
How Programming Environment Shapes Perception,
Learning and Goals: Logo vs. Scratch

Colleen M. Lewis
Graduate School of Education

University of California, Berkeley
Berkeley, CA 94720

1- 510-388-7215

colleenl@berkeley.edu

ABSTRACT
This study compares the attitudinal and learning outcomes of
sixth grade students programming in either Logo or Scratch.
Given proposed affordances of the visual programming language,
Scratch, I hypothesized that those students learning Scratch would
demonstrate greater competence in interpreting loops and
conditional statements and would have more positive attitudes
towards programming. However, differences in performance
between the two groups appeared only in the greater ability of the
students that learned Scratch to interpret conditional statements.
Contrary to our hypothesis, we found that students that learned
Logo had on average higher confidence in their ability to program
and students were no more likely to plan to continue to program
after the course or view the learning of topics as difficult if they
learned Logo or Scratch.

Categories and Subject Descriptors
K.3 [Computers and Education]: General

General Terms
Human factors

Keywords
Scratch, Logo, K-12, Programming

1. INTRODUCTION
Programming has been seen as an opportunity for students to
develop the intellectual resources to tackle challenging problems
[4]. However, many of the studies failed to show expected
benefits and the Logo community did not flourish as hoped [1][3].
Many of the challenges faced by students learning to program in
Logo can be understood through the limitations of the
programming environment. For example, before testing a program
in Logo, each line of code must adhere to syntactic constraints.
This fragile environment may cause students to focus their
attention on the syntax of the code and miss the opportunity to
focus on the semantic meaning.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGCSE’10, March 10–13, 2010, Milwaukee, Wisconsin, USA.
Copyright 2010 ACM 978-1-60558-885-8/10/03...$10.00.

Building upon the early work on Logo, a new programming
environment Scratch [2] offers much of the same functionality as
Logo. However in Scratch the code blocks only lock into place in
syntactically valid ways, therefore “bugs” are always semantic
errors and never the result of a typing error or a misremembered
detail of language syntax. Scratch is one of the recently developed
visual programming languages that are thought to make complex
elements of flow of control, such as loops and conditionals, more
natural [5]. This study evaluates the pedagogical value of Scratch
in comparison to a well researched tool, the Logo programming
environment. We hypothesized that in comparison with students
using Logo, students using Scratch would:

• Be more likely to report that programming in general and the

learning of individual constructs was easy.
• Feel more confident about their competence writing

computer programs and be more likely to report that they
plan to continue to pursue computer programming.

• Be better able to trace the flow of control of loops and
conditionals.

2. PREVIOUS RESEARCH

New languages, such as Scratch, typically build from previous
languages to offer new functionality and claimed pedagogical
advantages. This study builds upon a line of research that has
begun to explicitly test the pedagogical claims of new
programming tools. In a study designed to see if students learning
Java will spontaneously develop competency with flow of control
constructs in a visual programming language, Alice, the
researchers, Parsons and Haden, found that “students struggled to
make the connection between work in Alice and ‘real
programming’.”[5]. In an effort to provide fewer syntactic
constraints, visual programming languages may be perceived as
“simple” and not related to real programming. However, research
comparing learning in a more and a less syntactically strict
language, Java and Python respectively, attribute the greater
success of students in Python to be a result of reduced syntactic
complexity [3].

3. METHODOLOGY
3.1 Setting
Participants were students enrolled in the course “Making Music,
Movies, and Games with Computers”, a summer enrichment
program offered through the Academic Talent Development

346

Program (ATDP) at the University of California, Berkeley. The
course met for a total of 36 hours over 12 days. All course
participants had completed fifth grade and were between 10 and
12 years old. Students applied to participate in this enrichment
program that is designed for academically advanced students.

There were 2 offerings of the course, with the exact same course
description. Students indicated in their application a preference
for the morning or the afternoon offering and were placed in their
preferred offering on a first-come, first-served basis. Each
offering of the course was taught by the same instructors, the
author with the assistance of two teacher aids.

3.2 Treatment Groups
Each offering of the course became a treatment group in this
study and the two treatments differed based upon which language
they learned first. Treatment 1 (Scratch-First) learned to program
in Scratch1 for 6 days before beginning instruction in Logo.
Treatment 2 (Logo-First) learned to program in Logo2 for 6 days
before beginning instruction in Scratch. This study focuses on
these first 6 days and addresses the students’ perceptions, learning
and goals before beginning their second programming language.

3.3 Curriculum
Students in each class worked in pairs to complete worksheets
designed by the researcher to introduce programming constructs.
The first 6 days of instruction focused on the core programming
constructs such as conditionals, variables and loops that are
shared by both Logo and Scratch. On each of the first 6 days,
students worked on worksheets designed to have students in each
class accomplish equivalent goals. For example, on the third day
of instruction students in each treatment were asked to draw a
brick wall. Figure 1 shows the images that were provided on the
respective worksheets to demonstrate the goal. Although the
images and content of the worksheets differ, the goals on each
worksheet were the same.

Figure 1: Demonstration of the goal of drawing a brick wall

for Logo (left) and Scratch (right)
A recent multi-national, multi-institution study [6] suggests that it
is possible to translate exams between languages while preserving
the level of difficulty. A similar methodology is used in this study
to create assessments and in-class programming tasks of
comparable difficulty.

3.4 Participants
In Treatment 1 (Scratch-First) there were 16 males and 10
females for a total of 26 students. In Treatment 2 (Logo-First)
there were 17 males and 7 females for a total of 24 students.

1 Students used version 1.4 of Scratch (http://scratch.mit.edu).
2 The version of Logo used was developed by Guy Haas

(http://www.bfoit.org/itp/install.html).

3.5 Data Sources
Written assessments were given on the second and fifth days of
class to assess student understanding of concepts and techniques
covered the previous class day. Written surveys were given at the
end of the sixth day of instruction and beginning of the seventh to
gather information regarding the students’ evaluation of their
experience during class as well as their interests and goals.

4. DATA ANALYSIS

4.1 Similarity of Treatment Groups
When the students applied to the course, they were not aware of
any difference between the two versions of the course. Based
upon this sampling method, we did not suspect that the two
groups would vary greatly. As a precaution, on the first day we
administered a survey of prior computer experience. The
differences responses of the participants in Treatment 1 and
Treatment 2 were not statistically significant at the 5% level (z=-
1.007; p=0.3140) using the Mann-Whitney-Wilcoxon test.
Although this does not demonstrate that the two populations are
equivalent, we postulate similarity based upon the sampling
method and the similarity in distribution of responses regarding
prior computer experience. To capture the similarity of the two
groups, histograms of their responses to four representative
questions are provided below in Figure 2. Participants in
Treatment 1 (Scratch-First) and Treatment 2 (Logo-First) had
similar distributions of responses to the following 4-level Likert
questions.

• I am good at using the computer
• I find computers frustrating to use
• I am comfortable using a mouse
• I am comfortable typing on a computer

Figure 2: Student responses to 4-level Likert questions

regarding prior computer experience

347

4.2 Student Report of Difficulty
To investigate the hypothesis that students in Treatment 1
(Scratch-First) would be more likely to judge programming and
the learning of individual constructs to be easy, all students
responded to questions regarding their experience of the difficulty
of learning various programming commands and constructs. The
questions were given on the 7th day of instruction, before
introducing students to a second language. There were 8 questions
covering the following constructs: repeat, variable creation,
if, and, forward/move, set x and y coordinate, set pen color,
and set heading. The students responded to a 4-level Likert
question in the form of “It was hard to learn how to use
[Programming Construct]”. A response of “Agree” was coded as a
4 to indicate that the programming command was hard to learn
while “Agree somewhat”, “Disagree somewhat” and “Disagree”
were coded 3, 2 and 1 respectively. The total of the coded scores
for the 8 questions were added together to create a rating of
perceived difficulty for each student.

Figure 3 below shows the students’ rating of difficulty by
treatment group. Students from Treatment 1 (Scratch-First) had a
range of scores between 32 and 46 with a mean rating of 37.62
out of 64 and a standard deviation of 3.43. Students from
Treatment 2 (Logo-First) had a similar range from 32 to 45 but a
slightly higher mean of 38.35 and a standard deviation of 3.70.
The difference between the means of the two groups was less than
1 out of 64 and was not significant at the 5% level (z=0.716,
p=0.4743).

Figure 3: Student cumulative rating of difficulty of

programming commands
The unexpected result of no difference between perceived
difficulties motivated further investigation. Through an analysis
of individual questions, we found that while most students in each
treatment group disagreed with the statements “It was hard to
learn how to use variables” and “It was hard to learn how to use
repeat” the groups diverged when asked about learning
conditionals. Two questions requested information about the
process of learning conditionals: “It was hard to learn how to use
IF” and “It was hard to learn how to use AND”. There was a
statistically significant response, using a Mann-Whitney-
Wilcoxon test, between the two groups when responding to “It
was hard to learn how to use AND” (z=2.423; p=0.0154). These
results match the instructors’ perception that students using Logo

had a much more difficult time learning AND. Figure 4 shows the
distribution of responses to four of the Likert questions regarding
difficulty of learning. The histograms show the similar responses
regarding variables and repeat to contrast the difference in
distribution regarding the difficulty of conditionals.

Figure 4: Student responses to 4-level Likert questions

regarding the difficulty of learning

4.3 Confidence of Treatment Groups
To investigate the hypothesis that students in Treatment 1
(Scratch-First) will feel more confident about their competence
writing computer programs and be more likely to report that they
plan to continue to pursue computer programming the students
were asked to respond to the following questions using a 4-level
Likert response:

• Writing computer programs is easy.
• I am good at writing computer programs
• I plan to continue programming after the class is over.
• I want to take another computer programming course.

The results, shown in Figure 5, were analyzed using a Mann-
Whitney-Wilcoxon test. Despite the expectation that Scratch
makes programming easier, there was no statistical significance
between the treatment groups on their response to the question:
“Writing computer programs is easy” (z=-1.560; p=0.1189).
However in response to the question “I am good at writing
computer programs” it was Treatment 2 (Logo-First) that
answered more positively and the differences between the
treatment groups was statistically significant at the 5% level (z=-
2.016, p=0.0438). This provides evidence that could prove the
counter-hypothesis, that students in Logo will judge their
competence at programming higher. It is possible that like the
results from [5], the students learning Scratch did not recognize
Scratch as “writing computer programs”. However, other

348

references to “writing computer programs” in the course
presumably serve to cue the student that they are engaged in
“writing computer programs”. For example, in the same survey,
the students responded to the questions (emphasis added)
“Writing computer programs is easy”, “It is possible to know
what a computer program will do before you run it”, “When I run
a computer program twice in a row it will do the same thing”, and
“What is the most frustrating thing about writing computer
programs?”

Figure 5: Student responses to 4-level Likert questions

regarding competence programming
An alternate explanation is that even after 18 hours of instruction
students in Treatment 1 (Scratch-First) had not used every
command appearing in the Scratch menus, which might have
eroded their confidence in their abilities. In contrast students
using Logo may have been under the impression that they had
learned everything that Logo had to offer. Future research will
seek to isolate the effects of these different factors.
As shown in Figure 6, regardless of initial programming
language, the majority of students agreed or agreed somewhat
with the statements:

• I plan to continue to program after the class is over.
• I want to take another computer programming course.

This suggests that although we hypothesized that students
exposed to Scratch would be more likely to plan to continue to
program after the course, students indicate a similar level of
intention to continue programming or take additional computer
programming courses regardless of what languages they have
seen.

Figure 6: Student responses to 4-level Likert questions

regarding their future plans for computer programming

4.4 Student Assessments
4.4.1.1 Student Interpretation of Loops
At the beginning of the 2nd day, after 3 hours of instruction,
students were given an assessment where they were asked to
describe the results of repeat statements. A representative
question is shown in Figure 7. This example shows a nested
repeat statement translated into both Logo and Scratch.
Students in each treatment group saw the corresponding repeat
statement and were asked to write answers to the following
questions:

• How many beats/seconds will this example take to run?
• How many times will the example play the note 60?

repeat 5 [playnote 67 1 repeat 10 [playnote 60 1]]

Figure 7: Example question from assessment of ability to

interpret loops
We expected that the Scratch question would be easier for the
students to answer because of the additional context regarding the
meaning of the commands. For example, Figure 8 shows a
comparison of the Logo and Scratch syntax to play a note.
Whereas the Scratch command can be read like a sentence “play
note 67 for 1 beats”, in the Logo example there are no cues that
differentiate the note to be played from the duration. Despite this
apparent complexity, no students answered with a number over 55
on any questions, which might have indicated a student confusing
the note number as the duration for the note. As opposed to
confusion regarding the play note command, it appears that
student difficulty was associated with the behavior of the
repeat.

playnote 67 1

Figure 8: The play note command in Scratch and Logo

The performance difference between the two groups was not
statistically significant (z=-0.945; p=0.3448). Students from
Treatment 1 (Scratch-First) had a mean of 3.0 and a standard
deviation of 2.6. Students from Treatment 2 (Logo-First) had a
mean score of 2.4 and a standard deviation of 2.7.This assessment
does not confirm our hypothesis that students using Scratch would
outperform students using Logo on their ability to interpret repeat
statements.

4.4.1.2 Student Interpretation of Conditionals
At the beginning of the 5th day, after 12 hours of instruction,
students were given an assessment of their ability to interpret the

349

result of conditional statements. On the previous day, both groups
of students had made a simplified paint program that involved
setting the pen color depending upon the location of the mouse.
The assessment asked them to consider similar examples of code
and predict the final pen color or in some cases say what notes
would be played. The most complicated example included
interpreting the result of the code shown in Figure 9 for a series of
x and y locations for the mouse.

setpencolor 1

if greater? mousey 0
 [setpencolor 2]

if less? mousey 0
 [setpencolor 3]

if greater? mousex 200
 [setpencolor 4]

if greater? mousex 100
 [setpencolor 5]

if less? mousex -100
 [setpencolor 6]

Figure 9: Question from assessment of ability to interpret
conditionals expressions

Figure 10 below shows a box plot of the cumulative scores on the
assessment of student ability to interpret conditional expressions.
The mean score for students in Treatment 1 (Scratch-First) was
8.16 out of 13, while the mean score for Treatment 2 (Logo-First)
was only 5.68. A Mann-Whitney-Wilcoxon test was used to
compare the performance of each group and the higher
performance of students in Treatment 1 (Scratch-First) was
statistically significant at the 1% level (z=-2.528, p=0.0115).

Figure 10: Box plot of student performance on assessment of

conditionals

5. CONCLUSION AND FUTURE WORK
While the Logo environment appeared capable of supporting
student development of confidence, interest in computer
programming, and understanding of the loop construct, the
Scratch environment provided a relative improvement in learning
outcomes for students learning the construct of conditionals.

Scratch offers a number of affordances that would suggest that it
should be easier to learn and interpret. Given these affordances, it
is surprising that the students learning Logo and Scratch
performed similarly when interpreting loops. For example, in
Logo students have only a textual representation and during the
learning process would presumably be distracted by low-level
details such as syntax. However, perhaps this low-level focus
allows students to focus on some important low-level details, such
as the role of every command in a larger program. It may be that
this low-level focus allowed students learning Logo to
compensate for the lack of a visual representation.

There has been a significant amount of research done on student
experiences in Logo however, only through a comparison with a
different programming environment, such as Scratch, can we
begin to isolate the features of student experience impacted by the
content of programming and those impacted by the programming
environment.

6. ACKNOWLEDGMENTS
I want to thank the study participants, Andrea diSessa, Michael
Clancy, Randi Engle, Steven Kisely, George Wang and other
members of the Patterns, UC-WISE and Video research groups at
the University of California, Berkeley. I want to thank the Scratch
team at MIT and Guy Haas for his development and support of
JLogo. This work was partially supported by a grant from the
Spencer Foundation (grant number 200500036) to Andrea A.
diSessa, PI.

7. REFERENCES
[1] diSessa, A. (2000). Changing Minds: Computers, Learning,

and Literacy. MIT Press:Cambridge, MA.
[2] Maloney, J., Peppler, K., Kafai, Y. B., Resnick, M., & Rusk,

N. (2008). Programming by Choice: Urban Youth Learning
Programming with Scratch. ACM Special Interest Group on
Computer Science Education., Portland: ACM.

[3] Mannila, L., Peltomaki, M., & Salakoski, T. (2006). What
About a Simple Language? Analyzing the Difficulties in
Learning to Program. Computer Science Education, 16(3),
211-227.

[4] Papert, S. (1980). Mindstorms: Children, Computers, and
Powerful Ideas. New York: Basic Books, Inc.

[5] Parsons, D., & Haden, P. (2007). Programming Osmosis:
Knowledge Transfer from Imperative to Visual
Programming Environments. In S. Mann & N. Bridgeman
(Eds.), Procedings of The Twentieth Annual NACCQ
Conference (pp. 209-215). Hamilton, New Zealand.

[6] Whalley, J. (2006). CSEd Research Instrument Design: The
Localisation Problem. In S. Mann & N. Bridgeman (Eds.),
Proceedings of The Nineteenth Annual NACCQ Conference
(pp. 307-312). Wellington, New Zealand.

350

