Delft University of Technology
Software Engineering Research Group
Technical Report Series

Do Code Smells Hamper Novice
Programming?

Efthimia Aivaloglou, Felienne Hermans

Report TUD-SERG-2016-016

SE[Y

TUD-SERG-2016-016

Published, produced and distributed by:

Software Engineering Research Group

Department of Software Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Mekelweg 4

2628 CD Delft

The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: -

(© copyright 2016, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

SE|r{Eelienne Hermans, Efthimia Aivaloglou - How Kids Code and How We Know: An Exploratory Study on the Scratch Repository?

How Kids Code and How We Know:
An Exploratory Study on the Scratch Repository

(anonymized submission)

ABSTRACT

Block-based programming languages like Scratch, Alice and
Blockly are becoming increasingly common as introductory
languages in programming education. There is substantial
research showing that these visual programming environ-
ments are suitable for teaching programming concepts. But,
what do people do when they use Scratch? In this paper we
explore the characteristics of Scratch programs. To this end
we have scraped the Scratch public repository and retrieved
250,000 projects. We present an analysis of these projects
in three different dimensions. Initially, we look at the types
of blocks used and the size of the projects. We then inves-
tigate complexity, used abstractions and programming con-
cepts. Finally we detect code smells like large scripts, dead
code and duplicated code blocks. Our results show that 1)
most Scratch programs are small, however Scratch programs
consisting of over 100 sprites exist, 2) programming abstrac-
tion concepts like procedures are not commonly used and 3)
Scratch programs do suffer from code smells including large
scripts and unmatched broadcast signals.

General Terms

terms

Keywords

Scratch, block-based languages, programming practices, code
smells, static analysis

1. INTRODUCTION

Scratch [17] is a programming language developed to teach
children programming by enabling them to create games and
interactive animations. The public repository of Scratch
programs contains over 14 million projects. Scratch is a
block-based language: users manipulate blocks to program.

Block-based languages have existed since the eighties, but
have recently found adoption as tools for programming ed-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

TUD-SERG-2016-016

ucation. In addition to Scratch, also Alice [4], Blockly' and
App Inventor [19] are block-languages aimed at novice pro-
grammers.

Several studies have shown that block-based languages are
powerful as tools for teaching programming [12, 15, 5, 16].
Previous works involving static analysis of Scratch programs
have evaluated the application of various programming con-
cepts in Scratch projects [9, 13]. Recent works have focused
on bad programming practices within Scratch programs [11],
and automated quality assessment tools have been proposed
for identifying code smells [6] and bad programming prac-
tices [2, 13]. A recent controlled experiment found that long
scripts and code duplication decreases a novice program-
mer’s ability to understand and modify Scratch programs
[7].

The goal of this paper is to obtain a deep understanding of
how people program in Scratch, to analyze the characteris-
tics of Scratch programs, and to quantitatively evaluate the
use of programming abstractions and concepts. Moreover,
knowing that bad programming habits and code smells can
be harmful [7], we also want to explore whether they are
common. To address this goal, we answer the following re-
search questions:

RQ1 What are the size and complexity characteristics of
Scratch programs?

RQ2 Which coding abstractions and programming concepts
and features are commonly used when programming in
the Scratch environment?

RQ3 How common are code smells in Scratch programs?

Our study is based on data from the Scratch project repos-
itory. By scraping the list of recent projects,> we have ob-
tained 250,166 public Scratch projects and performed source
code analysis on them. To the best of our knowledge, this
is the first large-scale exploratory study of Scratch projects.

The contributions of this paper are as follows:

e A public data set of 233,491 non-empty Scratch projects
(Section 3.1)

e An evaluation of the data set in terms of size, com-
plexity, programming concepts and smells (Section 4)

e A discussion of the implications of our findings for ed-
ucational programming language designers (Section 5)

"https://developers.google.com/blockly/
*nttps://scratch.mit.edu/explore/projects/all/

2. RELEVANT SCRATCH CONCEPTS

This paper is by no means an introduction into Scratch
programming, we refer the reader to [3] for an extensive
overview. To make this paper self-contained, however, we
explain a number of relevant concepts in this section.

Scratch is a block-based programming language aimed at
children, developed by MIT. Scratch can be used to create
games and interactive animations, and is available both as
a stand-alone and as a web application. Figure 1 shows the
Scratch user interface. The main concepts in the Scratch
programming environment are:

Sprites Scratch code is organized by ‘sprites’: two dimen-
sional pictures each having their own associated code.
Scratch allows users to bring their sprites to life in var-
ious ways, for example by moving them in the plane,
having them say or think words or sentences via text
balloons, but also by having them make sounds, grow,
shrink and switch costumes. The Scratch program
in Figure 1 contains two one sprites, the cat, which
is Scratch’s default sprite and a piano. The code in
Spritel will cause the cat to move right when the right
arrow is pressed, and when the green flag is clicked it
will continuously sense touching the piano.

Scripts Sprites can have multiple code blocks, called scripts.

The Scratch code in Figure 1 has two distinct scripts,
one started by clicking on the green flag and one by
pressing the space bar. It is possible for a single sprite
to have multiple scripts initiated by the same event. In
that case, all scripts will be executed simultaneously.

Events Scratch is event-driven: all motions, sounds and
changes in the looks of sprites are initiated by events
called Hat blocks®). The canonical event is the when
Green Flag clicked, activated by clicking the green
flag at the top of the user interface. In addition to
the green flag, there are a number of other events
possible, including key presses, mouse clicks and in-
put from a computer’s microphone or webcam. The
Scratch code in Spritel in Figure 1 contains two events:
when Green Flag clicked and when <right arrow>
key pressed, each with associated blocks.

Signals Events within Scratch can be user generated too:
users can broadcast a message, for example when two
sprites touch each other, like in Figure 1. All other
sprites can then react by using the when I receive
Hat block. In Figure 1, Spritel broadcasts ‘bump’
when the cat touches the Piano.

Custom blocks Scratch users can define their own blocks,

which users can name themselves, called custom blocks.

The creation of custom blocks in Scratch is the equiv-
alent of defining procedures in other languages [13].
Because the term ‘procedures’ is common in related
work, we will refer to custom blocks as ‘procedures’
in the remainder of this paper. Procedures can have
input parameters of type string, number, and boolean.
When a user defines a procedure, a new Hat block
called define appears, which users can fill with the
implementation of their block.

Shttp://wiki.scratch.mit.edu/wiki/Hat_Block

Felienne Hermans, Efthimia Aivaloglou - How Kids Code and How We Know: An Exploratory Study on the Scratch Repositc S E

iy (Gararamians ~e

m:-»-;-n
‘,'_]

P

[t o]

[n sk s 1

oy
sprtes Newsprte: & / S0 L

Figure 1: The Scratch user interface consisting of
the ‘cat’ sprite on the left, the toolbox with available
blocks in the category ‘Events’ in the middle and the
code associated with the sprite on the right.

3. RESEARCH DESIGN AND DATASET

The main focus of this study is to understand how peo-
ple program in Scratch by analyzing the characteristics of
Scratch projects. To answer our three research questions,
we conducted an empirical quantitative evaluation of project
data we collected from the Scratch project repository. In the
following paragraphs we describe the dataset, the process
and the tools we used for analyzing it, and the methods we
followed for detecting code smells.

3.1 Dataset

We obtained the set of Scratch projects by using a scrap-
ing program. Our scraping program called Kragle starts by
reading the Scratch projects page? and thus obtains project
ids of projects that were most recently shared. Subsequently,
Kragle retrieves the JSON code for each of the listed projects.

We ran Kragle on March 2nd 2016 for 24 hours and, in
that time, it obtained a little over 250,000 projects. Out
of the 250,166, we failed to parse and further analyze 2,367
projects due to technical difficulties with the provided JSON
files. Kragle, as well as all scraped projects and our analysis
files are available.*

Once we obtained the Scratch projects, we parsed the
JSON files according to the specification of the format.’
This resulted in a list of used blocks per project, with the
sprites and the stage of the project. We cross referenced also
all blocks with the Scratch wiki to determine the shapes and
the category of all blocks. For example, When Green Flag
Clicked is a Hat block from the Events category.

3.2 Data analysis

All scraped project data, including the list of used blocks
and parameters, were imported in a relational database. We
used SQL queries, which are also made available,* for filter-
ing, aggregating and extracting all statistical data required
to address our three research questions. We also randomly
sampled and manually inspected edge cases in the results,

“https://github.com/ScratchLover42/ICER-Data-Code
(temporary link to protect the anonymity of the authors)
5ht‘t‘,p ://wiki.scratch.mit.edu/wiki/Scratch_File_
Format_(2.0)

TUD-SERG-2016-016

1,000,000

100,000

10,000

1,000

100 -

Number of blocks in script

10

1

Number of cloned scripts

~@==Clones across sprites Clones within sprites

Figure 2: Number of cloned scripts of different block
sizes across and within sprites

for example empty or overly complex projects. Data for
these cases are provided as part of the dataset.*

For RQ1 we measured the size of projects based on the
number of blocks in scripts and sprites and we calculated
descriptive statistics, which are presented in Section 4.1. For
measuring the complexity of the scripts we used the McCabe
cyclomatic complexity metric [10], a quantitative measure
of the number of independent paths through a program’s
source code. This is calculated per script by counting the
number of decision points in the script plus one. In Scratch,
decision points can be the if and if else blocks.

For RQ2, we used the data on the code blocks and their
categories to perform statistical analysis of applied program-
ming abstractions and concepts. Similarly to [9], we consider
the use of certain blocks to indicate that a programming ab-
straction or concept is being used in a certain project. In
Section 4.2 we present the results related to the utilization
of procedures, variables, loops, conditional statements, user
interactivity and synchronization.

For RQ3, we focused on four types of code smells: dupli-
cated code, dead code, large script and large sprite. For the
duplicated code smell analysis, our first step was to specify
what we consider a code clone in the context of Scratch pro-
gramming: a script that is composed of a set of blocks of
the same type connected in the same way and is repeated
within or across sprites of the same project. For the iden-
tification of clones we did not take into account the values
of the parameters that may be used in the blocks, so that
two blocks that only differ in the values of parameters are
considered to be equal. We also examined the case of clones
with the same parameter values, and we refer to them as ez-
act clones. The next step in the analysis was to determine
the minimum size of the scripts that are considered clones
instead of incidentally similar. We examined the number
of detected clones for different script sizes and present the
results in Figure 2. Based on this distribution, we opted to
adopt the number also used by the authors in [13], which is
the minimum size of 5 blocks per script.

To examine the long method and the large class smells, we
consider them in the context of Scratch as large script and
large sprite smells respectively. For these two smells we use
the number of blocks as the size metric. Figure 3 presents
the number of blocks in the scripts and the sprites of our
dataset. We used these numbers to split the dataset and
retrieve the top 10% largest scripts and sprites, as is com-
monly done in both source code analysis [1] and analysis of

TUD-SERG-2016-016

SE|t{E&lienne Hermans, Efthimia Aivaloglou - How Kids Code and How We Know: An Exploratory Study on the Scratch Repository?

10,000,000
1000000 |~
100,000 \\\
10,000
1,000
100
10
1 .
1 10 100 1,000 10,000

Number of blocks

—=— Number of sprites ~ ——Number of scripts

Figure 3: Size of sprites and scripts in number of
blocks

80,000 -
70,000
60,000 -
50,000 -
40,000 -|
30,000 -
20,000 -

10,000
0 - — -

Projects

© V4> e
L P&
Vo9 @0

Number of sprites with code

Figure 4: Number of sprites in the analyzed projects

end-user programming artifacts like spreadsheets [8]. Using
that strategy, we set the thresholds for the calculation of the
large script and large sprite: it is 18 blocks and 59 blocks
respectively. The results we obtained using these thresholds
are presented in Section 4.3.

4. RESULTS

In the following sections, for each of the research ques-
tions, we describe the results obtained through the analysis
of the 247,798 Scratch projects in our dataset.

4.1 Program Size and Complexity

The dataset contains a relatively small number of projects
without any code: 14,307 (5.77%). Through random man-
ual sampling we found that in some cases these projects con-
tains only sprites and costumes, but no code, while in other
projects they were entirety empty apart from the Scratch cat
added by default. Since these projects are empty in terms
of code we excluded them from further analysis, leaving the
final number of analyzed non-empty projects to 233,491.

In Table 1 we summarize the statistics for the analyzed
metrics. We use the mean value and the five-number sum-
mary to describe the dataset in terms of the number of
sprites with code per project (including the stage sprite)
and the number of scripts and blocks per project. Figures
4, 5 and 6 plot the distribution of these size metrics.

We find that the majority of Scratch projects are small;
75% of the projects have up to 5 sprites, 12 scripts and
76 blocks, while one fourth of the projects have up to 12
blocks. On the other end, 5% of the projects (11,712) have
more than 18 sprites and 4.8% (11,214) consist of more than
500 blocks. The analysis also highlighted some surprisingly

Felienne Hermans, Efthimia Aivaloglou - How Kids Code and How We Know: An Exploratory Study on the Scratch Repositc S E

mean min Q1 median Q3 max

Size Sprites with code per project 5.68 1 1 2 5 525
Scripts per project 17.35 1 2 5 12 3,038

Number of blocks per project 154.55 1 12 29 76 34,622

Blocks in Stage per project 4.80 0 0 0 3 2,613

Blocks in Sprites per project 115.57 0 10 26 68 34,613

Blocks in Procedures per project 34.17 0 0 0 0 20,552

Complexity McCabe Cyclomatic Complexity (CC) per script 1.58 1 1 1 1 246
McCabe CC per procedure script 3.75 1 1 2 4 183

Procedures Procedures per project with procedures 11.50 1 1 2 6 847
Arguments per Procedure 0.95 0 0 0 1 53

Numerical arguments per procedure with arguments 1.73 0 1 1 2 22

Text arguments per procedure with arguments 0.28 0 0 0 1 24

Boolean arguments per procedure with arguments 0.13 0 0 0 0 14

Calls per procedure 2.14 0 1 1 2 526

Scripts with calls per procedure 1.13 0 1 1 1 59

Programming Variables per project 2.06 0 0 0 1 340
concepts Scripts utilizing variable 4.97 1 1 3 5 1,127
Lists per project 0.55 0 0 0 0 319

Conditional statements per project 10.02 0 0 0 3 5,950

Loop statements per project 7.65 0 1 2 5 2,503

User input blocks per project 4.77 0 0 1 4 1,889
Broadcast-receive statements per project 8.57 0 0 0 2 2,460

Table 1: Summary statistics from the dataset of 233,491 non-empty Scratch projects

10,000,000 -
1,000,000 -
45,000 -+ 100,000 -
25000 | g 000
- 30,000 :nE 1,000 -
,3, 25,000 - 100 4
9 20,000 -
15,000 - 10 1
lg:ggg q ' 1 2 4 8 16 32 64 128 256 More
0 - Cyclomatic complexity

L 2 N e bv\,’,’%q",’b%@@y%@ <
M Figure 7: McCabe cyclomatic complexity of the
Number of scripts (in all sprites) 4,049,356 analyzed scripts

Figure 5: Number of scripts in the analyzed projects

large projects: 135 with more than 300 sprites and even
30 projects with more than 20,000 blocks, whose Scratch
identifiers are made available for further inspection.

The number of blocks metric was further analyzed to un-

50,000 - derstand code organization. The majority of Scratch code—
45,000 - 74.78% out of 36,085,654 blocks—is written within sprites.
40,000 - An additional 3.1% of the total blocks are found in the stage

35,000 - - - .
230,000 - class. More interestingly, the remaining 22.11% are blocks
% 25,000 -| within defined procedures, which are found in only 7.7%
& 20,000 - (17,979) of the projects. The projects that contain pro-
ig'ggg 1 cedures use them a lot; almost half of their total blocks

5,000 - (48.81%) are within procedures.
0 - We further analyzed the utilization frequency of the dif-
TYYe28388038883¢8 3 ferent block shapes and categories, as defined in the Scratch
- N g 2 m >

documentation. Figures 8 and 9 present the results in terms
Number of blocks of number of blocks from the total 36,085,654 blocks in the
dataset projects. The most commonly used blocks are from
the Control and Data categories. The Others category in-
cludes the blocks related to procedure calls and arguments.

To understand the complexity of the Scratch projects in

Figure 6: Number of blocks in the analyzed projects

4 TUD-SERG-2016-016

Number of
projects %
Retrieved 250,166
Analyzed 247,798
Non-empty (used for statistics) 233,491
Projects with:
Procedures 17,979 7.70%
Recursive procedures 1,052 0.45%
Variables 73,577 31.51%
Lists 9,358 4.01%
Conditional statements 92,959 39.81%
User input blocks 131,314 56.24%
Loop statements 180,210 77.18%
repeat until <condition> 31,739 13.59%
broadcast - receive 69,039 29.57%
Cloned scripts across sprites 59,634 25.54%
Cloned scripts within sprites 23,671 10.14%
Cloned procedures 4,945 2.12%
Cloned blocks across sprites 60,554 25.93%
Exact clones across sprites 27,574 11.81%
Exact clones within sprites 2,043 0.87%
Dead code 65,760 28.16%
Large scripts 69,521 29.77%
Large sprites 31,954 13.68%

Table 2: Elements and characteristics of the projects
in the dataset

8,000,000

7,000,000

6,000,000

5,000,000

4,000,000

3,000,000
2,000,000
1,000,000

0

& NG > Q @
&

W~

Figure 8 Number of blocks from each category in
the analyzed projects

our dataset, we use the McCabe cyclomatic complexity. The
results of this metric per script are plotted in Figure 7. The
majority (78.33%) of 4,049,356 scripts contain no decision
points, while 13.08% have a cyclomatic complexity of 2, con-
taining exactly one decision point. The complexity is higher,
over 4, for 3.67% of the scripts. The analysis also highlighted
209 scripts with a cyclomatic complexity over 100 and up
to 246.% Cyclomatic complexity was greater (mean value of
3.32) in defined procedures, with 56.46% of the procedures
having at least one decision point.

RQ1: The majority of Scratch projects are small and sim-
ple; 75% of the projects have up to 5 sprites, 12 scripts,
76 blocks and no decision points. Most code is written
in sprites. There exist surprisingly large and complex

projects.

4.2 Programming Abstractions and Concepts

The first method for abstraction that we investigate are

TUD-SERG-2016-016

S Elienne Hermans, Efthimia Aivaloglou - How Kids Code and How We Know: An Exploratory Study on the Scratch Repository?

Stack
Reporter
Hat
Cap
C
Boolean
0 5,000,000 10,000,000 15,000,000 20,000,000

Figure 9: Number of blocks of each shape in the
analyzed projects

7,000 -
6,000 -
5,000 -

2

£ 4,000 -

3

& 3,000 |
2,000 -
1,000 -

0 4
1 2 4 8 16 32 64 128 256 512 More
Number of procedures

Figure 10: Number of procedures for the 17,979
projects that include at least one

procedures. In the dataset we found 206,799 procedures
in 17,979 (7.7%) projects. As summarized in Table 1, the
projects that contain procedures have an average of 11.5 pro-
cedures, but with 53.59% of these projects having up to 2.
Figure 10 shows the distribution of procedures in projects.
Regarding procedure arguments, we found that 55.57% have
no arguments and 19.48% have only one (shown in Figure
11). The majority of procedure arguments (80.59%) are nu-
meric, and the least used argument type is the boolean one—
6.23% of the total procedure arguments, found in 5.32% of
the procedures.

The use of procedures in projects was further investigated
through the procedure calls, summarized in Figure 12. Most
procedures are called exactly once (62.32% of them) or twice
(14.30%) and from exactly one script (85.92% of them).
Examining the origin of procedure calls, we observed that

1,000,000 -
)
8 100,000 1
L2
E 10,000 -
=
5 1,000 -
S
] 100 -
3
©°
3 10
2
[-% 1

0 1 2 4 8 16 32
Number of arguments

64 More

Figure 11: Number of arguments for the procedures
in the dataset

1,000,000

100,000 -
10,000 -
1,000 -

100 -

Procedures (log scale)

10 4

1 4
S A S R

%,

2
)

%
)

Procedure calls

Figure 12: Number of calls of each procedure in the
dataset

1,000,000

100,000 -
10,000 -
1,000 -+

100 -

Projects (log scale)

10 4

1 -

N A TR ©) @

%
O'i”@@o

Number of variables and

Figure 13: Number of variables and lists used in the
projects

most of the calls (56.09%) originate from other procedures,
and even 1.06% originate from the same procedure, making
them recursive calls. These recursive procedures are found
in 1,052 projects, whose identifiers are made available.*

As shown in Table 2, almost one-third of the projects use
variables and a small number (4.01%) use lists. The num-
ber of variables that is being used is also limited, with only
7.48% of the projects having 5 or more variables. The dis-
tribution of variable and list utilization is shown in Figure
13. Exceptional cases exist: the analysis highlighted 842
projects with more than 100 variables and with a maximum
of 340. Examining the initialization of variables through
the set <variable> to <value> blocks, we found that for
4.83% of all variables this was missing. While failing to ini-
tialize a variable in Scratch will not result in a runtime error
as in some other programming languages, correctly setting
the initial state of the program is important [2].

Regarding program control features, conditional statements

(blocks if <condition> thenand if <condition> then else)

are used by 39.81% of the projects. Loops (blocks repeat

<times>, forever and repeat until <condition>) are more
common, used by 77.18% of the projects. The most common

of the three is the forever block, accounting for 51.86% of all

loops and the least common one is the repeat until <con-

dition> block, accounting for 11.57% and used in 13.59%

of the total projects.

Investigating user interactivity functionality, we found that
56.24% of the projects in the dataset contain user input
blocks—an average of 8.48 blocks per such project. Table 3
lists the frequency of use of user input controls. We do not
include the when Green flag pressed block here, as this is
just used to start a Scratch program and hence cannot really

Felienne Hermans, Efthimia Aivaloglou - How Kids Code and How We Know: An Exploratory Study on the Scratch Repositc S E[t{@]

Block Projects Occurrences
when <> key pressed 71,096 294,771
when this sprite clicked 39,179 198,342
(Sensing) key <> pressed? 37,919 291,657
(Sensing) ask <> and wait 19,039 66,850
(Sensing) mouse down? 9,115 54,079
(Sensing) <attrib> of <> 9,068 155,468
(Sensing) mouse X 5,977 27,321
(Sensing) mouse Y 3,940 22,035
when <sensor> > <value> 705 1,570
(Sensing) video <> on <> 434 1,397

Table 3: Frequency of use of user input blocks in the
233,491 projects of the dataset

be considered input into the program. The most commonly
used user input block is the when key pressed, found in
71,096 (30.45% of the total) projects. The most frequently
used parameter for the key attribute is the space key, fol-
lowed by the arrows and then the letters and numbers.

Users can define their own events, using the blocks broad-
cast, broadcast and wait and when I receive.These blocks
are used by 29.57% of the projects. broadcast and wait is
rarely used, in only 3.87% of the projects.

RQ2: A small number of projects (8%) use procedures,
but they use them a lot and for more complex code. Most
procedures are called once or twice, from a single script
which, in more than half of the cases, is another proce-
dure. Recursive procedure calls exist in 1,052 (0.5% of
the total) projects. One third of the projects use vari-
ables, sometimes without initializing them. 40% of the
projects contain conditional statements and 77% contain
loops, but conditional loops are rarely used. More than
half of the projects are interactive. 30% of the projects
use broadcast and receive blocks.

4.3 Code smells

The duplicated code smell is the first smell that we exam-
ine. As explained in Section 3.2, we use 5 as the minimum
number of blocks for the identified clones. In total, in the
dataset we found 170,532 scripts cloned across sprites in
59,634 (25.54% of the total non-empty) projects. 726,316
copies of these scripts were found, making each clone being
copied an average of 4.26 times. Figure 14 plots the distri-
bution of clones across projects. The majority of projects
contain up to two cloned scripts; 7.24% of the projects con-
tain three or more. Figure 15 plots the number of copies of
the identified clones. It is of interest that 79,378 (46.55%)
of the identified clones are copied three or more times, and
even in 585 cases from 411 projects they are copied more
than 50 times and up to 974.*

We further inspected which of the identified clones were
duplicated only within the same sprite: 63,682 (37.34% of
the total) clones, in 10.14% of all projects. Procedure clones
were measured to 12,878 (7.55% of the total) clones, in
2.12% of the projects.

Exact clones were found in 11.81% of the total projects.
Their total number was 66,750 (39.14% of the total) clones.
Exact clones in the same sprite are cases of clearly redundant
code. These were rare, found in only 0.87% of the projects.

Apart from whole scripts we also examined cases where
scripts differed only in the first (Hat) block. This way we

TUD-SERG-2016-016

1,000,000
100,000
10,000
1,000

Projects

100
10

1
0 1 2 4 8 16 32 64 128 256 More

Number of cloned scripts

M across sprites exact clones across sprites B within sprites

Figure 14: Cloned scripts in the dataset projects

100,000
10,000
1,000

100

Clones (log scale)

10

1
2 4 8 16 32 64 128 256 512 1024 More

Number of copies of cloned scripts

M across sprites exact clones across sprites B within sprites

Figure 15: Number of copies of the identified clones

examine if Scratch programmers assign the same function-
ality to handle different types of events. Cloned function-
ality blocks are found to be rare: without considering the
first block, only 2,243 additional clones were found in 920
projects.

The second smell that we examine is the dead code smell.
We identify four types of dead code: (1) procedures that are
not invoked, (2) unmatched broadcast-receive messages, (3)
code that is not invoked and (4) empty event scripts. In-
vestigating the first type, we find that a significant number
of the defined procedures (13,036 or 5.06%) are not called
in the projects. This is also shown in Figure 12 and it oc-
curs in 2,079 projects. For the second type, we examined
the broadcast-receive messages and found that they are not
always synchronized: 3,33% of the when I receive blocks
were found to wait for a message that is never being broad-
casted, while 4,4% of the broadcast blocks broadcast a mes-
sage that is not being received. This lack of syncronization
occurs in 18,669 (7.99% of the total) projects.

The third and fourth cases are incomplete scripts. They
are either never invoked due to the lack of a starting when
<trigger> block from the Scratch Events or Control cat-
egory, or are comprised of only a when <trigger> block
without any functionality. A total of 322,475 scripts like
that were found in 56,890 (24.36% of the total) projects.
The majority of these scripts (86.6%) are scripts missing
the starting block. Examining the size of these dead scripts,
72.34% are composed of a single block. As shown in Figure
16, however, considerably large dead scripts exist; 2,358 of
these scripts originating from 1,553 different projects have
more than 30 blocks and up to 2,610.

The number of projects exhibiting the dead code smell,
considering all four types of dead code combined, is 65,760

TUD-SERG-2016-016

SE|t{E&lienne Hermans, Efthimia Aivaloglou - How Kids Code and How We Know: An Exploratory Study on the Scratch Repository?

1,000,000

2 100,000 N\
3 \
% 10,000
- \\
©
()
S 1,000
3
o
5 100
£
2 10]
. ‘ -
1 10 100 1,000

Number of blocks in dead script

Figure 16: Size of scripts identified as dead code

(28.16% of the total projects).

Finally, we examine the large script and the large sprite
smells. The thresholds we use for the identification of large
scripts and large sprites are 18 blocks and 59 blocks respec-
tively, as explained in Section 3.2. The number of projects
exhibiting the large script smell, i.e., containing at least one
script with 18 or more blocks, is 69,521 (29.77% of the total
projects) and the number of projects with the large sprite
smell is 31,954 (13.68%).

RQ3: Code clones are found in 26% of the projects, with
almost half of the clones copied three or more times, in
the same or across sprites. 28% of the projects contain
code that is never invoked, and thus exhibit the dead code
smell. In some cases these scripts are large. The large
script smell is found in 30% of the projects and the large
sprite one in 14%.

5. DISCUSSION

5.1 Implications

We believe a large scale study of programs like ours can
help language designers to tailor their language. In this sec-
tion we highlight directions in which our study could support
language design. There are many other implications to be
considered, which is why we have made our dataset public.

5.1.1 Popularity of different block types

Our analysis shows that some categories of blocks are
rarely used, like the ‘Pen’ blocks, of which only 194,885 oc-
cur within 19,090 (8.17% of the total) programs. Hence, in
future changes to the language, ‘Pen’ blocks might be less
important to users to support or maintain.

5.1.2 Dead code

In our analysis, we find that more than one quarter of the
Scratch projects contain dead ‘scripts’: scripts that are never
invoked due to the lack of a starting when <trigger> block
from the Scratch Events or Control category, scripts that
are comprised of only a when <trigger> block without any
functionality, procedures that are not invoked, or unmatched
broadcast-receive messages.

In a sense, the dead scripts are harmless, as they are not
executed. However, they do cause ‘visual clutter’ and might
be distracting to novice programmers, as it might be hard
to see which scripts are dead. In contrast to other visual
educational languages, Scratch does not indicate scripts that
are dead. LEGO Mindstorms, for example, does give the
user such feedback by making unconnected blocks gray.

Looking at the number of unconnected blocks, we hypoth-
esize that Scratch programmers have a need for a separate
workspace to store unconnected blocks temporarily. We en-
vision that would be like the ‘backpack’ meant to move
scripts across sprites. In order to help novice programmers
keep their code clean, the programming interface could ac-
tively encourage users to move unconnected blocks to that
workspace when they exit the environment.

5.1.3 Exact clones between sprites

With occurrences in 11% of the Scratch projects in our
dataset, the use of exactly identical clones between sprites
is relatively common. In a sense, the Scratch users are not
to blame here, as Scratch does not support procedure calls
between sprites, only within them. So in many cases there
is no way to share the functionality other than by making
a copy. We are not aware of the underlying rationale of the
Scratch team that lead to this decision, however it seems
that a large part of the Scratch users would use the func-
tionality to call procedures between sprites.

5.1.4 Sharing of scripts and procedures

Investigating the use of clones between projects, we ob-
serve that there are 1,700 scripts that are used in multiple
projects, sometimes as often as in 1,600 different projects.
This seems to indicate that there are common patterns in
Scratch projects, which means it might be very beneficial
to Scratch programmers if they could not only share their
projects, but also share some of their functionality, for oth-
ers to use, like a library. An example of such a library could
be: functions for platforming games, including the move-
ment of a player, collision detection and the implementation
of ‘lives’. This might empower new Scratch users to get
started faster.

5.2 Threats to validity

A threat to the validity of this study is the fact that we did
not scrape a random sample, but the most recent 250,000
projects. It could be the case that the programming habits
of Scratch users are changing over time. However, we coun-
terbalanced that by using a large dataset which comprises
of around 2% of all 14 million shared Scratch projects.®.

Furthermore we use the number of blocks in the Scratch
projects as a measure for the length of a program, while this
does not exactly correspond to the ‘length’ of a program
in lines, and there can be multiple Scratch blocks on one
line. For example, in Figure 1 the ‘if’ and ‘touching’ blocks
are present on the same ‘line’. We however believe that
the number of blocks is a good proxy for size, and we plan a
future experiment in which we will compare ‘lines of Scratch
code’ to ‘number of blocks’.

6. RELATED WORK

The evaluation of block-based languages in general, and
Scratch in particular, as tools for programming education
has received significant research attention during the past
years. A number of studies have been carried out on the
understanding of programming concepts and the program-
ming practices of novice programmers in block-based envi-
ronments, on the programming skills they develop, and on
the quality of Scratch programs.

Shttps://scratch.mit.edu/statistics/

Felienne Hermans, Efthimia Aivaloglou - How Kids Code and How We Know: An Exploratory Study on the Scratch Repositc S E[t{@]

For example, a study on the internalization of program-
ming concepts with Scratch with 46 students was presented
in [12]. Concepts like loops, conditional loops, message pass-
ing, initialization, variables and concurency were examined,
and it was found that students had problems with the last
three. In a later study with an equal set of subjects [11]
the same authors identified two bad programming habits
in Scratch, namely bottom-up development and extremely
fine-grained programming. They connected the later to the
reduced use of if-blocks and finite loops and the increased
use of infinite loops, a finding that is verified by our study.
In [18] 29 Scratch projects created from 60 students working
in groups were evaluated based on a list of criteria related
to programming concepts, code organization and usability
design.

Most related to our study for the second research ques-
tion of programming abstractions and concepts is the work
by Maloney et al. [9], who analyzed 536 Scratch projects for
blocks that relate to programming concepts including loops,
conditional statements, variables, user interaction, synchro-
nization, and random numbers. Compared to their findings,
our investigation reveals increased use of the first three con-
cepts, and especially variables.

The Scratch automated quality analysis tools Hairball [2]
and Dr. Scratch [14] are also related to our work on smell
detection. The Hairball Scratch extension is a lint-like static
analysis tool for Scratch that can detect initialization prob-
lems and unmatched broadcast and receive blocks. In their
work [13], Moreno and Robles extended Hairball to detect
two bad programming habits in Scratch: not changing the
default object names and duplicating scripts, and apply them
for evaluating 100 projects from the Scratch repository. The
results on script duplication are substantially different than
ours—we find projects with script clones to appear half as
frequently. The Dr. Scratch tool [14] includes bad naming,
code duplication and dead code identification functionality,
and also evaluates Scratch projects in terms of abstraction,
parallelism, logical thinking, synchronization, flow control,
user interactivity and data representation.

7. CONCLUSIONS

In this paper we presented a large-scale study on 247,798
projects we scraped from the Scratch repository. We ana-
lyze these projects in terms of size, complexity, application
of programming abstractions and utilization of programming
concepts including procedures, variables, conditional state-
ments, loops, and broadcast-receive functionality. We find
that procedures and conditional loops are not commonly
used. We further investigate the presence of code smells, in-
cluding code duplication, dead code, long method and large
class smells. Our findings indicate that Scratch programs
suffer from code smells and especially from dead code and
code duplication.

In addition to the findings presented in this paper, we
provide as contributions the dataset that we used for our
study, as well as information on the edge cases that we found
in the dataset in terms of size and number of procedures,
variables, cyclomatic complexity, clones and dead code.

8. REFERENCES

[1] T. L. Alves, C. Ypma, and J. Visser. Deriving metric
thresholds from benchmark data. In 26th IEEE

TUD-SERG-2016-016

SE|t{E&lienne Hermans, Efthimia Aivaloglou - How Kids Code and How We Know: An Exploratory Study on the Scratch Repository?

(4]

(5

[6

(7l

(9]

(10]

[11

(12]

International Conference on Software Maintenance
(ICSM 2010), pages 1-10. IEEE Computer Society,
2010.

B. Boe, C. Hill, M. Len, G. Dreschler, P. Conrad, and
D. Franklin. Hairball: Lint-inspired Static Analysis of
Scratch Projects. In Proceeding of the 44th ACM
Technical Symposium on Computer Science Education,
SIGCSE ’13, pages 215-220, New York, NY, USA,
2013. ACM.

K. Brennan, C. Balch, and M. Chung. CREATIVE
COMPUTING. Harvard Graduate School of
Education, 2014.

M. Conway, R. Pausch, R. Gossweiler, and

T. Burnette. Alice: A Rapid Prototyping System for
Building Virtual Environments. In Conference
Companion on Human Factors in Computing Systems,
CHI 94, pages 295-296, New York, NY, USA, 1994.
ACM.

S. Cooper, W. Dann, and R. Pausch. Teaching
Objects-first in Introductory Computer Science. In
Proceedings of the 34th SIGCSE Technical Symposium
on Computer Science Education, SIGCSE ’03, pages
191-195, New York, NY, USA, 2003. ACM.

M. Fowler. Refactoring: improving the design of
existing code. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

F. Hermans and E. Aivaloglou. Do code smells
hamper novice programming? In Proceedings of the
International Conference on Program Comprehension,
2016. to appear.

F. Hermans, M. Pinzger, and A. van Deursen.
Detecting and refactoring code smells in spreadsheet
formulas. Empirical Software Engineering,
20(2):549-575, 2015.

J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and
N. Rusk. Programming by choice: Urban youth
learning programming with scratch. In Proceedings of
the 39th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE 08, pages 367-371, New
York, NY, USA, 2008. ACM.

T. J. McCabe. A complexity measure. IEEE Trans.
Software Eng., 2(4):308-320, 1976.

0. Meerbaum-Salant, M. Armoni, and M. Ben-Ari.
Habits of programming in scratch. In Proceedings of
the 16th Annual Joint Conference on Innovation and
Technology in Computer Science Education, ITiICSE
’11, pages 168-172, New York, NY, USA, 2011. ACM.
O. Meerbaum-Salant, M. Armoni, and M. M. Ben-Ari.
Learning Computer Science Concepts with Scratch. In
Proceedings of the Sixth International Workshop on
Computing FEducation Research, ICER 10, pages
69-76, New York, NY, USA, 2010. ACM.

J. Moreno and G. Robles. Automatic detection of bad
programming habits in scratch: A preliminary study.
In 2014 IEEE Frontiers in Education Conference
(FIE), pages 1-4, Oct. 2014.

J. Moreno-LeAgn, G. Robles, and

M. RomAan-GonzAalez. Dr. Scratch: Automatic
Analysis of Scratch Projects to Assess and Foster
Computational Thinking. RED : Revista de
EducaciAsn a Distancia, (46):1-23, Jan. 2015.

TUD-SERG-2016-016

(15]

(16]

(17]

(18]

(19]

B. Moskal, S. Cooper, and D. Lurie. Evaluating the
Effectiveness of a New Instructional Approach. In
Proceedings of the SIGCSE technical symposium on
Computer science education, 2005.

T. W. Price and T. Barnes. Comparing Textual and
Block Interfaces in a Novice Programming
Environment. In Proceedings of the Eleventh Annual
International Conference on International Computing
Education Research, ICER ’15, pages 91-99, New
York, NY, USA, 2015. ACM.

M. Resnick, J. Maloney, A. Monroy—HernAandez7

N. Rusk, E. Eastmond, K. Brennan, A. Millner,

E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai.
Scratch: Programming for All. Commun. ACM,
52(11):60-67, Nov. 2009.

A. Wilson, T. Hainey, and T. Connolly. Evaluation of
computer games developed by primary school children
to gauge understanding of programming concepts. In
European Conference on Games Based Learning, page
549. Academic Conferences International Limited,
2012.

D. Wolber, H. Abelson, E. Spertus, and L. Looney.
App Inventor: Create Your Own Android Apps.
O’Reilly Media, Sebastopol, Calif, 1 edition edition,
May 2011.

Felienne Hermans, Efthimia Aivaloglou - How Kids Code and How We Know: An Exploratory Study on the Scratch Repositc SE

10 TUD-SERG-2016-016

TUD-SERG-2016-016 S E(I
ISSN 1872-5392

