
DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 1Kilobots tutorial

Kilobots usage
Coding, compiling, deploying

Slides mostly from «Feri, Morganti, Morganti - Kilobots usage:
coding, compiling and deploying»

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 2Kilobots tutorial

HW and SW requirements
Hardware:

• Kilobots
• Over-head controller (OHC)
• Kilobotcharger
• (computer with an USB port/adapter)

Software: computer to be equipped with:
• We present installation instructions for Windows OS but also Linux or OS

can be used, see https://www.kilobotics.com/download ,
https://www.kilobotics.com/documentation

• Browser to access the online editor https://www.kilobotics.com/editor
• Dropbox Account (required to use the online editor)
• File libusb0.dll http://ftp.k-team.com/kilobot/CD
• Zadig Software to modify the USB driver to work with new controller
http://ftp.k-team.com/kilobot/CD or https://zadig.akeo.ie/

• kiloGUI: Kilobot Controller program https://www.kilobotics.com

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 3Kilobots tutorial

Here are the kilobots!

3

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 4Kilobots tutorial

Specifications
Processor: ATmega 328p (8bit @ 8MHz)
Memory: 32 KB Flash , 1KB EEPROM
Battery/ autonomy: Rechargeable Li-Ion 3.7V / 3-10 hours continuously,
3 months in sleep mode.
Communication: IR (up to 7cm, up to 32kb/s and 1kbyte/s with 25 robots),
serial (256000 baud)
Sensing: 1 IR and 1 light intensity
Movement: forward, rotation (1cm/s , 45deg/s)
Light: one RGB led.
Software: Kilobot Controller software for controlling the robot
Programming: C language with WinAVR compiler combined with Eclipse or
the online Kilobotics editor.
Dimensions: diameter: 33 mm, height 34 mm (including the legs, without
recharge antenna).

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 5Kilobots tutorial

The overhead controller (OHC)

①Overheadcontroller board
② Connector for USB cable
③ Connector for debug cable
④ Connector for firmware

programming

⑤ Firmware programming jumper
⑥Diode for OHC connection test
⑦ Power-on LED
⑧ IR LED

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 6Kilobots tutorial

OHC installation -1
If your OHC is not recognize by the KiloGUI interface, you will need
to modify the driver:

1) Executethe software «Zadig»
2) Option -> list all devices
3) Select « LUFA AVRISP MkIIClone » and « libusb-win32
(V1.2.6.0)»

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 7Kilobots tutorial

OHC installation
4) Click « Replace Drive» (or “Reinstall Driver” if already done once).
5) Select «FT232R USB UART» and «libusb-win32 (V1.2.6.0)»

6) Replace Driver
7) Close « Zadig» interface
Now the KiloGUI interface must (should?) recognize your OHC.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 8Kilobots tutorial

OHC installation verification - 1
1. Check that the firmware jumper on

the OHC is plugged at the correct
place (i.e., do not move the jumper
from its usual place).

2. Connect the USB cable to the PC; the
power LED of the OHC should turn
green.

3. Run the “kilogui.exe” program, the
message “connected” must appears
at the bottom of the windows

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 9Kilobots tutorial

OHC installation verification - 2

4. Press the “LedToggle” button to
validate the communication (a Green LED
on the OHC must change its state at
each pressing).

5. If the message “connected” didn’t
appear, use Zadig to modify the driver.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 10Kilobots tutorial

USAGE: Write and build our Kilobot
program (kilobotics.com)

1. Use the editor https://www.kilobotics.com/editor to create a new file
2. Rename this file to something you like, and select it for editing
3. You can compile the file, by clicking on the green Compile button. This

will produce a yourfilename.hexfile
• Use as example: https://github.com/SSR-Harvard/kilobotics-

labs/blob/master/blink_led.c
4. Both code and compiled files are stored in Dropbox/Apps/KiloEdit
5. Now use the KiloGUI to upload the hex file to your kilobots

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 11Kilobots tutorial

USAGE: Uploading and executing
code in a group of Kilobots

Kilobots should be operated on a smooth, flat surface to ensure
proper robot mobility. To aid communication, the surface should be
glossy or reflective.
The OHC controller should hung above the Kilobots at a distance of
about one meter. The robots beneath the OHC will receive
communications from the OHC.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 12Kilobots tutorial

Overhead Controller (OHC)
Interface Overview - 1

Select the program
to run

Kilobots into programming
mode (blue led)

Program is uploaded
(Kilobots are blinking)

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 13Kilobots tutorial

Overhead Controller (OHC)
Interface Overview - 2

Reset: Jump to the user program starting point, resetting all
states, and stop. Remain idle (blinking green) waiting for the
next command.
Run: Run the user program.
Pause: Pause the user program (preserves state, so that the
program resumes where it left off).
Sleep: Switch to low-power sleep mode (leds flash white once
every 8 seconds).
Voltage: Display voltage level using LED (blue/green = charged,
yellow/red = battery low)
LedToggle: Toggle LEDs on the controller, used to check
communication between PC and controller
Serial Input: Show Kilobot messages using 2-wire serial cable.
Calibration: Set the UID of a Kilobot and their motor. (next
slide)

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 14Kilobots tutorial

Overhead Controller (OHC)
Interface Overview - 2

Reset: Jump to the user program starting point, resetting all
states, and stop. Remain idle (blinking green) waiting for the
next command.
Run: Run the user program.
Pause: Pause the user program (preserves state, so that the
program resumes where it left off).
Sleep: Switch to low-power sleep mode (leds flash white once
every 8 seconds).
Voltage: Display voltage level using LED (blue/green = charged,
yellow/red = battery low)
LedToggle: Toggle LEDs on the controller, used to check
communication between PC and controller
Serial Input: Show Kilobot messages using 2-wire serial cable.
Calibration: Set the UID of a Kilobot and their motor. (next
slide)

Note: once one button is pressed on
KiloGUI, the action will be repeat
infinitely.

To avoid any trouble with IR
communication, press again the same
button to stop the repeat.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 15Kilobots tutorial

Calibration
1) Set ONE kilobot under the OHC
2) Open the calibration panel
3) Select a value for turning left, click test to

tell the robot to move using this value. Values
between 60 and 75 work best for turning.
Follow the same procedure for turn right.

4) To calibrate to go straight, you can use the
values you already found for turn left and
turn right as a good initial guess. Usually go
straight values should be smaller than the
turning left and turning right values to
achieve a good motion.

5) Choose a unique ID for your robot by typing
an integer in the unique ID box, and clicking
test.

6) Click Save to write these changes to the
EEPROM ("permanent") memory of your
robot.

Open up the KiloGUI program
and click on the Calibration
button, you will be presented with
the following screen:

NO VALUES ABOVE 100

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 16Kilobots tutorial

Execution Example
1) Run kilogui.exe, click the button [select a file] to browse and select
your files.
2) Place ALL Kilobots in PAUSE mode (LED flashing green) underneath the
OHC, and press the “Bootload” button in Kilogui.exe. The Kilobots will turn
their LED Blue to indicate that they are ready to be programmed.
3) Then press the “Upload” button to start programming. The Kilobots will
flash Green and Blue alternatively.
4) Once the SW is uploaded, Kilobots return to PAUSE state (LED flashing
green).
5) To run the program, press the “Run” button in KiloGUI.
6) Press the “Pause” button in KiloGUI to stop the program.

Note: once one button is pressed on KiloGUI, the action will be repeat
infinitely. To avoid any trouble with IR communication, press again the
same button to stop the repeat.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 17Kilobots tutorial

API – important recap - 1

At its core the Kilobot Library provides the function kilo_init()
to initialize the hardware of the kilobots, and the function
kilo_start() that uses a basic event loop programming paradigm
(this relies on a setup and a loop callback, similar to those used
in the arduino software).

The API also provides functions to read the various sensors
available to the kilobots (get_ambientlight(), get_voltage(),
get_temperature()), and also to control the individual pager
motors and the RGB led present in each kilobot (set_motors(),
set_color()).

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 18Kilobots tutorial

API – important recap - 2
The user can register callbacks to interact with the messaging
subsystem. There are callbacks for the events of message reception
(kilo_message_rx), message transmission (kilo_message_tx), and
notification of successful transmission (kilo_message_tx_success). By
default every kilobot attempts to send message twice per second.
Advanced users can modify this through the kilo_tx_period variable,
although this is discouraged unless you know what you are doing.

To prevent collisions the kilobot library uses a basic exponential back-
off strategy with carrier sensing. There are no acknowledgement
packets, and as such a message is considered to be successfully
transmitted when a kilobot is able transmit a message without
detecting any contention in the channel.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 19Kilobots tutorial

FUNCTIONS

delay()
estimate_distance()
get_ambientlight()
get_temperature()
get_voltage()
kilo_init()
kilo_start()

message_crc()
rand_hard()
rand_seed()
rand_soft()
set_color()
set_motors()
spinup_motors()

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 20Kilobots tutorial

API –
https://www.kilobotics.com/docs/globals.html

delay()
Pauses the program for the specified amount of time.
This function receives as an argument a positive 16-bit integer ms that represents the
number of milliseconds for which to pause the program.

estimate_distance()
Estimate distance in mm based on signal strength measurements.
This function receives as an argument the signal strength measurements d taken during
message reception, and returns a positive integer that represents the distance estimate in
mm towards the robot that originated the message.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 21Kilobots tutorial

API –
https://www.kilobotics.com/docs/globals.html

get_ambientlight()
Read the amount of ambient light.
This function returns a 10-bit measurement (0 to 1023) that represents the amount of
ambient light detected by the photo diode available in the kilobot. When the analog-to-
digital converter is unavailable and the voltage cannot be measured, this function will return
-1.

get_temperature()
Read the temperature of the kilobot.
This function returns a 10-bit measurement (0 to 1023) that represents the temperature of
the board of the kilobot. This sensor is only capable of detecting large temperature
changes (in the order of 2 Celsius degrees or more).When the analog-to-digital
converter is unavailable and the voltage cannot be measured, this function will return -1. As
such, it is only useful only to detect drastic changes in the operating environment of the
kilobot.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 22Kilobots tutorial

API –
https://www.kilobotics.com/docs/globals.html

get_voltage()
Read the amount of battery voltage.
This function returns a 10-bit measurement (0 to 1023) that represents the amount of
voltage that remains in the battery. It can be used to determine if the kilobot should be
recharged. When the analog-to-digital converter is unavailable and the voltage cannot be
measured, this function will return -1.

kilo_init()
Initialize kilobot hardware.
This function initializes all hardware of the kilobots. This includes calibrating the hardware
oscillator, setting hardware timers, configuring ports, setting up analog-to-digital
converters, registering system interrupts and the initializing the messaging subsystem.
It is recommended that you call this function as early as possible inside the main function
of your program.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 23Kilobots tutorial

API –
https://www.kilobotics.com/docs/globals.html

kilo_start()
Start kilobot event loop.
This function receives two parameters. The first parameter setup is a function which will be
called once to perform any initialization required by your user program. The second
parameter loop is a function that will be called repeatedly to perform any computations
required by your user program.
Using the overhead controller it is possible to interrupt the event loop to trigger events
such as program start/resume, program pause, and program restart.
Parameters

setup put your setup code here,
to be run only once
loop put your main code here,
will be run repeatedly

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 24Kilobots tutorial

API –
https://www.kilobotics.com/docs/globals.html

message_crc()
Function to compute the CRC of a message struct.
This function receives as input a pointer to a message structure msg, and uses the message
data and type to compute and return a uint16_t CRC value.
Parameters

msg Pointer to an input message.
Returns

A 16 bit CRC of the message payload.
rand_hard()
Hardware random number generator.
This function uses the analog-to-digital converter to generate an 8-bit random number.
Specifically, the robot measures its own battery voltage and extracts randomness from
the least significant bit by using Von Neumann's fair-coin algorithm.By its nature, this
function is slow, use rand_soft() if you want a faster alternative, and you can seed the
software random generator using the output of rand_hard().

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 25Kilobots tutorial

API –
https://www.kilobotics.com/docs/globals.html

rand_seed()
Seed software random number generator.
This function changes the seed used by the software random number generator
implemented by rand_soft().

rand_soft()
Software random number generator.
This function implements a linear-shift-register to implement an 8-bit pseudo-random
number generator. The seed of the random number generator can be controlled through
rand_seed().

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 26Kilobots tutorial

API –
https://www.kilobotics.com/docs/globals.html

set_color()
Set the output of the RGB led.
This function receives an 8-bit unsigned integer whose bits are used to determine the
output of the RGB led mounted on the kilobot. Each color has a 2-bit resolution which allows
set each color channel independently from off (0) to full-brightness (3).
The convenience macro RGB can be used to set the individual bits. For instance RGB(0,0,0)
turns all color channels off, and therefore the RGB led remains off. Meanwhile RGB(0,3,0)
turns the green channel to full intensity and turns all other channels off, which results in an
RGB led displaying a bright green color.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 27Kilobots tutorial

API –
https://www.kilobotics.com/docs/globals.html

set_motors()
Set the power of each motor. The power received by the left and right motor is controlled
using hardware pulse-width-modulation (PWM) and can be set using this function.
The parameter left and right are 8-bit unsigned integers (0 to 255) that control the duty-
cycle of the PWM signal from 0% to 100%. In other words, setting a motor to 0% duty-
cycle equates to running off the motor, and setting a motor to 100% duty-cycle equates to
running the motor at full power. For the most part, motors should only be set to the
calibrated values kilo_turn_left, kilo_turn_right, kilo_straight_left and kilo_straight_right.
When a motor transitions from being off
(0% duty cycle) to being on (> 10% duty
cycle) it must first be turned on at
full-speed for 15ms to overcome the
effects of static friction.
In a 2 second interval no motor
at 100% duty-cycle (255) for
more than 50 ms at a time!!!!!!!

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 28Kilobots tutorial

API –
https://www.kilobotics.com/docs/globals.html

spinup_motors()
Turn motors at full-speed for 15ms.
When the robot transitions from being stationary (motors off) to being mobile (one or both
motors on) it must overcome the effects of static friction. For that purpose, the motors can
be turned-pn at full-speed during 15ms. This function does precisely that, and is equivalent
to the following code:

Note
Observe that the spinup() function turns both motors on. In some cases
(when turning left or turning right) this is not required, and thus to achieve
smoother motion you can do manual spinup of a motor. See set_motors() for an
example.

In a 2 second interval no motor at 100% duty-cycle (255) for
more than 50 ms at a time!!!!!!!

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 29Kilobots tutorial

VARIABLES
kilo_message_rx
kilo_message_tx
kilo_message_tx_success
kilo_straight_left
kilo_straight_right
kilo_ticks
kilo_turn_left
kilo_turn_right
kilo_uid

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 30Kilobots tutorial

Variables -
https://www.kilobotics.com/docs/globals_vars.html

kilo_message_rx

Callback for message reception.

This callback is triggered every time a
message is successfully decoded. The
callback receives two parameters, a
pointer to the message decoded, and a
pointer to the distance measurements
from the message originator.

Note
You must register a message callback
before calling kilo_start.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 31Kilobots tutorial

kilo_message_tx

Callback for message
transmission.

This callback is triggered every
time a message is scheduled for
transmission (roughly twice every
second). This callback returns a
pointer to the message that
should be sent; if the pointer is
null, then no message is sent.

Variables -
https://www.kilobotics.com/docs/globals_vars.html

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 32Kilobots tutorial

kilo_message_tx_success
Callback for successful message transmission. This callback is triggered every time a
message is sent successfully. It receives no parameters and returns no values.
Warning
The message subsystem has no acknowledgements, therefore successful message reception
is not guaranteed. Instead the successful message callback is called when a message is
transmitted and no contention is detected on the channel.
kilo_straight_left
Calibrated straight (left motor) duty-cycle. This variable holds an 8-bit positive integer
which is the calibrated duty-cycle used for the left motor to go straight. This must be used
in conjunction with kilo_straight_right.
kilo_straight_right
Calibrated straight (right motor) duty-cycle. This variable holds an 8-bit positive integer
which is the calibrated duty-cycle used for the right motor to go straight. This must be
used in conjuction with kilo_straight_left.

Variables -
https://www.kilobotics.com/docs/globals_vars.html

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 33Kilobots tutorial

kilo_ticks

Kilobot clock variable.

This variable holds a 32-bit unsigned
positive integer. This variable is initialized
to zero whenever the program run at the
kilobot is reset (or when the kilobot is first
turned on). It is incremented approximately
32 times per second, or once every 30 ms.

Variables -
https://www.kilobotics.com/docs/globals_vars.html

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 34Kilobots tutorial

kilo_turn_left
Calibrated turn left duty-cycle.
This variable holds an 8-bit positive integer which is the calibrated duty-cycle for turning
left.
kilo_turn_right
Calibrated turn right duty-cycle.
This variable holds an 8-bit positive integer which is the calibrated duty-cycle for turning
right.
kilo_uid
Kilobot unique identifier.
This variable holds a 16-bit positive integer which is designated as the kilobot's unique
identifier during calibration.

Variables -
https://www.kilobotics.com/docs/globals_vars.html

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 35Kilobots tutorial

MACROS

debug_init
This function initializes the hardware serial communication of the
Kilobot. This function must be called before the kilo_start()
function, but after the kilo_init() function.
Moreover, for the serial to be enabled the variable DEBUG (notice
capitalization) must be defined before debug.h is included.
Thereafter, the printf() function can be used to transmit debugging
information to the kilobot controller through the attached serial
cable.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 36Kilobots tutorial

DATA STRUCTURES
distance_measurement_t

Every time a message is received by a kilobot, it collects two 10
bit measurements that represent the signal strength of the
received message after going through an operational amplifier.
This data structure stores these two measurements.
Using these two measurements it is possible to estimate the
distance of the sender.

message_t
A message structure is 12 bytes in length and is composed of
three parts: the payload (9 bytes), the message type (1 byte), and
a CRC (2 bytes).

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 37Kilobots tutorial

EXERCISE 1

BLINKY
• Program: Blink LEDS Red then Blue for 500ms each
• Objective: Introduce basic code structure (i.e. setup and loop) and

basic functions such as set_color and delay
• Code: blink_led.c

Just play with the kilobots: the code is in the next slide.
The program will be run repeatedly until you either reset or pause the
robot.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 38Kilobots tutorial

#include <kilolib.h>
voidsetup()
{

// Put any setup code here. This is run once
before entering the loop.
}

void loop()
{

// Put the main code here. This is run
repeatedly.

// Set the LED red.
set_color(RGB(1, 0, 0));
// Wait half a second (500 ms).
delay(500);
// Set the LED blue.
set_color(RGB(0, 0, 1));
// Wait half a second (500 ms).
delay(500);

}

int main()
{

// Initialize the hardware.
kilo_init();
// Register the program.
kilo_start(setup, loop);

return 0;
}

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 39Kilobots tutorial

EXERCISE 2
MOVEMENT

• Program: Move forward 2 sec, clockwise 2 sec, anticlockwise 2 sec, stop 5 sec, and repeat
• Objective: Introduce set_motors and calibration constants kilo_turn_left, kilo_turn_right,

kilo_straight_left, kilo_straight_right
• Code: simple_movement.c

In this lab we will make ONE Kilobot go through its motions --forward, turn left,
turn right-- in a loop. We will use the function set_motors that takes values for
each of the two motors, and we will use the calibrated constants.
There's one more important thing you need to do, which is spinup_motors. When
the motors are first turned on, we must set the motors to the maximum speed for
15 milliseconds or so, in order for the kilobot to overcome static friction. We call
this spinning up the motors. Therefore, for the robot to move it must first spin up
the motors and then set its desired motion. Motors need to be spinup every
time the robot changes its direction of motion. This can be done through the
spinup_motors function, also described in the API page.

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 40Kilobots tutorial

#include<kilolib.h>

voidsetup()
{
}

void loop()
{

// Set the LED green.
set_color(RGB(0, 1, 0));
// Spinup the motors to overcome friction.
spinup_motors();
// Move straight for 2 seconds (2000 ms).
set_motors(kilo_straight_left, kilo_straight_right);
delay(2000);

// Set the LED red.
set_color(RGB(1, 0, 0));
// Spinup the motors to overcome friction.
spinup_motors();
// Turn left for 2 seconds (2000 ms).
set_motors(kilo_turn_left, 0);
delay(2000);

// Set the LED blue.
set_color(RGB(0, 0, 1));
// Spinup the motors to overcome friction.
spinup_motors();
// Turn right for 2 seconds (2000 ms).
set_motors(0, kilo_turn_right);
delay(2000);

// Set the LED off.
set_color(RGB(0, 0, 0));
// Stop for half a second (500 ms).
set_motors(0, 0);
delay(500);

}

intmain()
{

kilo_init();
kilo_start(setup, loop);

return0;
}

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 41Kilobots tutorial

EXERCISE 3 - DISPERSE

Program: Create a single robot that both sends and receives
messages. The robot should check every second if it has received a
message. If so, then it should pick a random direction to move in
(50% straight, 25% left, 25% right) and set its led according to the
motion (green=forward, red=left, blue=right). If not, it should stop
and set its led white.
Objective: Put communication and motion together, avoid the delay()
that is blocking, introduce rand_hard(), and create subroutine for
cleaner and more efficient motion code.

See and execute code: disperse.c

1
6
/
1
1
/
2
0
1
8

4
1

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 42Kilobots tutorial

EXERCISE 4 – COMPUTE
DISTANCE

Modify the previous program for kilobots computing
distance: they do not have to crash! Each kilobot
continuously computes distance from the nearby
kilobots:

• When distance is below 40 mm, LED is set to RED
and Kilobot stops moving

• Otherwise, LED is set to BLUE

(here you need to develop your own code)
How to compute distance: you can check orbit_planet.c

1
6
/
1
1
/
2
0
1
8

4
2

DISTRIBUTED REAL
TIME CYBER
PHYSICAL SYSTEMS

DRCPS
Slide 43Kilobots tutorial

EXERCISE 4 – How to understand
Kilobot ID

 Assign an ID to 3 Kilobots (with values 0, 1, 2). This must be
done through the configuration panel.

 Kilobot LED is set differently according to their ID:
• Red (ID = 0)
• Green (ID = 1)
• Blue (ID = 2)
 After 5 seconds from start, Kilobot 0 chooses a random

COLOR between R, G, B (use: 0, 1, 2) and transmits its
decision to the other 2 Kilobots

 All kilobots set their LED to the selected color

	Diapositiva numero 1
	HW and SW requirements
	Here are the kilobots!
	Specifications
	The overhead controller (OHC)
	OHC installation -1
	OHC installation
	OHC installation verification - 1
	OHC installation verification - 2
	USAGE: Write and build our Kilobot program (kilobotics.com)
	USAGE: Uploading and executing code in a group of Kilobots
	Overhead Controller (OHC) Interface Overview - 1
	Overhead Controller (OHC) Interface Overview - 2
	Overhead Controller (OHC) Interface Overview - 2
	Calibration
	Execution Example
	API – important recap - 1
	API – important recap - 2
	FUNCTIONS
	API –https://www.kilobotics.com/docs/globals.html
	API –https://www.kilobotics.com/docs/globals.html
	API –https://www.kilobotics.com/docs/globals.html
	API –https://www.kilobotics.com/docs/globals.html
	API –https://www.kilobotics.com/docs/globals.html
	API –https://www.kilobotics.com/docs/globals.html
	API –https://www.kilobotics.com/docs/globals.html
	API –https://www.kilobotics.com/docs/globals.html
	API –https://www.kilobotics.com/docs/globals.html
	VARIABLES
	Variables - https://www.kilobotics.com/docs/globals_vars.html
	Variables - https://www.kilobotics.com/docs/globals_vars.html
	Variables - https://www.kilobotics.com/docs/globals_vars.html
	Variables - https://www.kilobotics.com/docs/globals_vars.html
	Variables - https://www.kilobotics.com/docs/globals_vars.html
	MACROS
	DATA STRUCTURES
	EXERCISE 1
	Diapositiva numero 38
	EXERCISE 2
	Diapositiva numero 40
	EXERCISE 3 - DISPERSE
	EXERCISE 4 – COMPUTE DISTANCE
	EXERCISE 4 – How to understand Kilobot ID

