
DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 1

Chapter 4
Distributed Coordination

The Timed Asynchronous model
 At the basis of the Timed Asynchronous model (proposed

by Cristian and Fetzer) there is the observation that
existing fault –tolerant services for asynchronous systems
are anyway TIMED.

 The specification of the services offered by these systems
describes not only the state transitions and the outputs in
response to requests for operations but ALSO the time
interval in which such transitions must happen!!.

 F. Cristian, and C. Fetzer, "The timed Asynchronous Distributed System Model," 28th
Intern. Symp. On Fault-tolerant Computing (FCTS-28), (Munich, Germany), pp. 140-149,
IEEE Computer Society Press, 1998.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 2

Chapter 4
Distributed Coordination

General Description

 The model makes a set of assumptions on the behavior of the
processes of the communications and on the hw clocks and is
characterized as follows: :
• 1. All services are TIMED (all the timing characteristics of the events

are specified). It is therefore possible for them to define time-outs
whose passing determines a time failure;

• 2. communications between processes is realized through a
DATAGRAM service – non reliable and subject to crash and timing
failures;

• 3. processes are subject to crash o timing failures;
• 4. processes have access to local clocks which stay within a linear

envelope of real time; (means clock drift are limited)
• 5. There is no limit on the failure rate of communications and of

processes

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 3

Chapter 4
Distributed Coordination

Comparison with the time-free
model

 Applications realized for an asynchronous system consider a
complete absence of a time reference and the existence of a
reliable service for communications.

 Considering the all hw available today have highly precise quartz
clocks it is easy to understand that the postulated existence of a
local clock it is not a practical restriction.

 Moreover, despite many services available in practice (such as UDP
or UNIX/LINUX processes) do not offer timing guarantees, it is
true that all these service become TIMED when an higher
abstraction layer depending on them defines a time-out to
determine their failure.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 4

Chapter 4
Distributed Coordination

Il datagram service

 The datagram service is characterized as follows:
• 1. It allows unicast and broadcast;
• 2. It identifies messages in an univocal way;
• 3. it does not ensure the existence of an upper bound on message

delivery delay (it is asynchronous!);
• 4. It allows to define a time-out δ on message transmission (one-way

time-out delay) whose choice has an impact on failure rates and on
system stability;

• 5. transmission time of messages is proportional to their size;
• 6. It is subject to omission and timing failures only as the probability

that a corrupt message is delivered is considered negligible.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 5

Chapter 4
Distributed Coordination

processes (1)

 Processes that did not suffer from a crach have state
transitions in response to events such as message receipt or
time-out expiry.

 The time interval between the occurrence of an event and the
termination of its processing is called process scheduling
delay.

 Let σ be the time-out for the scheduling delays. If a process
p reacts to each event witin σ time unit then the process is
said to be timely otherwise it suffered from a timing failure.

 The choice of δ is (normally) such that we can neglect σ.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 6

Chapter 4
Distributed Coordination

processes (2)
 Each process can be in one of the following states:
• Up: while it is executing standard program code;
• Crashed: when it stops to execute its code and looses all its

state;
• Recovering: when it executes state initialization code

following a) its creation b) restart after crash.

DOWN

start

ready
crash

up

crashed recovering
crash

recover

DOWN

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 7

Chapter 4
Distributed Coordination

Hardware clocks

 Each process has access to a local hardware clock which can
deviate from real time.

 The drift of a correct hardware clock corretto is limited by ρ
(maximum hardware clock drift rate).

 The quartz clock granularity offered by the current
technology typically ranges between1 ns and 1 µs while the
clock drift rate ρ is in the range 10-4÷10-6.

 It is assumed that through a calibration mechanism of local
clocks they stay within a linear envelope of real time.

 Local clocks are subject to crash with determine the crash of
the related process, on the contrary the crash of s process
does not imply the crash of the clock.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 8

Chapter 4
Distributed Coordination

progress assumptions (1)

 The Progress Assumptions constitute a fundamental of the model
and can be syntethisedby the following statement :
• Infinitely often a majority of the processes will be stable for a limited time

interval.

 Analyzing distributed systems based on LANs it has been
observed that their activity is characterized by long periods in
which there exists a majority of stable processes alternating
with short periods of instability.

 The intuition which derives from this observation is that as long
as the system remains stable (i.e. failures are below a givem
threshold) it is able to proceed in its computation in a limited
time.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 9

Chapter 4
Distributed Coordination

Progress assumptions (2)

 The validity of the progress assumptions is confirmed by current
hw and sw technologies and by the availability of OSs able to
support soft real-time applications. Therefore per it is
reasonable to assume that operations and communications
offered by distributed systems are timely for most of their life.

 The introduction of the progress assumptions is important
because it allows to solve consensus (when a system is stable it
behaves exactly as if it was a synnchronous systems).

 In addition the progress assumptions are separate from the
system model so it is possible to have different algorithms based
on different progress assumptions for the same underlying
system model.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 10

Chapter 4
Distributed Coordination

Stability predicates (1)
 In the specifications of the protocols defined for timed

asynchronous systems we often resort to the use of stability
predicates that verify system favorable conditions.

 Several different definitions have been used for stability
predicates :
• - stable predicates ,
• - the ∆-F-partition e
• - majority stable predicates.

 Two processes are connected in the interval [s, t] if they are
timely in [s, t] and every message exchenged suffers a maximum
delay of δ (one-way time-out delay).

 If the majority Sof the processes are pairwise connected in an
interval [s, t] we say that S is a stable majority.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 11

Chapter 4
Distributed Coordination

Stability predicates (2)

 A system is majority-stable in an interval if a stable majority
exists.

 Clearly, in a given time interval there may be different stable
majorities because not all the couples of processes are
connected.

 A process p is majority-stable in an interval if it belongs to a
stable majority in the interval.

 At this point we say that a system is always eventually majority
stable if:

1. After each instability period the system becomes eventually
majority-stable for at least ∆ clock-time units;
2. Each process eventually becomes majority-stable for at least ∆
clock-time units or suffers from a a crash.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 12

Chapter 4
Distributed Coordination

Stability predicates (3)

 Termination conditions for asynchronous systems (time-free)
require the termination of an algorithm in a finite number of
steps.

 In the case of synchronous systems these conditions are
time-bounded that is they impose termination in a finite
quantity of time.

 In the case of timed asynchronous systems we talk odf
conditionally-timed conditions:

• in a system which is always eventually majority stable if a process

p is majority stable in an interval [t, t+E], then, an operation
initiated at instant t must terminate by t + E.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 13

Chapter 4
Distributed Coordination

Rotating Leadership (1)
 The solutione of consensus uses the solution of another problem:

the leader election, in the variant known as the Rotating
Leadership.

 Assumptions:
 1. at any time instant there exists at most one Leader;
 2. only a majority-stable process is elected as leader;
 3. a process remains leader for a limited time;
 4. a process knows that it is a leader (it is not required that other

processes know who the leader is);
 5. the clocks of the processes are synchronized (the deviation

between the clocks is limited by some constant)

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 14

Chapter 4
Distributed Coordination

Rotating Leadership (2)

 More formally the second hypothesis can be expressed as follows:
• 2. if a system is majority stable in an interval I, then for every process

p belonging to a stable majority of I there exists an interval [s, s + LD]
contained in I where p is leader (LD indicates the time when a process
remains a leader);

 Assumption 4 allows to define a global time grid in which to

allocate for each process a time slot in which to become a leader.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 15

Chapter 4
Distributed Coordination

Rotating Leadership (3)

• The algorithm:
• At the beginning of each time-slot each process is a candidate

to be elected leader.
• Each process is associated with a priority and the election

protocol ensures that only the highest priority process is
elected.

• For a process to become a leader, however, it needs to receive
a majority of replies to its candidacy and that these
replications come in time.

• After sending its application, in fact, each process waits for a
certain period of time to receive the candidacies of the other
processes before responding to the application with the highest
priority.

• After becoming the leader, a process remains as such for LD
clock-time units, after which it is "dismissed".

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 16

Chapter 4
Distributed Coordination

La Rotating Leadership (4)
 This protocol guarantees that when the system is majority stable

every majority-stable process will have the highest priority in one
of the elections, so everyone will eventually become leaders.

 The main reason this problem is solved in timed systems is the
presence of local hardware clocks that evolve into a linear real-
time envelope.

 If these were not available, it would not be possible to
communicate by-time (ie the association of information content
over time) and then to determine an upper limit on the delay of
messages or to ensure that a process is no longer leading in an
instant known to all other processes.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 17

Chapter 4
Distributed Coordination

From leader election to consensus

 When a process p becomes a leader, it first performs a
broadcast to know if any other process has already reached a
decision or is aware of a previous proposal.

 Only a process in the UP state will respond to this request for
information.

 The leader then sends his proposal indicating his priority with
it.

 Each process stores the value and priority of the proposal most
recently received in a protocol state (since each leader has a
higher priority than all of its predecessors it is easy to
establish the most recent proposal).

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 18

Chapter 4
Distributed Coordination

Consensus
• The current leader waits for 2 δ clock-time units to receive

replicas after which:
• if it learns that a process has already decided for w, then he

too will decide for w and inform all the other processes via
broadcast;

• if none of the processes from which it receives an answer is
aware of a previous proposal, then proposes its initial value,
otherwise it proposes the previously proposed value;

• if he does not know of any decision or does not receive a
sufficient number of answers, he will not take any action.

 C. Fetzer, and F. Cristian, "On the Possibility of Consensus in Asynchronous Systems," in Pacific

Rim Intern. Symp. on Fault-tolerant Systems , (Newport beach CA), 1995

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 19

Chapter 4
Distributed Coordination

Consensus (2)

 Each process p that receives a proposal with an upper limit on
the transmission delay at most Λ (maximum error allowed by the
clock synchronization algorithm) and with a higher priority than
the last proposal, stores the value and the priority of the
proposal and responds to the leader by sending an ack to confirm
the reception.

 On the other hand, when p receives the leader's decision, he too
decides for that value.

 For both the leader, and for any other process that is in the
restarting state, the receipt of a decision or of a timely proposal
of a value determines the transition to the UP state.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 20

Chapter 4
Distributed Coordination

Consensus (3)

 A very important invariant of the protocol is that a
majority of processes know the proposed value v when
the leader decides for it.

 A process p that performs restart must re-initialize its
protocol state before moving to the UP state.

 In this way the invariant is respected even when some
process that knows the proposed value is "replaced" by
other processes after having suffered a crash.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 21

Chapter 4
Distributed Coordination

Timed Asynchronous vs. Failure
Detectors (1)

 The expressive capacity of the two models is different: the
impossibility to implement a Perfect Failure Detector in a
timed asynchronous system has been demonstrated.

 There is a different design philosophy of the system.

 Failure detectors hide aspects related to time at higher levels
of abstraction. This represents a limit when the levels of
abstraction are more than two.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

(Opzionale) Titolo Sezione
Slide 22

Chapter 4
Distributed Coordination

Timed Asynchronous vs. Failure
Detectors (2)

 IIn this type of application time-outs are used at each
level because a level that depends on another must be able
to identify errors and mask them.

 In general, time-outs vary with the levels to which they
are applied: the higher the level, the greater the time-out
and the meaning and impact of its violation is different.

	The Timed Asynchronous model
	General Description
	Comparison with the time-free model
	Il datagram service
	processes (1)
	processes (2)
	Hardware clocks
	progress assumptions (1)
	Progress assumptions (2)
	Stability predicates (1)
	Stability predicates (2)
	Stability predicates (3)
	Rotating Leadership (1)
	Rotating Leadership (2)
	Rotating Leadership (3)
	La Rotating Leadership (4)
	From leader election to consensus
	Consensus
	Consensus (2)
	Consensus (3)
	Timed Asynchronous vs. Failure Detectors (1)
	Timed Asynchronous vs. Failure Detectors (2)

