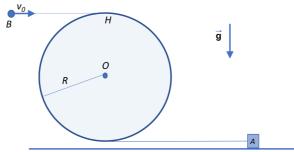

Corso di Laurea in Fisica e Astrofisica - Esame di Fisica I Prova scritta del 10 Settembre 2018

Esercizio n. 1


Si consideri il sistema descritto in Figura, composto da 2 masse m_A e m_B , di dimensioni trascurabili, collegate tra di loro attraverso un filo di lunghezza 2L e una carrucola O fissa, entrambi ideali. Inizialmente la massa m_B è appoggiata su un piano orizzontale, il tratto di filo OB, lungo L, è verticale, ed il tratto di filo AO, lungo L, è mantenuto orizzontale attraverso una forza esterna. Si consideri trascurabile ogni tipo di attrito.

- a) In una prima fase la massa m_B è saldata sul piano orizzontale. Se la massa m_A viene lasciata libera, si determini la sua velocità nel momento in cui colpisce la massa m_B .
- b) Durante il moto descritto al punto a) si determini la massima tensione del filo.
- c) In una seconda fase la massa m_B è invece solamente appoggiata sul piano orizzontale. La massa m_A viene lasciata libera di cadere dalla sua posizione iniziale. Si determini di quanto si abbassa la massa m_A prima che la massa m_B inizi a staccarsi dal piano orizzontale.
- d) Quanto vale in modulo la reazione vincolare in O nel momento in cui m_B si distacca dal piano orizzontale? Dati numerici: $m_A = 2 \ kg$, $m_B = 3 \ kg$, $L = 2 \ m$.

Esercizio n. 2

Si consideri il sistema descritto in Figura, in cui un disco omogeneo di massa M e raggio R è vincolato a ruotare senza attrito attorno ad un asse perpendicolare al piano del disco e passante per il suo centro O.

Attorno al disco è avvolto un filo inestensibile di massa trascurabile la cui altra estremità è collegata ad un punto materiale A di massa m, appoggiato su un piano orizzontale scabro. Il filo è inizialmente completamente svolto, ma con tensione nulla, ed è parallelo al piano. Il disco non tocca il piano orizzontale. Ad un certo istante il disco, inizialmente fermo, viene colpito nel suo estremo superiore H da un punto materiale B di massa m che si muove con velocità orizzontale di modulo v_0 nel piano del disco. Il punto materiale si conficca nel disco. In seguito, si osserva che il disco compie N=1 giro prima di fermarsi.

Si determinino:

- a) il modulo ω della velocità angolare del disco immediatamente dopo l'urto
- b) il coefficiente di attrito dinamico μ_D fra il piano e il punto materiale A
- c) il modulo dell'accelerazione angolare del disco α subito dopo l'urto
- d) le componenti orizzontale e verticale della reazione vincolare in O subito dopo l'urto

Dati numerici: M=1 kg, m= 0.2 kg, R=0.4 m, v_0 =7.2 m/s

- È consentita la consultazione di libri ed appunti e l'uso di una calcolatrice programmabile
- Non è consentito l'uso dei telefoni cellulari
- Il tempo a disposizione è di 2 ore e 30 minuti
- Si spieghino e si giustifichino le formule che vengono utilizzate, indicando con chiarezza il sistema di riferimento utilizzato
- Si facciano tutti i calcoli in maniera simbolica e si sostituiscano i valori numerici solo per ottenere il risultato finale