An introduction to Conceptual Modeling

Dipartimento di Matematica e Informatica, Universita' di Firenze

mohamad.gharib@unifi.it

Outline

- Short history of modeling
- Modeling in Computer Science
- > Types of Modeling in Computer Science
- What is Conceptual Modeling?
- Breif history of modeling languages
- Conceptual modeling languages
- ➤ What is a metamodel?
- Meta-Modeling and the OMG Meta Object Facility (MOF)

Short history of modeling

➤ Pre – information age

- Humans used symbols to model their environment since thousands of years.
- Then, they start to model in science and engineering areas.
- But their models were limited by the size of the medium on which they were represented.

Magura cave – Bulgaria 6th – 8th century BC

Leonardo da Vinci 15th – 16th century

Short history of modeling

➤ Pre – information age

- Humans used symbols to model their environment since thousands of years.
- Then, they start to model in science and engineering areas.
- But their models were limited by the size of the medium on which they were represented.

➤ Information age

 Almost no limits anymore. More specifically, the limits of models and modeling were defined by the capabilities of the machines on which they were developed and presented.

- Modeling in the main areas of Computer Science:
 - Databases: semantic [data] models (e.g., ER, EER) to design databases;
 - Artificial Intelligence (AI): knowledge representation depending on Description Logics (DL), semantic networks, ontologies, etc. to build knowledge bases;
 - Software Engineering: system modeling (model-driven architectures (MDA) and model-driven engineering (MDE)):
 - Architecture and requirements models (e.g., Object Oriented diagrams, Goal models, UML, SysML, etc.);
 - Software/business process modes (e.g., Business Process Model and Notation (BPMN), Petri-nets, statecharts, etc.).

- Modeling in the main areas of Computer Science:
 - Databases: semantic [data] models (e.g., ER, EER) to design databases;
 - Artificial Intelligence (AI): knowledge representation depending on Description Logics (DL), semantic networks, ontologies, etc. to build knowledge bases;
 - Software Engineering: system modeling (model-driven architectures (MDA) and model-driven engineering (MDE)):
 - Architecture and requirements models (e.g., Object Oriented diagrams, Goa models, UML, SysML, etc.);
 - Software/business process modes (e.g., Business Process Model and Notation (BPMN), Petri-nets, statecharts, etc.).

- Modeling use in main areas of Computer Science:
 - Databases: people use semantic [data] models to facilitate the structuring of large amounts of data;
 - Artificial Intelligence (AI): [expert] systems use knowledge bases to infer new knowledge, and/or perform complex [intelligent] tasks;
 - Software Engineering: people (usually, system stockholders) use the resulting diagrams/models for communicating and exchanging knowledge among one another.

> Is there any implications of the different uses of models?

> Is there any implications of the different uses of models? Yes

- > Is there any implications of the different uses of models? Yes
 - Level of formality of language, formal, semi-formal, informal e.g., if people use the language can be semi-formal or even informal; for expert systems (AI) the language should be formal.
 - Types of knowledge to be captured,
 - > for SE and Databases knowledge related to the domain;
 - > for AI, knowledge related to the task.
 - ➤ Level of completeness of the models
 - for SE and Databases coverage can be incomplete;
 - > for AI, coverage has to be, more or less, complete.

- > Is there any implications of the different uses of models? Yes
 - Level of formality of language, formal, semi-formal, informal e.g., if people use the language can be semi-formal or even informal; for expert systems (AI) the language should be formal.
 - > Types of knowledge to be captured,
 - > for SE and Databases knowledge related to the domain;
 - > for AI, knowledge related to the task.
 - ➤ Level of completeness of the models
 - for SE and Databases coverage can be incomplete;
 - > for AI, coverage has to be, more or less, complete.

Types of Models in Computer Science

- Physical models use specific and less generic machine-oriented terms/concepts (e.g., columns, keys, data types, validation rules, database triggers, procedures, access constraints)
- Logical models use specific [business-oriented] terms/concepts (e.g., entities (tables), attributes (columns/fields) and relationships (keys)).
- Conceptual models use high-level non-technical terms/concepts (e.g., almost every thing you can imagine).

Types of Models in Computer Science

- Physical models use specific and less generic machine-oriented terms/concepts (e.g., columns, keys, data types, validation rules, database triggers, procedures, access constraints)
- Logical models use specific [business-oriented] terms/concepts (e.g., entities (tables), attributes (columns/fields) and relationships (keys)).
- Conceptual models use high-level non-technical terms/concepts (e.g., almost every thing you can imagine).

What is Conceptual Modeling?

• Conceptual model should represent (model) specific aspects of a specific domain.

What is Conceptual Modeling?

• Conceptual model should represent (model) specific aspects of a specific domain.

Brief history of modeling languages

Brief history of modeling languages in Computer Science

- In the 60s, limited attempts for modeling the "real world" to extend some programming language.
- In the 70s, the Entity-Relationship (E-R) model was developed.
- In the 80s, the attempts to extend the software/hardware limited view of system modeling to consider the environment where such system will be implemented have started.
- In the 90s, the Unified Modeling Language (UML) was developed and latter adopted as a standard modeling language by Object Management Group (OMG).
- In 2001, the Systems Modeling Language (SysML) was developed as an extension of a subset of the UML depending on the same UML's profile mechanism.

Brief history of modeling languages

Brief history of modeling languages in Computer Science

- In the 60s, limited attempts for modeling the "real world" to extend some programming language.
- In the 70s, the Entity-Relationship (E-R) model was developed.
- In the 80s, the attempts to extend the software/hardware limited view of system modeling to consider the environment where such system will be implemented have started.
- In the 90s, the Unified Modeling Language (UML) was developed and latter adopted as a standard modeling language by Object Management Group (OMG).
- In 2001, the Systems Modeling Language (SysML) was developed as an extension of a subset of the UML depending on the same UML's profile mechanism.

"Conceptual" modeling languages

- A modeling language is used to express (represent) information/knowledge about a system, domain, etc. in a structured and consistent way relying on a set of rules (language semantics).
- > A conceptual modeling language includes:
 - ➤ Building blocks (constructs): 1- Primitive Terms, e.g., classes, stereotypes, association, etc. and 2- Abstraction Mechanisms, e.g., Generalization, Aggregation.
 - > Semantics: constraints on the use of building blocks of the model (e.g., OCL).

"Conceptual" modeling languages

- A modeling language is used to express (represent) information/knowledge about a system, domain, etc. in a structured and consistent way relying on a set of rules (language semantics).
- > A conceptual modeling language includes:
 - ➤ Building blocks (constructs): 1- Primitive Terms, e.g., classes, stereotypes, association, etc. and 2- Abstraction Mechanisms, e.g., Generalization, Aggregation.
 - > Semantics: constraints on the use of building blocks of the model (e.g., OCL).
- Tools can be used for creating, managing, and "validating" a model.

DISTRIBUTED REAL TIME
CYBER PHYSICAL
SYSTEMS

But how can we use these "concepts" and "relationships" to model other families?

What is a metamodel?

- In Computer Science, the term is used heavily and with several different meanings:
 - In Databases, a metadata means "data about data";
 - In Conceptual Modeling, a metamodel means a "model of a data model".
- One of the most fundamental task for developing a modeling language is defining its metamodel.

What is a metamodel?

- In Computer Science, the term is used heavily and with several different meanings:
 - In Databases, a metadata means "data about data";
 - In Conceptual Modeling, a metamodel means a "model of a data model".
- One of the most fundamental task for developing a modeling language is defining its metamodel. WHY

What is a metamodel?

- In Computer Science, the term is used heavily and with several different meanings:
 - In Databases, a metadata means "data about data";
 - In Conceptual Modeling, a metamodel means a "model of a data model".
- One of the most fundamental task for developing a modeling language is defining its metamodel. WHY
 - A metamodel defines the key concepts of a modeling language as well as various relationships among these concepts.

Husband

DISTRIBUTED REAL TIME CYBER PHYSICAL SYSTEMS

The quality of a metamodel

System-of-Systems (SoS) is an integration of a finite number of Constituent Systems (CS) which are independent and operable, and which are networked together for a period of time to achieve a certain higher goal.

- System-of-Systems (SoS) is an integration of a finite number of Constituent Systems (CS) which are independent and operable, and which are networked together for a period of time to achieve a certain higher goal.
- A SoS integrates CSs.

System-of-Systems (SoS)

- System-of-Systems (SoS) is an integration of a finite number of Constituent Systems (CS) which are independent and operable, and which are networked together for a period of time to achieve a certain higher goal.
- > A SoS integrates CSs.
- A Constituent System (CS): A system consisting of a computer system (the cyber system), a controlled object (a physical system) and possibly of interacting humans

- System-of-Systems (SoS) is an integration of a finite number of Constituent Systems (CS) which are independent and operable, and which are networked together for a period of time to achieve a certain higher goal.
- > A SoS integrates CSs.
- A Constituent System (CS): A system consisting of a computer system (the cyber system), a controlled object (a physical system) and possibly of interacting humans
- > A SoS can be:
 - Directed SoS: An SoS with a central managed purpose and central ownership of all CSs. An example would be the set of control systems in an unmanned rocket.
 - Acknowledged SoS: Independent ownership of the CSs, but cooperative agreements among the owners to an aligned purpose.
 - Collaborative SoS: Voluntary interactions of independent CSs to achieve a goal that is beneficial to the individual CS.
 - Virtual SoS: Lack of central purpose and central alignment.

Each CS has an interface, where the services are offered to other CSs, namely:

Relied upon Interface (RUI): An interface of a CS where the services of the CS are offered to other CSs.

RUI is *composed of*:

- Relied upon Message Interface (RUMI):
- Relied upon Physical Interface (RUPI):

Each CS has an interface, where the services are offered to other CSs, namely:

Relied upon Interface (RUI): An interface of a CS where the services of the CS are offered to other CSs.

RUI is *composed of*:

- ➤ Relied upon Message Interface (RUMI): A message interface where the services of a CS are offered to the other CSs of an SoS.
- Relied upon Physical Interface (RUPI): A physical interface where things or energy are exchanged among the CSs of an SoS.

Meta-Modeling and the OMG Meta Object Facility (MOF)

- > MOF is an OMG standard for modeling languages
 - It is a model of metamodels (a meta-metamodel).
 - All UML modelling concepts can be represented within the MOF.
 - UML modelling concepts are defined as "metaclasses", i.e., metaclasses themselves are instance objects of MOF classes.
- > The MOF has a 4-layer architecture: M0, M1, M2, and M3.

Meta-Modeling and the OMG Meta Object Facility (MOF) - M0

- Layer M0 defines an **actual** system.
 - Instances and/or executing instances
 - E.g., component instances, customer objects.

Meta-Modeling and the OMG Meta Object Facility (MOF) - M1

- Layer M1 is a system model.
 - Defines the types of entities and relationships that make up a system
 - E.g., a UML class model.
- Every element of M0 is an instance of M1

Meta-Modeling and the OMG Meta Object Facility (MOF) – M2

- Layer M2 defines the metamodel in M1
 - E.g., language used to make models in M1 defined by a model in M2.
- Every element of M1 is an instance of M2

Meta-Modeling and the OMG Meta Object Facility (MOF) – M3

- Layer M3 defines the model of metamodels in M2 (the metamodel).
- The metaclasses of M2 are instances of M3 classes.
- M3 classes are called MOF classes.

Selected References for Reading

- [1] Sprinkle, Jonathan, et al. 3. Metamodelling." Model-Based Engineering of Embedded Real-Time Systems. Springer, Berlin, Heidelberg, 2010. 57-76.
- [2] Schichl, Hermann. "Models and the history of modeling." *Modeling languages in mathematical optimization*. Springer, Boston, MA, 2004. 25-36.
- [3] OMG. 2001. OMG Unified Modeling Language specification, version 1.4. OMG document ad/00-11-01.