministic reaction-diffusion systems

The Turing instability (1952)

g = f(¢,%)+ D, V36
oy = g(¢,9)+ Dy VZp

where:
@ o(r,t) and v (r, t) are the
species concentrations.

@ D, and D, denote the
diffusion coefficients
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An informative albeit unrealistic image (Murray)

@ Consider a field of dry grass with a large number of
grasshoppers which can generate moisture by sweating if
they get warm.

© Suppose the grass is set alight at some point and the front
starts to propagate.

© When the grasshoppers get warm enough they can
generate enough moisture to dampen the fire: when the
flames will reach the pre-moistened area the grass will not
burn.
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An informative albeit unrealistic image (Murray)

@ The fire starts to spread. When the grasshoppers ahead of
the flame front feel it coming they move well ahead of it
(Dg > Df).

© The grasshoppers sweat profusely, generate moisture and
prevent the fire to spread into the moistened area.

© The burned area is hence restricted to a given domain
which depends on the parameters of the game.

Q Ifinstead of a initial single fire there was a random
scattering of them, the process would result in a final
spatially inhomogeneous distribution of burnt and
preserved patches.

@ Notice that the inhibitors (grasshopers) diffuse faster the
the activator (fire).
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|. Stable fixed point of the aspatial model

Assume a stable
homogeneous fixed point of
the dynamics to exist and (o™, 9")

label it (¢, 1*): g(¢*,¢")

The Jacobian matrix

The stability of the fixed point
fof implies Tr 7 < 0 and
= ( ¢ ¢> dets > 0.
9 9y
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ll. The perturbation.

Introduce a small non homogeneous perturbation of the fixed

point:
_ (¢
W= <¢_w*).

and linearize the reaction-diffusion equations to get:

W = Jw + DV2w, J

_(Dy O
D<0 Dw>'
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lll. Laplacian’s eigenfunctions

To solve the linearized system one introduces W (x) such that:
VW (%) = —k2Wi(x),

Expand the perturbation w as

wix, 1) = 3 ce* Wi (x),

keo

@ c, refer to the initial condition.
@ Equivalent to Fourier transforming the original equation.
© (k) defines the dispersion relation
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Substituting the ansatz in the linear system yields:
AW, = JW, — k°DW,
or equivalently:

fs — Dyk?® — A f, >
Wy =0
< 9o gy — Dyk®—n) 7F

We require non trivial solutions for W, which implies that ) is
determined by the roots of the characteristic polynomial:

det(A(k)l — J — DK?) =0 J

D. Fanelli Patterns formation



The Turing instability occurs if one can isolate a finite domain in
k for which Re(\(k)) > 0.

A simple calculation (done on the blackboard) yields the
following general condition for the Turing instability to sets in:

(Dygy + Dyfy)? > 4DyDy (f39y — £49s)
(Dpgy + Dyty) > 0

which sum up to the aforementioned conditions:

fo+ 9y <0 foGy — fs9s > 0
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Important remarks

@ f, and g, must be of opposite sign.

@ Assume f;, > 0 (activator) and g,, < 0 (inhibitor). Then,
fo + 9y < 0 implies:

fo <19yl
and thus:
D
i > @ > 1
Dy = 1y

the inhibitor must diffuse faster than the activator.
© Boundary conditions do matter.
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The Brusselator model

@ Species ¢ is the

0 activator
Y !
= ] © v play the role of
= the inhibitor.

f(¢,9) = a—(b+d)p+ coy
g(é.9) = bp— ce?y
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From a random perturbation of the homogeneous fixed point to
a stationary pattern.
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Turing patterns are widespread
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Patterns on a (symmetric) network.

Adjacency matrix Scale-free network

100

o ., :(0‘.0,.\

Wj =1, ifnodes i and j
are connected (i # j), and
Wj = 0 otherwise

Q

k,:ZW,-j (node degree) 17N\~
j=1 " " ‘
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Patterns on a (symmetric) network.

Adjacency matrix
100 Reaction-diffusion equations
-0 1
W= Lo 0
10 1... orpi = f(i i)+ Ds Y Lydi

j=1
Wj =1, ifnodes i and j

Q
are connected (i # j), and orpi = 9(i, i) + Dy Z Lijihi
Wj = 0 otherwise j=1

Q where i =1,..,Qand L; = W — kiJ;
= Z W (node degree) | IS the discrete Laplacian operator.
j=1
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Linear stability analysis on networks

Perturbation near the

homogeneous fixed point

The set of eigenvectors define a
bi = ¢* + 0 i = V* + 8 basis on which we can expand
the perturbation.

@ Linearize the equations for o (@)
¢i and v; 0 = X oa—1 Ca€™TP;
@ Introduce the eigenvectors i = 22:1 caﬁaeAafcbf.“)

of the Laplacian . . .
Inserting in the linearized

Z L,/cb(o‘ (a) equation one gets a dispersion
relation for A, versus A(®),
which controls the instability.

The eigenvalues Al are real
and negative.
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Dispersion relation for the Brusselator model

The dispersion relation
is defined on the
discrete support of
eigenvalues A(®).

-
A©@

The curve relative to the continuum case is recovered by
replacing A(®) with —k2. J
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A segregation in activator/inhibitors rich/poor nodes is found as
follows the linear instability.
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Directed (asymmetric) networks

Adjacency matrix

@ In this case the adjacency
matrix is asymmetric,
hence W # W

@ Due to the asymmetry the
spectra of the Laplacian
A are complex.

@ The dispersion relation can
turn unstable also when it is
stable on a symmetric
support.
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From the linear stability analysis...

Region of instability

The instability develops when

(Aa)Re is positive, namely
Jo = J + DA J when;9

In analogy with the above:

whose eigenvalues are such that:

(@) [A(@)]? ()
1 82(/\ e ) Am S _81 (/\Re )7
AN I B ]

where S; and S, are

where ~ is a functions of 7, polynomials of fourth and

second degree in A{)
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The active role of topology

i i = The instability region (shaded)
2L e ue RN TN ((l) (u)
IR o in the (Ag.,Al,) plane.
fo—.:..n.ﬁ% ;:;
REL RN
_2 B Pt A.‘. ../:‘/. ‘:‘.
—3L 4
-7 -6 -5 -4 -3 -2 -1 0
Ake 053 N
00 A‘A :. .-\
0 0 . _05 P N\ v
Dispersion relations for ¢ 10
Newman-Watts networks < 15
with different p, the -20
probability of long-range -25
links B0 s e T a6 8 2 468
_Aae _A(I;e _Aae
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Self-organized waves can develop instigated by the network
topology.

100 =g - ~ - II.S
»’? — _/_.f..)

20/ //{;’/}/’;
s = 1.

0 20 40 60 80 100
Time

Node Number

M. Asllani et al, Nature
Communications (2014)

Stationary (Turing) patterns are also obtained when changing p.
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