
DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 1Kilombo

Kilobots simulations with Kilombo

HowTo and examples
Slides largely from «Dallai, Rapicetta – KILOMBO how-to and

sample functions»

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 2Kilombo

Key resources for this teaching
Linux (and the GCC compiler) or OSX

Kilombo (runs on Linux or OSX) https://github.com/JIC-
CSB/kilombo

– see the README for installation instructions
– Detailed installation instructions, that may be necessary for

some distributions, are at http://jic-csb.github.io/kilombo/
(check also known bugs and patchesif you find installation
mistakes)

Any editor for C programming on Linux (no recommendations -
any editor is fine including text editors)

Description of the API (web page):
http://wwww.kilobotics.com/docs/index.html

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 3Kilombo

Introduction – Kilombo simulator

A user-controllable robot simulator consists of at least two parts:
• A core implements a physical model of the robots, their interactions

and their environment
• A programming interface provides a way for users to programmatically

control the robot behavior.

The C program for a Kilobot is compiled using make on Kilombo. It
uses a simulator library that implements the physical model and
provides the same functionalities of the kilolib API.
In Kilombo, the parallel execution of the user program is modelled by
sequentially calling the loop function for every robot once per
simulation step.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 4Kilombo

Introduction - Physycal model
The physical model in a robot simulator needs to incorporate the
aspects of reality the robots interact with (act or observe).
The simulator keeps track of the 2D position and the orientation of
each robot as time progresses (in time slices, or time steps).
In each time step, the user program’s loop function is run once for
each robot.
After this, the simulator updates the positions and orientations of
the robots, based on their movement state, which the user program
controls by turning the two motors on or off:

• if both motors are on (and same power), the robot moves forward with
constant velocity;

• if only one motor is on, the robot rotates.

4

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 5Kilombo

Introduction – user interface
The interface makes it possible to interact with the simulation at run
time.
Just run any example from “Kilombo examples” now…

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 6Kilombo

Real kilobots vs simulators
The user program in a real robot interacts with the outside world
solely through the kilolib API.
In the simulator, each robot runs its own instance of the user
program. The simulator implements the kilolib API functions and
connects them to the simulator representation of the physical world.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 7Kilombo

Basics on Kilombo (and Kilobots) -1
Initialization,
execution,
messaging,
motion, and
random number generation
work with the same function calls in the simulator and in the real
Kilobot.

Main API are the same, but Kilombo exposes them in a kilombo.h,
instead of kilolib.h

• On Kilombo, #include “kilombo.h”
• On Kilobot, #include “kilolib.h”

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 8Kilombo

Some relevant variables in kilolib.h
and kilombo.h

kilo_message_rx: a callback triggered every time a message is successfully received and
decoded. The callback has two parameters, a pointer to the message decoded, and a pointer
to the distance measurements from the message originator.
kilo_message_tx: a callback triggered every time a message is scheduled for transmission.
Returns a pointer to the message that should be sent; if the pointer is null, no message is
sent.
kilo_message_tx_success: this callback is triggered every time a message is sent
successfully. It receives no parameters and returns no values. No guarantees it has been
received.
kilo_ticks: clock value, a 32-bit unsigned positive integer. It is initialized to zero whenever
the program run or when the kilobot is first turned on. It is incremented approximately 32
times per second.
kilo_turn_left: an 8-bit positive integer which is the calibrated duty-cycle for turning left.
kilo_turn_right: an 8-bit positive integer which is the calibrated duty-cycle for turning
right.
kilo_straight_left, kilo_straight_right  BUGGED ON KILOMBO
kilo_uid: the kilobot identifier

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 9Kilombo

Some of the main functions
delay():pauses the program for the specified amount of time.
get_temperature(): read the temperature of the kilobot.
get_voltage(): read the amount of battery voltage.
kilo_init(): initialize kilobot hardware.
kilo_start(setup, loop): start the event loop.
set_color():set the output of the RGB led.
set_motors(uint8_t left, uint8_t right): set the power of each motor.
spinup_motors(): turn motors at full-speed for 15ms, to overcome the
effects of static friction. Use no more than twice per second. It is
equivalent to:

set_motors(255, 255);
delay(15);

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 10Kilombo

Kilombo global variables - 1
 The simulator handles all robots in a single program, so a global or

static variable ends up being common to all robots.
• A workaround implemented in the simulator is to keep all global

variables inside a single structure.
 The type of this user data has to be announced to the simulator

by using the macro REGISTER_USERDATA.

typedef struct {
int N_Neighbors;
...

} USERDATA;
REGISTER_USERDATA(USERDATA)

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 11Kilombo

Kilombo global variables - 2
The REGISTER_USERDATA macro resolves the declaration:

USERDATA *mydata

Variables can be accessed using e.g., mydata->N_Neighbors.
The simulator ensures that mydata points to the data of the
currently running kilobot.

Local variables can be used in the usual way.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 12Kilombo

Clock and timestamp
Time is measured in kilo_ticks, incremented 32 times per second, on
real kilobots as well as the simulator.
The simulator does not implement the ‘delay()’ function. The function
exists, but returns immediately.

• To sleep X microtick: NOT WORKING ON SIMULATOR (simulation steps
are full executions of the loop)
waitTime= X + kilo_ticks
while (kilo_ticks < waitTime){ NULL };

• Another approach: either consider that simulation starts from 0, or you need
to define workarounds e.g.,
if(kiloticks < waitTime) { return;} else { … }

Note that in programs for real kilobots, the kilolib API documentation
states that it is best to use delay() only for short times, like when
spinning up motors, and that for timing the bot's behaviour, one should
instead use the global variable kilo_ticks.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 13Kilombo

A note on datatype
A difference between the C compiler used for the kilobots and the C
compiler used when compiling with the simulator is the size of
datatypes.

• Kilobot works only with 8bit
• It may lead to code working as intended in the simulator while

overflowing on the kilobot.
• A solution is to explicitly specify the size of the types, e.g. declaring

variables as uint8_t i.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 14Kilombo

Review of differences

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 15Kilombo

Main functions that you should
ALWAYS instantiate

kilo_init(): a standard function of the kilolib.h library, that
initializes the kilobots.

kilo_start(setup, loop):
 setup is a function which is called once to initialize the user program
 loop is the main body of the program, that is executed (invoked

repeatedly).
• you may think to include a while(true) inside loop  PLEASE BE CAREFUL!!!

int main() {

kilo_init();

kilo_start(setup, loop);

return 0;

}

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 16Kilombo

Body of the code is in a file C

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 17Kilombo

kilombo.json, startposition.json

kilombo.json

startposition.json

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 18Kilombo

KNOWN BUGS
kilo_straight_left and kilo_straight_right not working

https://github.com/JIC-CSB/kilombo/issues/45

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 19Kilombo

We inspect one quick example….

1. Open kilombo
2. Run the Orbit example
3. Inspect the configuration files
4. Inspect the source code

1. Check main(args)
2. Check setup, loop
3. Check message exchange

(we do one exercise, then we can check more
complex examples with information transmission,
then we do another exercise if we have time)

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 20Kilombo

Exercises
Exercise 1
Step 1. Set 2 kilobots (kilobot 0, kilobot 1) in start_positions.json file
Step 2. Create a file called move_and_blink.c implementing the
following instructions sequentially:

Step 2.a move the kilobot 0 forward for 3 seconds;
Step 2.b Set the led color to “Purple” (1, 0, 1) to the kilobot 0;
Step 2.c Turn right the kilobot 1 for 5 seconds;
Step 2.d Set the color to “Red” (1, 0, 1) to the kilobot 1;
Step 2.e Stop the kilobot 1 and move forward (indefinitely) the kilobot
0.

Exercise 2 (need to know how to transmit data)
• Given Step 1 as before, when started, the kilobot 0 sends a “GO”

message to Kilobot 1. After acknowledgment of reception, the exercise
progresses as from Step 2.a of Exercise 1

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

RSCPS Lab
Slide 21Kilombo

Code for Exercise 1
#include <kilombo.h>
#include "movement.h"
REGISTER_USERDATA(USERDATA)
void loop() {

if (kilo_ticks >= 0 && kilo_ticks < 96 && kilo_uid == 0) {
set_motors(kilo_turn_left, kilo_turn_right);

} else if (kilo_ticks >= 96 && kilo_ticks < 256){
if (kilo_uid== 0) {

set_color(RGB (1 , 0 , 1));
} else {

set_motors(0, kilo_turn_right);
}

} else if (kilo_ticks >= 256) {
if (kilo_uid== 1){

set_color(RGB (1 , 0 , 0));
set_motors(0,0);

} else {
set_motors(kilo_turn_left, kilo_turn_right);

}
}

}

void setup() { }
int main() {

kilo_init();
kilo_start(setup, loop);
return 0;

}

	Diapositiva numero 1
	Key resources for this teaching
	Introduction – Kilombo simulator
	Introduction - Physycal model
	Introduction – user interface
	Real kilobots vs simulators
	Basics on Kilombo (and Kilobots) -1
	Some relevant variables in kilolib.h and kilombo.h
	Some of the main functions
	Kilombo global variables - 1
	Kilombo global variables - 2
	Clock and timestamp
	A note on datatype
	Review of differences
	Main functions that you should ALWAYS instantiate
	Body of the code is in a file C
	kilombo.json, startposition.json
	KNOWN BUGS
	We inspect one quick example….
	Exercises
	Code for Exercise 1

