
DISTRIBUTED REAL 
TIME CYBER 
PHYSICAL SYSTEMS 

(Opzionale) Titolo Sezione 
Slide 1 

Chapter 4 
distributed coordination 

Distributed coordination 



DISTRIBUTED REAL 
TIME CYBER 
PHYSICAL SYSTEMS 

(Opzionale) Titolo Sezione 
Slide 2 

Chapter 4 
distributed coordination 

Distributed Coordination 

•Event Ordering 
•Mutual Exclusion 
•Atomicity 
•Concurrency Control 
•Deadlock Handling 
•Election Algorithms 
•Reaching Agreement  
•Fundamental problem that need to be solved 

under many different conditions 



DISTRIBUTED REAL 
TIME CYBER 
PHYSICAL SYSTEMS 

(Opzionale) Titolo Sezione 
Slide 3 

Chapter 4 
distributed coordination 

 

Time and State in Distributed Systems 
 

 
1. Virtual Time in Distributed Systems 
2. Lamport’s Logical Clocks 

• Solve the problem of Event ordering 
 
 



DISTRIBUTED REAL 
TIME CYBER 
PHYSICAL SYSTEMS 

(Opzionale) Titolo Sezione 
Slide 4 

Chapter 4 
distributed coordination 

Time in Distributed Systems 
- Because each machine in a distributed system has its own clock there 

is no notion of global physical time 
• The n oscillators on the n computers will run at slightly different rates 

(clock drift), causing the clocks gradually to get out of synchronization 
and give different values 

Problems: 
• Time triggered activities: activities scheduled to occur at predefined 

moments in time. If such activities are to be coordinated over a 
distributed system we need a coherent notion of time. 

 
• Maintaining the consistency of distributed data is often based on the 

time when a certain modification has been performed. 



DISTRIBUTED REAL 
TIME CYBER 
PHYSICAL SYSTEMS 

(Opzionale) Titolo Sezione 
Slide 5 

Chapter 4 
distributed coordination 

Time in Distributed Systems  
 The make-program example 
 • When the programmer has finished changing some source files he starts 

make; make examines the times at which all object and source files were last 
modified and decides which source files have to be (re)compiled. 
 
 
 
 
 
 
 

 Although P.c is modified after P.o has been generated, because of the clock 
drift the time assigned to P.c is smaller. P.c will not be recompiled for the new 
version! 



DISTRIBUTED REAL 
TIME CYBER 
PHYSICAL SYSTEMS 

(Opzionale) Titolo Sezione 
Slide 6 

Chapter 4 
distributed coordination 

Time in Distributed Systems  
Solutions: 
- Synchronization of physical clocks 

• Computer clocks are synchronized with one another to an achievable, 
known, degree of accuracy ⇒ within the bounds of this accuracy we can 
coordinate activities on different computers using each computer’s local 
clock. 

• Physical clock synchronization is needed for distributed real-time cyber 
physiscal systems (we will see this later). 

 
- Logical clocks 

• In many applications we are not interested in the physical time at which 
events occur; ONLY the relative order of events is important !  
( e.g. the make-program example) 

• In such situations we don’t need synchronized physical clocks. Relative 
ordering can be based on a virtual notion of time - logical time. 

• Logical time is implemented using logical clocks. 



DISTRIBUTED REAL 
TIME CYBER 
PHYSICAL SYSTEMS 

(Opzionale) Titolo Sezione 
Slide 7 

Chapter 4 
distributed coordination 

Lamport’s Logical Clocks 
 - The order of events occurring at different processes is critical for 

many distributed applications. 
• ( example: P.o_created and P.c_created ) 
 

 - Ordering can be based on two simple situations:  
• 1. If two events occurred in the same process then they occurred in the 

order observed following the respective process; 
• 2. Whenever a message is sent between processes, the event of sending 

the message occurred before the event of receiving it. 
 

 - Ordering by Lamport is based on the happened before relation 
(denoted by →): 
• • a → b, if a and b are events in the same process and a occurred before b; 
• • a → b, if a is the event of sending a message m in a process, and b is the 

event of the same message m being received by another process; 
• • If a → b and b → c, then a → c (a transitive relation). 
 



DISTRIBUTED REAL 
TIME CYBER 
PHYSICAL SYSTEMS 

(Opzionale) Titolo Sezione 
Slide 8 

Chapter 4 
distributed coordination 

Lamport’s Logical Clocks 
 • Ifa→b, we say that event a causally affects event b. The two 

events are causally related. 
 • There are events which are not related by the happened-before 

relation. If both a → e and e → a are false, then a and e are 
concurrent events; we write a || e. 
 

 
 

 
 P1, P2, P3: processes; 
 a, b, c, d, e, f: events; 
 a → b, c → d, e → f, b → c, d → f 
 a → c, a → d, a → f, b → d, b → f, ... 
 a || e, c || e, ... 



DISTRIBUTED REAL 
TIME CYBER 
PHYSICAL SYSTEMS 

(Opzionale) Titolo Sezione 
Slide 9 

Chapter 4 
distributed coordination 

Lamport’s Logical Clocks  
 - Using physical clocks, the happened before relation can not be captured. It 

is possible that b → c and at the same time Tb > Tc (Tb is the physical time 
of b). 

 - Logical clocks can be used in order to capture the happened-before 
relation. 

 • A logical clock is a monotonically increasing software counter. 
 • There is a logical clock CPi at each process Pi in the system. 
 • The value of the logical clock is used to assign timestamps to events. CPi(a) 

is the timestamp of event a in process Pi. 
 • There is no relationship between a logical clock and any physical clock.  

 
 To capture the happened-before relation, logical clocks have to be 

implemented so that if a → b, then C(a) < C(b) 
 



DISTRIBUTED REAL 
TIME CYBER 
PHYSICAL SYSTEMS 

(Opzionale) Titolo Sezione 
Slide 10 

Chapter 4 
distributed coordination 

Lamport’s Logical Clocks  - 
implementation 

 Implementation of logical clocks is performed using the following rules for 
updating the clocks and transmitting their values in messages: 
 

 [R1]: CPi is incremented before each event is issued at process Pi:  
     CPi := CPi + 1. 
 [R2]: 
 a) When a is the event of sending a message m from process Pi, then the 

timestamp tm = CPi(a) is included in m (CPi(a) is the logical clock value 
obtained after applying rule R1).  

 b) On receiving message m by process Pj, its logical clock CPj is updated as 
follows: CPj := max(CPj, tm). 

 c) The new value of CPj is used to timestamp the event of receiving message 
m by Pj (applying rule R1). 



DISTRIBUTED REAL 
TIME CYBER 
PHYSICAL SYSTEMS 

(Opzionale) Titolo Sezione 
Slide 11 

Chapter 4 
distributed coordination 

Lamport’s Logical Clocks  - 
implementation 

 • If a and b are events in the same process and a 
occurred before b, then a→b, and (by R1) C(a) < C(b). 
 

 • If a is the event of sending a message m in a process, 
and b is the event of the same message m being 
received by another process, then a→b, and (by R2) 
C(a) < C(b). 
 

 • If a → b and b → c, then a → c, and (by induction) 
C(a) < C(c). 



DISTRIBUTED REAL 
TIME CYBER 
PHYSICAL SYSTEMS 

(Opzionale) Titolo Sezione 
Slide 12 

Chapter 4 
distributed coordination 

Lamport’s Logical Clocks  

For the make-program example we suppose that a 
process running a compilation notifies, through a 
message, the process holding the source file about the 
event P.o created ⇒ a logical clock can be used to 
correctly timestamp the files. 



DISTRIBUTED REAL 
TIME CYBER 
PHYSICAL SYSTEMS 

(Opzionale) Titolo Sezione 
Slide 13 

Chapter 4 
distributed coordination 

Problems with Lamport’s Logical 
Clocks 

- Lamport’s logical clocks impose only a partial order on the set of events; 
pairs of distinct events generated by different processes can have 
identical timestamp. 

• For certain applications a total ordering is needed; they 
consider that no two events can occur at the same time. 

 
• In order to enforce total ordering a global logical timestamp is 

introduced: 
- the global logical timestamp of an event a occurring at process Pi, with 

logical timestamp CPi(a), is a pair (CPi(a), i), where i is an identifier of 
process Pi; 

we define 
(CPi(a), i) < (CPj(b), j) if and only if  
     CPi(a) < CPj(b), or CPi(a) = CPj(b) and i < j. 

 



DISTRIBUTED REAL 
TIME CYBER 
PHYSICAL SYSTEMS 

(Opzionale) Titolo Sezione 
Slide 14 

Chapter 4 
distributed coordination 

Global Logical Timestamps 

 Example of timestamping with Global Logical Timestamps 



DISTRIBUTED REAL 
TIME CYBER 
PHYSICAL SYSTEMS 

(Opzionale) Titolo Sezione 
Slide 15 

Chapter 4 
distributed coordination 

Problems with Lamport’s Logical 
Clocks 

 Lamport’s logical clocks are not powerful enough to perform a causal 
ordering of events. 

• if a → b, then C(a) < C(b) 
 However, the reverse is not always true (if the events occurred in 

different processes): if C(a) < C(b), then a → b is not necessarily true. 
(it is only guaranteed that b → a is not true). 
 
 
 
 
 

 C(e) < C(b), however there is no causal relation from event e to event 
b. 

 • By just looking at the timestamps of the events, we cannot say 
whether two events are causally related or not. 



DISTRIBUTED REAL 
TIME CYBER 
PHYSICAL SYSTEMS 

(Opzionale) Titolo Sezione 
Slide 16 

Chapter 4 
distributed coordination 

Problems with Lamport’s Logical 
Clocks - qui 

 We would like messages to be 
processed according to their causal 
order. 

 Process P3 receives messages M1, 
M2, and M3. M1 → M2, M1 → M3, 
M3 || M2 

 M1 has to be processed before M2 
and M3. However P3 has not to wait 
for M3 in order to process it before 
M2 (although M3’s logical clock 
timestamp is smaller than M2’s). 
 



DISTRIBUTED REAL 
TIME CYBER 
PHYSICAL SYSTEMS 

(Opzionale) Titolo Sezione 
Slide 17 

Chapter 4 
distributed coordination 

Vector Clocks 
 - Vector clocks give the ability to decide whether two events are 

causally related or not by simply looking at their timestamp. 
 • Each process Pi has a clock Cv Pi, which is an integer vector of 

length n (n is the number of processes).  
 • The value of Cv Pi is used to assign timestamps to events in process 

Pi. CvPi(a) is the timestamp of event a in process Pi. 
 • CvPi[i], the ith entry of Cv Pi,corresponds to Pi’s own logical time. 
 • CvPi[j], j ≠ i, is Pi’s "best guess" of the logical time at Pj. 

 
 CvPi[j] indicates the (logical) time of occurrence of the last event at Pj 

which is in a happened before relation to the current event at Pi. 
 


	Distributed coordination
	Distributed Coordination
	Diapositiva numero 3
	Time in Distributed Systems
	Time in Distributed Systems 
	Time in Distributed Systems 
	Lamport’s Logical Clocks
	Lamport’s Logical Clocks
	Lamport’s Logical Clocks 
	Lamport’s Logical Clocks  - implementation
	Lamport’s Logical Clocks  - implementation
	Lamport’s Logical Clocks 
	Problems with Lamport’s Logical Clocks
	Global Logical Timestamps
	Problems with Lamport’s Logical Clocks
	Problems with Lamport’s Logical Clocks - qui
	Vector Clocks

