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ABSTRACT

Visual, block-based programming environments present an
alternative way of teaching programming to novices and
have proven successful in classrooms and informal learning
settings. However, few studies have been able to attribute
this success to specific features of the environment. In this
study, we isolate the most fundamental feature of these en-
vironments, the block interface, and compare it directly to
its textual counterpart. We present analysis from a study
of two groups of novice programmers, one assigned to each
interface, as they completed a simple programming activity.
We found that while the interface did not seem to affect
users’ attitudes or perceived difficulty, students using the
block interface spent less time off task and completed more
of the activity’s goals in less time.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and In-
formation Science Education; D.1.7 [Programming Tech-
niques|: Visual Programming
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1. INTRODUCTION

Programming is a challenging subject to learn, and edu-
cators have investigated many strategies for making it more
accessible to students [17]. Much of this effort has been di-
rected towards creating better programming environments
for novices, resulting in many new systems [13, 18]. A com-
mon feature in many modern novice programming environ-
ments is the use of drag-and-drop blocks of code, which fit
together to form a program, minimizing the possibility of
syntax errors and the need to memorize procedure names.
While this feature can be traced at least as far back as
the LogoBlocks environment [3], it has become prevalent in
many more recent environments [1, 8, 10, 16, 29], which have
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been evaluated in classrooms [24, 25, 26], summer camps [21,
31] and after-school programs [22].

In this paper, we will use the term Block-Based Program-
ming Environment (BBPE) to refer to those environments
that allow users to construct and execute computer pro-
grams by composing atomic blocks of code together to pro-
duce program structure. These code blocks may additionally
have slots, which can be filled by other blocks; for example,
a function call block may have slots for each of its parame-
ters. These blocks may represent high-level structures, such
as methods or loops, or low-level operators such as multipli-
cation or equality comparison. An example is shown in Fig-
ure 1. There exist a variety of programming environments
which use the block metaphor, but here we limit our use of
the term BBPE to those that use procedural languages. For
a more thorough introduction to one BBPE, see [29].

Much work has gone into the evaluation of BBPEs. Pre-
vious studies have identified what programming concepts
students use in BBPEs [22], measured learning gains from
classes based on BBPEs [24, 26], and investigated the ease of
transitioning from these environments to textual program-
ming [9, 31]. However, these studies evaluate entire pro-
gramming environments, or even whole curricula, and thus
it is difficult to attribute success or failure to any specific
aspect of the environment.

This study seeks to isolate the effects of a block interface
on the experience of novices when learning to program. To
do this, we created two instances of a programming environ-
ment, differing only in that one uses a textual programming
interface, and one uses a block interface. We collected data
from novice, middle-school programmers as they used one of
the two interfaces, and analyzed it to answer the following
research questions. When compared to a textual interface,
how will a block interface:

RQ1. Affect students’ attitudes towards computing?
RQ2. Affect their perceived difficulty of programming?

RQ3. Affect their performance on a programming activity?

whenClicked {

Figure 1: An example of a simple block program,
consisting of a procedure call with two literal argu-
ments, nested inside of of an event block.



To the best of our knowledge, this is the first study to
directly compare block and textual programming interfaces
in an otherwise controlled setting. Our results contribute to
a better understanding of the role that block interfaces play
in students’ experiences in BBPEs. The following sections
cover related work, detail the methodology of this study, and
present results, analysis and discussion of the data.

2. RELATED WORK

2.1 Block-based Environments

There are a variety of BBPEs available, many appearing
within the last 5-10 years. While most of these environments
are developed in academic settings, others, such as Google’s
Blockly [1] and LEGO Mindstorms [2] emerged from indus-
try. A full review of BBPEs is beyond the scope of this
paper, but we highlight two examples, Scratch and Alice,
which capture the common characteristics of BBPEs and
have been evaluated in a number of setting.

Scratch [29], developed by researchers at MIT, is one of the
best-known BBPEs. It was designed to be “more tinkerable,
more meaningful and more social” than previous novice pro-
gramming environments, such as LOGO [27]. To that end,
Scratch features primarily graphical output, allowing users
to create and manipulate 2D sprites, while adding music, an-
imation and interactivity. The Scratch website allows users
to upload, share and remix each other’s programs, adding a
social element to the environment. Scratch is also notable for
its use of executable program fragments. Scratch programs
can be built in small chunks, and any piece of Scratch code
can be individually executed, with its effects immediately
visible. Scratch has become a widely used programming
language. As of June 2015, it ranks 25th on the TIOBE
index!, which measures programming languages’ popularity
based on search engine results.

Scratch has been evaluated in a number of contexts.
Meerbaum-Salant et al. [24] designed a two-hour Scratch
curriculum and observed its implementation in two ninth
grade classrooms. An analysis of student scores on a pre-
and post-test of CS concepts showed significant improve-
ment after using Scratch, though students did struggle with
more abstract concepts such as initialization, variables and
concurrency. Maloney et al. [22] describe their experience
using Scratch in an urban after-school center and their anal-
ysis of the programs created. Scratch was popular, with
students using it voluntarily and more frequently than any
other available design software. While around 20% of the
projects included only media manipulation without code,
about half of the remaining programs employed loops and
user interaction, with another quarter using conditional and
synchronization statements. Students produced programs of
increasing complexity over time.

Alice 2 [8], and its successor Alice 3 [9], are BBPEs which
allow users to program within a 3D environment. Alice
was one of the first novice programming environments to
adopt a drag-and-drop interface. It employs an event-based,
object-oriented paradigm, allowing users to add objects to
their scene, manipulate the objects’ attributes and call their
methods. Alice offers a library of 3D objects, animations
and sounds, making it a media-rich experience. Alice uses
drag-and-drop controls for manipulating lines of code and
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some expressions, but relies more heavily on menus to give
the user access to the many manipulable properties of each
object. Alice’s interface shares the goal of many BBPEs of
simplifying programming by removing the capacity for syn-
tax errors.

Moskal et al. [26] developed an introductory college cur-
riculum using Alice. They compared students who under-
went this course prior to, or concurrently with, their first
CS1 course to students who took only the CS1 course. They
found that the Alice course significantly improved students’
grades in the CS1 course, as well as retention in CS over
a two year period. They found these trends more apparent
with “high-risk” students, who had less math experience and
no programming experience prior to college. A similar study
by Cooper et al. [8] supports these findings, showing that
an Alice-based curriculum helped achieve improved grades
and retention. Kelleher et al. [19] found that Alice could be
further adapted to young female students by adding features
to facilitate storytelling programs, such as easier animations
and more character-driven methods.

Other popular BBPEs include MIT App Inventor [28],
which allows users to design and program Android apps in
a web application. It has been evaluated in K-12 classrooms
and summer camps, suggesting it is a powerful, motivational
and accessible tool [25], which can serve as a bridge to tex-
tual coding in Java [31]. The block interface of App Inventor
was turned into a standalone project called Google Blockly
[1], which was designed to allow developers to create visual
interfaces for their applications. LEGO Mindstorms NXT
are customizable LEGO robotics, which can be programmed
using a simple block programming environment that em-
ploys both procedural and data-flow paradigms. LEGO
Mindstorms have been used to teach programming to mid-
dle school students [6] and in introductory undergraduate
CS courses [7]. Harvey and Ménig created Snap (formerly
BYOB) [15], a web-based BBPE based on Scratch, which
is being used as the environment of choice for a pilot of an
upcoming AP CS Principles course [14].

In addition to their block interfaces, many BBPEs share
the following characteristics as well:

e They target novice programmers [8, 15, 28|, often
younger children during primary or secondary educa-
tion [9, 19, 25, 29, 31].

e Their programs reflect the syntax and structure of ex-
isting programming languages [8, 15, 16].

e They situate programming in a multi-media context,
with a focus on cultural relevance [30]. Users can in-
tegrate art, music and interactivity into their projects
[21, 22], leading to the creation of games [31], stories
[19] and apps [28].

We present these characteristics separately from our defi-
nition of BBPEs, which is concerned only with the block
interface. There exist textual programming environments
which emphasize these features (e.g. Greenfoot [20]), and
BBPEs which do not (e.g. Blockly [1]).

2.2 Comparing Block and Textual Languages

Some studies do compare block and textual programming
environments to each other. Lewis [21] compared two groups
of 5th grade students participating in a computing summer



camp, over the course of 6 days. One group was taught us-
ing Scratch, and the other was given similar lessons using
Logo, a textual language. The course was designed to teach
“making music, movies and games using computers,” and as
such its lessons were media-rich. Contrary to the author’s
hypothesis that Scratch’s lack of syntax errors would make
learning programming easier, students found the exercises
equally difficult in both groups. Students in the Logo condi-
tion also expressed more confidence in their computing abil-
ity after the activities. Both languages seemed better suited
to teaching specific constructs, with Logo students showing a
better understanding of loops and Scratch students showing
a better understanding of conditionals.

Booth and Stumpf [5] studied adults as they learned to
program for Arduino, an electronics platform, through two
20-minute exercises. They compared two conditions, which
respectively used a Java-based textual editor and a block-
based editor called Modkit, which the authors compare to
Scratch. Their results suggest that the block-based editor
may have improved completion rates, and that these effects
were more pronounced in the activity in which participants
were modifying an existing program, rather than creating a
new one. They found that the Modkit group found their ex-
perience more user friendly and had a lower perceived work-
load and higher perceived success. While the authors also
support their conclusions with quotations from participants,
they had a small sample size and did no statistical analysis.

McKay and Kolling [23] used predictive modeling to com-
pare a variety of block and textual programming environ-
ments used for education, including Scratch, Alice, Green-
foot, LEGO Mindstorms NXT and Python. Using a proto-
typing tool called CogTool, they modeled the execution time
of a variety of programming tasks in each environment. The
results suggest that textual languages are better suited to
some tasks, such as insertion and replacement, while block
languages are better suited to deletion and movement. Im-
portantly, they also show that there is large variance among
block languages, and features such as how the language han-
dles instantiating literals can have a large effect on task time.
The authors note that their model does not account for time
spent thinking or designing the program, and it is possible
that some languages facilitate this better than others.

Other work has investigated the transition from BBPEs
to textual programming. Wagner et al. [31] introduced K-12
students at a summer camp to programming through MIT
App Inventor, but transitioned after two days to the Java
Bridge, a Java implementation of the App Inventor API.
They found that by repeating exercises first using a block
interface and then a textual interface, students were able to
mentally map familiar block procedures to the new textual
procedures. Dann et al. [9] used Alice 3 in an introduc-
tory undergraduate CS course, and transitioned from Alice’s
original block interface to a Java implementation of the Al-
ice API. Students were given a test at the end of the course,
which used Java code in its questions. The authors com-
pared students’ scores with those of the previous, all-Java
version of the course. They found that the Alice classes
performed on average at least one grade level higher than
the previous pure Java classes on each section of the test.
These studies are important both because they show that
skills learned in a BBPE can be transferred to a textual en-
vironment, and because they serve as examples of textual

environments that can offer the same media-rich features of
BBPEs without a block interface.

2.3 Visual Programming Languages

The programming languages employed by BBPEs are of-
ten classified under the larger category of Visual Program-
ming Languages (VPLs). In their taxonomy of novice pro-
gramming environments, Kelleher and Pausch [18] catego-
rize Alice 2 and other early BBPEs like LogoBlocks [3] as en-
vironments trying to “find alternatives to typing programs,”
specifically by “constructing programs using graphical... ob-
jects.” A number of authors also refer to specific BBPEs as
visual programming languages or environments [5, 21, 22,
31]. While we agree that BBPEs are visual, we find it im-
portant to distinguish them from more traditional VPLs,
such as spreadsheets, flowcharts and the LabView language
[32]. This distinction is important due to the body of re-
search comparing these VPLs to textual languages, which
may not be applicable to BBPEs.

Historically, the evidence supporting VPLs has been
mixed [32]. For instance, Greene and Petre [11] compared
programmers’ ability to read and comprehend LabView with
a simple textual programming language. They found that
VPL comprehension was slower for all programmers, regard-
less of whether their past experience was with LabView or a
textual language. The authors later analyzed two dataflow
VPLs along a cognitive dimensions framework [12], finding
them lacking in a number of dimensions compared to their
textual alternatives. For example, they found that the VPLs
had higher Viscosity, the amount of effort required to make
a small change to a program, and that they forced Prema-
ture Commitment, making users commit to code structure
before their programs are fully formulated. We reference
these studies to differentiate their work on dataflow VPLs
from more modern research on BBPEs.

3. METHOD

While many studies have evaluated BBPEs for their ef-
fectiveness in engaging students, making programming ac-
cessible, or teaching CS concepts, these studies have eval-
uated the environments holistically. This makes it difficult
to assign success to any single aspect of the environment,
including the block interface. Since many BBPEs employ a
media-rich environment, for instance, perhaps their success
is due primarily to this fact, and not to their novel inter-
faces. Even those studies which control for content when
comparing BBPEs with their textual counterparts [5, 21]
are still comparing two different programming environments
(e.g. Scratch and Logo), which may differ in a number of
ways outside of their programming interfaces that could ac-
count for different outcomes. To address this, our method-
ology was designed to isolate the effect of the programming
interface on novice students as they learned to program.

3.1 The Environment

For our programming environment, we chose Tiled
Grace [16], a web-based environment that implements both
block and textual programming interfaces, and even allows
the user to switch between the two when working. The
“tiled” version of Grace supports the usual features of a
BBPE, with drag-and-drop code blocks. These blocks cor-
respond directly to constructs in the Grace programming
language, which is also supported by the editor. A program



written with either interface will consist of the same text
in the same general layout, but in the block interface this
text is contained within blocks. We created two versions of
the Tiled Grace environment, which were locked into either
the block or textual interface, but were otherwise identical.
Both versions of the environment can be seen in Figure 2.

We also performed some minor changes to the environ-
ment to make the block interface more similar to other
BBPEs. The authors of Tiled Grace note that the coloring
of their blocks was essentially arbitrary, so we colored blocks
by functionality, as is done in other BBPEs (e.g. one color
for control structures, variable manipulation, etc.). The au-
thors also note that while other BBPEs use block and hole
shapes to indicate how blocks should fit together, the au-
thors leave this for future work. As a simple improvement,
we added rounded corners to expression blocks (such as lit-
erals or functions that return a value), to indicate that these
block could be placed into parameter holes. The shapes were
only guidelines, and any block could still be placed in any
hole, which is not true of some BBPEs. While Tiled Grace
offers a palette of usable blocks, there is no equivalent for
textual coding. To keep the two interfaces as similar as pos-
sible, we also added a “Code Palette,” consisting of equiv-
alent blocks of sample code. Where the blocks had holes
to indicate where other blocks should be placed, the Code
Palette snippets had dummy values for method parameters
and comments indicating where lines of code could be added.
Expression code snippets had a blue background, similar to
the rounded corers of the block interface. We found these
to be additions that a novice textual programming environ-
ment could reasonably implement for a specified domain.

Since our goal was to evaluate the interface in the con-
text of novice programmers, we developed a programming
exercise based on an Hour of Code activity from the Snap
website [15], a tutorial designed to introduce novices to pro-
gramming for the first time. The exercise had users create a
simple web-based game, similar to whack-a-mole, in which
users attempt to click on a sprite as it jumps around the
screen to win points. Many BBPEs support the creation of
similar, simple games. The exercise was split into 9 sections,
with tutorial text introducing each one. Each section intro-
duced a new goal, which often built off of previous goals. The
tutorial text was the same for both versions of Tiled Grace,
except where the differing interfaces necessitated changes
(referring to “blocks” instead of “code”). A finished project
required the use of various programming concepts, including
events, loops, variables and conditionals.

3.2 Procedure

This study took place as part of a middle school STEM
outreach program called SPARCS [6]. The program, which
meets for half-day sessions approximately once a month dur-
ing the school year, consists of lessons designed and taught
by undergraduate and graduate students to promote techni-
cal literacy. We worked with a group of sixth graders, who
were randomly assigned to use the block interface, and a
group of Tth graders, who were assigned to use the textual
interface. We chose to assign the conditions by classroom,
rather than by student, to avoid confusion from students
within a classroom seeing different interfaces. The Block
group consisted of 17 6th grade students (12 male, 5 fe-
male). The Text group consisted of 14 7th grade students,
(11 male, 3 female). We took measures to test for population

1 dialect "hoc”

whenClicked {

say (")
turnAround

goToX (pickRandom (-138) To (138)) ¥ (8) 7\

IR ST RPN

¥
s

ay |("Welcome to Hour of Code™)|

Code Pallet:
whenCLicked
// code goes here!
1
turnhround
goTox (0) ¥ (0)
pickRandom (0) Te (0)

say ("Hello World!™)

b

whenClicked {

Figure 2: A comparison of the textual (top) and
block (bottom) interfaces. The coding interface for
both consists of a work area (left), an output can-
vas where the game can be played (top-right) and a
palette of usable blocks or code (bottom-right).

differences between the classrooms, which are explained in
Section 5. The Block group participated in the study in the
late morning, while the Text group held an unrelated lesson
on security, with no content that addressed programming.
The text group participated in the study approximately 3
hours later, in the early afternoon. The students in both
groups had participated in previous SPARCS sessions that
semester, but none had participated in previous years.

In each classroom, the first author led the study. Before
starting, the students were directed to complete a brief pre-
survey (covered in Section 4.1). The programming exercise
was then explained to the students. The students were al-
lowed to go through the exercise at their own pace. If they
had questions, the students were allowed to ask for help from
the student volunteers, and the volunteers made a note of
the type and duration of assistance offered. After finishing
the exercise, the students were allowed to continue to work
on their game. After 45 minutes, the students were directed
to take a post-survey (covered in Section 4.1). The pro-
gramming environment was instrumented to log most stu-
dent interactions, such as button presses, block drags and
compilations. Snapshots of each student’s code were saved
at regular intervals and each time it was run.

Occasional technical issues did occur in both groups. One
student in each group had severe technical issues, and these
students were excluded from analysis (and are not reflected



Efficacy: Please say how confident you are that you can
do each of the following tasks. I can:

Use a computer to solve a problem

Write a computer program

Create something interesting using a computer

Explain how a computer works
Choices: Strongly Disagree, Somewhat Disagree, Neutral,
Somewhat Agree, Strongly Agree

Interest: Please say how likely you think you are to do
each of the following in the future:

Take a programming or Computer Science class

Create a computer program, app or game for fun

Learn more about programming on your own
Choices: Very Unlikely, Somewhat Unlikely, Undecided,
Somewhat Likely, Very Likely

Table 1: Efficacy and Interest survey questions.

in the counts above). Further, one student in the Text group
had a parent present (this is not typical), who offered signif-
icant help, and this student’s data was also excluded from
analysis. Some students in the Block group arrived late, and
the group was given more time to compensate; however, only
the first 45 minutes of any given student’s work is analyzed
(not including time spent taking the pre-survey).

4. RESULTS
4.1 Survey Results

One set of survey questions was presented to students in
both the pre- and post-survey. This was done to account for
initial differences in attitudes towards computing between
the two groups. This set of questions consisted of three sec-
tions. The first section assessed students’ self-efficacy with
regards to computing, and the second assessed students in-
terest in computing in the future. These sections consisted
of 3-4 Likert items, which are presented in Table 1. The
last section consisted of three knowledge-based questions,
in which students were asked to evaluate the output of a
code routine. The code was presented as blocks or text to
match the interface the student was using. The code used
in these questions is presented in Figure 3. The questions
were identical in the pre- and post-surveys, except that the
Knowledge questions had numeric values changed on the
post-survey. We calculated averages from the Likert ques-
tions to produce a numeric value for each student (1-5) for
Efficacy and Interest questions in both the pre- and post-
survey. We also calculated the number of correct answers in
the Knowledge section (0-3) for both surveys. A summary
of the results is presented in Table 2.

Since SPARCS is a voluntary program, we could not force
students to take the surveys. In order to start the activ-
ity, the students did have to complete the pre-survey, but
despite strong encouragement, some chose not to complete
part or all of the post-survey. In the Block group, 15 of 17
students completed part or all of the post-survey, and in the
Text group, 9 of 14 students did so. Students who failed to
complete the post-survey were excluded from our analysis of
survey results but were included in log data analysis.

A second set of questions was asked of both groups only in
the post-survey. These questions assessed the user’s experi-

var z:= 0
var y := 8 forever {
var x := 7||if (y > 4) then { if (z < 5) then {
X :=x + 2 y :=y-5 print z
print(x) } ¥
print(y) z =z +1
}

Figure 3: Students were asked to determine the out-
put of these programs in the pre- and post-surveys.

Type (Group) Pre Post Change

Efficacy (B) 3.51 (0.90) | 3.88 (0.73) | 0.250 (0.50)
Efficacy (T) 3.50 (0.70) | 3.75 (0.03) | 0.167 (0.57)
Tnterest (B) 124 (0.70) | 4.26 (0.53) | 0.128 (0.42)
Tnterest (1) 376 (0.71) | 3.93 (0.81) | -0.037 (0.42)
Knowledge (B) | 1.53 (0.94) | 1.30 (0.95) | 0.100 (0.99)
Knowledge (T) | 1.14 (0.86) | 1.13 (0.99) | 0.125 (0.64)

Table 2: Results (and standard deviations) from the
pre- and post-survey. Efficacy and Interest scales
were from 1-5. Knowledge scores range from 0-3.
The Post and Change columns are computed only
for the students who took the post-survey. B and T
indicate Block and Text groups.

ence when performing the activity, and asked them to rate
their difficulty performing certain tasks within the activity.
Both groups of questions received very similar ratings across
conditions. The results of the difficulty questions can be seen
in Figure 4. Finally, demographic data was collected, along
with questions about the students’ access to technology.

4.2 Logged Interactions

Each time the student performed an action within the en-
vironment, it was timestamped and logged to a database.
Some actions were specific to one interface, such as drag
and drop actions. Other actions, such as advancing to the
next section of the tutorial, were used in both interfaces.
From these logs, the time spent on each section of the tuto-
rial was calculated for each student. Students were able to
skip ahead and revisit sections, so the time spent on a given
section may be divided among multiple visits. Idle time,
defined as going more than 60 seconds without modifying
code, was also calculated for each student. Though students
were strongly encouraged to use all available time, some stu-
dents also chose to end the activity early. The duration each
student spent in the activity was also calculated.

The students’ programs were also saved to the database
after each edit. An ideal finished program (not from the col-
lected data) is shown in Figure 5. Programs were analyzed
for goal completion, as explained in Section 5.2.

S. ANALYSIS

We compared pre-survey and demographic data from both
conditions to determine if there were significant differences
between groups. In this analysis we did include students
who did not finish the post-survey. We investigated re-
sults from each of the questions presented in Table 1, and
the data did not appear normally distributed; therefore, a



Difficulty Ratings by Condition and Type

Instructions (B)
Instructions (T)
Plan (B)

Plan (T)
Compile (B)
Compile (T)
Implement (B)
Implement (T)
Debug (B)
Debug (T)

Difficulty Type (and Condition)

60 40 20 0 20 40 60
Percent

Very Difficult Easy |
Difficult Very Easy il
Neutral

Figure 4: The distribution of difficulty ratings given
by students in each condition. The questions, in or-
der, asked users to rate their difficulty understand-
ing instructions, deciding what to do, getting the
program to run (compile), implementing a solution
and figuring out what went wrong (debugging).

Mann-Whitney U Test was performed? to determine if one
group had significantly higher average ratings on any of the
three questions. The Block group did have a significantly
higher Interest rating (W = 163, p = 0.040). No other
differences between the groups were significant.

Demographic information included questions about access
to computers, frequency of computer use and past comput-
ing experiences. These questions had similar results between
groups, and no differences were significant. Lastly, both
groups received an almost identical amount of volunteer as-
sistance during the experiment. Since there were few dif-
ferences between the two groups, we determined that they
could be compared directly, but the difference in Interest
ratings should be noted. We performed three primary anal-
yses, covered in the following sections.

5.1 Survey Analysis

The survey questions shown in Figure 1 were repeated in
both the pre- and post-survey. We first wanted to determine
if the activity had an effect on participants’ answers to these
questions. Only the Efficacy scale shows a meaningful im-
provement. The data did not appear normally distributed,
so we performed a Wilcoxon Signed-Rank Test and found
the improvement to be significant (V = 102, p < 0.040,
Cohen’s d = 0.289). Note that this effect is present when
considering both conditions together, but not strong enough
to be significant in either condition alone. The effect is more
pronounced in the Block group, and we compared the im-
provements of both groups using a Mann-Whitney U Test,
but the difference was not significant (W = 62, p = 0.412).

We investigated the Efficacy Likert items individually to
determine which contributed to the improvement. We tested
each item using a Wlxocon Signed-Rank Test and used the

2 All statistical analysis was performed using the R statistical
software package.

1 dialect "hoc”

2 Goals: 123456789
var delay := 2 colors: I
var score = @
var maxScore = @
whenClicked {

say "

delay := delay - 8.1

score = score + 18

if (maxScore < score) then {
maxScore := score
clear

B

forever {

goToX({ pickRandom (-198) To (198) )
¥ { pickRandom (-138) To (138) )

turnAround
if (score > 8) then {
score = score - 1

wait (delay)
N
24
25 goToX (-198) Y (138)

say ("Welcome to the hour of code")

- penDownl

Figure 5: The target finished program. Colors indi-
cate the goals to which each line of code corresponds.

Benjamini-Hochberg procedure [4] to control the False Dis-
covery Rate (FDR) at 0.05. The items which showed a sig-
nificant improvement were Item 2, “I can write a computer
program” (V = 16.5, p = 0.006), and Item 4, “I can explain
how a computer works” (V = 4.5, p = 0.005). Surprisingly
Item 3, “I can create something interesting using a com-
puter,” showed a significant decline (V' = 24.5,p = 0.035).
This may be in part the result of very high pre-suvey ratings.
The distributions of each question can be seen in Figure 6.

The remaining questions were only present in the post-
survey, as they were about the completed activity. This in-
cluded questions about the user’s experience using the inter-
face, and their difficulty completing the activity. Responses
appeared to have similar distributions in both conditions,
and Mann-Whitney U Tests confirmed that there were no
significant differences between conditions.

These analyses suggest that the activity did have some
positive impact on students’ self-efficacy regarding comput-
ing, though for such a short activity it is not surprising that
no other effects were observed. Still, the results offer little
evidence to support a claim that the interface affected stu-
dents’ attitudes towards computing. Most surprising is that
it seems to have had no impact on students’ perceived dif-
ficulty, despite pronounced differences in student behaviors
in the system, as explored in the following sections.

5.2 Time Analysis

As discussed in Section 4.2, the time each student spent
on the activity was calculated, including how much of that
time was spent active or idle. Results are shown in Table 3.
While the interface did not appear to affect the duration
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Figure 6: The distribution of ratings given by stu-
dents in the pre- and post-survey for each Efficacy
item (see Figure 1 for the items’ text).

Value
Total 2273.9 (596.4)
Idle 407.2 (238.9)
Active | 1866.8 (617.4)

Block Text P d
2208.0 (427.1) | 0.851 -
793.5 (368.3) | 0.002 | 1.27
1414.5 (463.1) | 0.014 | 0.82

Table 3: Average total, idle and active time in sec-
onds for both groups (with standard deviations).
The differences in idle and active time are signifi-
cant, and Cohen’s d is given.

spent on the activity, it did have a significant effect on both
idle and active time.

5.3 Completion Analysis

Each section of the activity had a goal, stated in the in-
structions, which could be uniquely accomplished with the
blocks and concepts introduced in that section. Snapshots
of each participant’s program were analyzed to determine if
and when each of the sections’ goals were met. Goal speci-
fications were designed to be independent of the rest of the
program; thus, a student could accomplish a section’s goals
even after skipping previous sections of the activity, which
did occur. Since programs with syntax errors are inher-
ently ambiguous and could not be tested by students, only
compilable snapshots of programs were analyzed. While we
believe this requirement to be reasonable, it likely had a dis-
proportionate effect on textual programs. The analysis was
automated, but we checked it for correctness manually on
1/8 of the students. While at least one student completed
each goal, no students completed the 8th or 9th goal within
the first 45 minutes analyzed here.

Figure 7 shows the percentage of students who completed
each goal, as well as the percentage who viewed that goal for
at least 10 seconds. The Block group outperformed the Text
group in all respects by these measures. Of particular inter-
est is Goal 4, which introduced loops. A nearly equivalent
percent of participants from both groups viewed the prob-
lem, but many more from the Block group completed the
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Figure 7: For each condition, the solid line shows
the percentage of students who completed each goal.
The dashed line shows the percentage of students
who viewed each goal for at least 10 seconds.

goal to specification. Goal 5 then shows a marked dropoff
in viewers for the Text group, but an increase for the Block
group. This implies a logical relationship between the com-
pletion of a goal and viewing the next goal.

Figure 8 shows the average total time that had passed be-
fore students completed each goal. Each bar only includes
the students who completed the given goal. On sections
where at least 25% of students in both conditions completed
the goal, a Mann-Whitney U Test was performed (data did
not appear normally distributed) to determine if the dif-
ference in completion time was significant, with the FDR
controlled at 0.05. For each of these goals it was significant:
Goals 1 (W = 13,p < 0.001),2 (W = 21.5,p = 0.018)
and 4 (W = 4, p = 0.017). This seems sufficient evidence
to assert that the interface significantly increased the rate
at which students completed programming goals.

Pearson correlations were calculated between the num-
ber of goals completed and a variety of the survey ques-
tions, including pre- and post-survey Efficacy, Interest and
Knowledge scores, and reported difficulty, and none ap-
peared meaningful, or had a magnitude greater than 0.35.

6. DISCUSSION

We now revisit our original research questions. Compared
with the textual interface, how did the block interface:

RQ1 Affect students’ attitudes towards computing? This
question was addressed primarily by the Efficacy and In-
terest questions in the pre- and post-surveys. While we
did observe significantly improved responses to the Efficacy
questions as a whole after the activity, two items primarily
accounted for this shift. The most relevant item, “I can write
a computer program,” was one of these. It is unclear why one
item, “I can create something interesting using a computer,”
showed a decline. It may be a reflection of the students’
opinion of the programming activity, more than their self-
efficacy with regards to computing. Regardless, there was
no significant difference in improvement on these questions
between conditions. It is quite possible that the effect was
simply too small to be observed in the relatively small sam-
ple size of this study. It is also possible that a longer activity
would have produced more pronounced changes, and these
would have been more dependent on the programming in-
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Figure 8: The average total time spent in the activ-
ity before completing each goal, with bars indicat-
ing standard error. The numbers at the bottom of
each bar indicate the number of students who com-
pleted the goal. Values are not strictly increasing, in
part because goals could be completed out of order.
Goals 5-9 are not shown, as at most 1 student from
the Text group completed them.

terface. Interpretation is further complicated by the higher
pre-survey Interest ratings in the Block group. While we
certainly cannot argue against the possibility that the inter-
face has an impact on user attitudes towards computing, we
can offer no evidence to support it.

RQ2 Affect students’ perceived difficulty of programming?
There is no survey evidence to support the claim that the
Block group experienced less difficulty than the Text group,
either in general or on specific aspects of programming. This
matches similar findings in previous work [21]. Interestingly,
there was little correlation between perceived difficulty and
goal completion. One possible explanation for both of these
observations is that the free-form nature of the exercise al-
lowed students to progress until they hit an aspect of the
activity that was challenging, and that is where they spent
the majority of their time. Even if the block interface helped
students overcome confusion about the language’s syntax,
perhaps they simply moved on to other, equally challeng-
ing, aspects of programming. In this case, one might still
expect students to emphasize the difficulty of different as-
pects of programming, depending on their interface, and this
was not observed. This may be due to novices’ inability to
distinguish sources of difficulty in programming.

RQ3 Affect students’ performance on a programming ac-
tivity? Whether measured by self-pacing, completion, ef-
ficiency or time on task, the Block group did demonstrate
increased performance. Not all of these observations are
easily quantified or statistically tested, but in combination
they seem to conclusively show that the block interface did
improve performance.

6.1 Limitations

It is worth stating that none of the findings in this pa-
per should be casually generalized to other contexts. The
findings with regard to RQ3 are likely the most robust, but
some limitations should be considered.

Tiled Grace lacks some of the common features of other
block-based languages, such as “jigsaw” pieces that only snap
into legal locations. Conversely, while Grace was designed to
teach CS, it might be considered more complex syntactically
than other textual languages, due to its use of meaningful
whitespace and method names which are split between ar-
guments (e.g. goToX( 10 )Y( 20 )). However, these differ-
ences are likely no more extreme than those between most
programming languages.

The activity studied here was adapted from one designed
for a BBPE. It is possible this activity unfairly emphasizes
aspects of programming which are advantageous for BBPEs.
For instance, the first section of the activity used event han-
dling, which was syntactically trivial in Tiled Grace, but
involved nesting one command inside of another, which is
much more complex in textual Grace. This is evidenced by
the lack of completion of Goal 1 by the Text group, as shown
in Figure 7. Even if the activity highlighted advantages in
block interfaces, this means that such advantages do exist,
which is still a meaningful finding.

The lack of responses to the post-survey make it difficult
to draw strong conclusions from it. It is also likely that
some students did not take the surveys seriously, but this is
difficult to verify. Further, the survey questions, while typi-
cal of validated instruments, were not themselves validated.
They were also kept short to avoid survey fatigue. This may
explain why we observed contradictory responses to the Effi-
cacy Likert items and why the surveys do not seem to reflect
the differences observed in the log data.

Finally, it should be noted that the Text group was a full
grade higher than the Block group. While this makes the
success of the Block group more notable, it may have im-
pacted the study in unforeseen ways. The Block group also
had significantly higher Interest ratings in the pre-survey.

6.2 Future Work

Inconclusive results from the survey questions indicate the
need for further study of the effect of a block interface on
students’ perceptions of programming, specifically with im-
proved survey design and larger samples. The discrepancy
between students’ performance on the activity and their per-
ceived difficulty with the activity merits further investiga-
tion, as well.

Though this study does support the claim that block in-
terfaces improve programming performance in novices, it
would be useful to investigate whether this remains true
for first or second year programmers. Further, while this
study does show that block interfaces reduce idle time and
increase goal completion, it does not suggest a mechanism
for these changes. While some answers may seem intuitive,
an investigation of how block interfaces reduce idle time,
or facilitate goal completion would be fruitful, as a better
understanding of the underlying causal relationships could
lead to the creation of better BBPEs in the future.

7. CONCLUSION

This study supports the claim that block programming
interfaces can significantly improve novice performance on
some programming activities, specifically through increased
time on task and quicker, more frequent achievement of pro-
gramming goals. The study suggests that the block interface
is an important component of BBPEs, which is worthy of fu-
ture study and development.
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