Prologue

The purpose of this introductory chapter is to establish the notation and terminology
that will be used throughout the book and to present a few diverse results from set
theory and analysis that will be needed later. The style here is deliberately terse,
since this chapter is intended as a reference rather than a systematic exposition.

0.1 THE LANGUAGE OF SET THEORY

It is assumed that the reader is familiar with the basic concepts of set theory; the
following discussion is meant mainly to fix our terminology.

Number Systems. Our notation for the fundamental number systems is as
follows:

N = the set of positive integers (not including zero)
Z = the set of integers

Q = the set of rational numbers

R = the set of real numbers

C = the set of complex numbers

Logic. We shall avoid the use of special symbols from mathematical logic,
preferring to remain reasonably close to standard English. We shall, however, use
the abbreviation iff for “if and only if.”

One point of elementary logic that is often insufficiently appreciated by students
is the following: If A and B are mathematical assertions and —A, —B are their
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negations, the statement “A implies B” is logically equivalent to the contrapositive
statement “— B implies — A.” Thus one may prove that A implies B by assuming — B
and deducing — A, and we shall frequently do so. This is not the same as reductio ad
absurdum,which consists of assuming both A and — B and deriving a contradiction.

Sets. The words “family” and “collection” will be used synonymously with
“set,” usually to avoid phrases like “set of sets.” The empty set is denoted by &, and
the family of all subsets of a set X is denoted by P(X):

P(X)={E:ECX}.

Here and elsewhere, the inclusion sign C is interpreted in the weak sense; that is, the
assertion “E C X includes the possibility that £ = X.
If € is a family of sets, we can form the union and intersection of its members:

U E={z:z € EforsomeE € £},
Eec&

ﬂ E={x:erforallE€8}.
FEeé&

Usually it is more convenient to consider indexed families of sets:

8={Ea:a€A}={Ea}aeA,

in which case the union and intersection are denoted by
UEB. () Ea
acA acA

If E,NEz = @ whenever a # (3, the sets I, are called disjoint. The terms “disjoint
collection of sets” and “collection of disjoint sets” are used interchangeably, as are
“disjoint union of sets” and “union of disjoint sets.”

When considering families of sets indexed by N, our usual notation will be

{En}nly or {E.}T,

and likewise for unions and intersections. In this situation, the notions of limit
superior and limit inferior are sometimes useful:

limsup F,, = m U E,, liminf F,, = U ﬂ E,.
k=1n=k k=1n=k
The reader may verify that
limsup E,, = {z : ¢ € E, forinfinitely many n},
liminf E,, = {3: : z € E, for all but finitely many n}
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If E and F are sets, we denote their difference by F \ F":
E\F={z:z€FEandz ¢ F},
and their symmetric difference by EAF":
EAF=(E\F)U(F\E).

When it is clearly understood that all sets in question are subsets of a fixed set X, we
define the complement F° of a set E' (in X):

E°=X\E.

In this situation we have deMorgan’s laws:

-0 (- ys

a€A

If X and Y are sets, their Cartesian product X Xx Y is the set of all ordered pairs
(z,y) suchthat z € X and y € Y. A relation from X to Y is a subset of X x Y.
(If Y = X, we speak of a relation on X.) If R is a relation from X to Y, we shall
sometimes write z Ry to mean that (z, y) € R. The most important types of relations
are the following:

e Equivalence relations. An equivalence relation on X is a relation R on X

such that
zRx forall z € X,

xRy iff yRx,
xRz whenever xRy and yRz for some y.

The equivalence class of an element z is {y € X : zRy}. X is the disjoint
union of these equivalence classes.

e Orderings. See §0.2.

e Mappings. A mapping f : X — Y is arelation R from X to Y with the
property that for every z € X there is a unique y € Y such that z Ry, in which
case we write y = f(z). Mappings are sometimes called maps or functions;
we shall generally reserve the latter name for the case when Y is C or some
subset thereof.

Iff: X —>Yandg:Y — Zaremappings, we denote by go f their composition:
gof:X—2,  go f(z)=g(f(z))

If DCc X and E C Y, we define the image of D and the inverse image of F/
under a mapping f : X — Y by

f(D)={f(a:):a:€D}, f_l(E)z{:r:f(:v)EE}.
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It is easily verified that the map f~! : P(Y) — P(X) defined by the second formula
commutes with union, intersections, and complements:

P UE)= U@ (N Ea) = N F(E),

acA a€cA a€cA acA
FTUE) = (FU(B)"

(The direct image mapping f : P(X) — P(Y) commutes with unions, but in general
not with intersections or complements.)

If f: X — Y is a mapping, X is called the domain of f and f(X) is called the
range of f. f is said to be injective if f(z,) = f(z2) only when z; = x5, surjective
if f(X) =Y, and bijective if it is both injective and surjective. If f is bijective, it
has aninverse f~1 : Y — X suchthat f~!o f and fo f~! are the identity mappings
on X and Y, respectively. If A C X, we denote by f|A the restriction of f to A:

(flA) : A=Y, (f|A)(z) = f(z) for z € A.

A sequence in a set X is a mapping from N into X. (We also use the term finite
sequence to mean a map from {1,...,n} into X wheren e N) If f : N — X isa
sequence and g : N — N satisfies g(n) < g(m) whenever n < m, the composition
fogiscalled a subsequence of f. It is common, and often convenient, to be careless
about distinguishing between sequences and their ranges, which are subsets of X
indexed by N. Thus, if f(n) = z,, we speak of the sequence {z, }$°; whether we
mean a mapping from N to X or a subset of X will be clear from the context.

Earlier we defined the Cartesian product of two sets. Similarly one can define the
Cartesian product of n sets in terms of ordered n-tuples. However, this definition
becomes awkward for infinite families of sets, so the following approach is used
instead. If { X4 }ac 4 is anindexed family of sets, their Cartesian product [ ] . , Xo
is the set of all maps f : A — (J,c4 Xa such that f(a) € X, forevery a € A. (It
should be noted, and then promptly forgotten, that when A = {1, 2}, the previous
definition of X; x Xy is set-theoretically different from the present definition of
Hf X. Indeed, the latter concept depends on mappings, which are defined in terms
of the former one.) If X = [[ .4 Xo and a € A, we define the ath projection or
coordinate map 7, : X — X, by m4(f) = f(a). We also frequently write = and
xo instead of f and f(a) and call z,, the ath coordinate of .

If the sets X, are all equal to some fixed set Y, we denote Hae 4 Xa by YA:

Y4 = the set of all mappings from Ato Y.

IfA={1,...,n},Y4isdenoted by Y™ and may be identified with the set of ordered
n-tuples of elements of Y.

0.2 ORDERINGS

A partial ordering on a nonempty set X is a relation R on X with the following
properties:
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e if zRy and yRz, then zRz;
e if tRy and yRz, then z = y;
o xRz forall z.
If R also satisfies
e if z,y € X, then either xRy or y Rz,

then R is called a linear (or total) ordering. For example, if E is any set, then P(E)
is partially ordered by inclusion, and R is linearly ordered by its usual ordering.
Taking this last example as a model, we shall usually denote partial orderings by
<, and we write x < y to mean that x < y but  # y. We observe that a partial
ordering on X naturally induces a partial ordering on every nonempty subset of X.
Two partially ordered sets X and Y are said to be order isomorphic if there is a
bijection f : X — Y such that z; < zo iff f(z;) < f(z2).

If X is partially ordered by <, a maximal (resp. minimal) element of X is an
element z € X such that the only y € X satisfying z < y (resp. > y) is z itself.
Maximal and minimal elements may or may not exist, and they need not be unique
unless the ordering is linear. If £ C X, an upper (resp. lower) bound for £ is an
element x € X such that y < z (resp. * < y) for all y € E. An upper bound for £
need not be an element of F, and unless F is linearly ordered, a maximal element of
E need not be an upper bound for E. (The reader should think up some examples.)

If X is linearly ordered by < and every nonempty subset of X has a (necessarily
unique) minimal element, X is said to be well ordered by <, and (in defiance of the
laws of grammar) < is called a well ordering on X. For example, N is well ordered
by its natural ordering.

We now state a fundamental principle of set theory and derive some consequences
of it.

0.1 The Hausdorff Maximal Principle. Every partially ordered set has a maximal
linearly ordered subset.

In more detail, this means that if X is partially ordered by <, thereisa set & C X
that is linearly ordered by <, such that no subset of X that properly includes F is
linearly ordered by <. Another version of this principle is the following:

0.2 Zorn’s Lemma. If X is apartially ordered set and every linearly ordered subset
of X has an upper bound, then X has a maximal element.

Clearly the Hausdorff maximal principle implies Zorn’s lemma: An upper bound
for a maximal linearly ordered subset of X is a maximal element of X. It is also not
difficult to see that Zorn’s lemma implies the Hausdorff maximal principle. (Apply
Zorn’s lemma to the collection of linearly ordered subsets of X, which is partially
ordered by inclusion.)

0.3 The Well Ordering Principle. Every nonempty set X can be well ordered.
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Proof. Let W be the collection of well orderings of subsets of X, and define a
partial ordering on W as follows. If <; and <, are well orderings on the subsets
E, and E,, then <; precedes <, in the partial ordering if (i) <, extends <, i.e.,
E, C E3 and <; and <5 agree on F4, and (ii) if z € E, \ E; then y <, z for all
y € F,. The reader may verify that the hypotheses of Zorn’s lemma are satisfied, so
that W has a maximal element. This must be a well ordering on X itself, for if < is
a well ordering on a proper subset E of X and o € X \ E, then < can be extended
to a well ordering on E U {z¢} by declaring that z < z forall z € E. B

0.4 The Axiom of Choice. If {Xa}aca is a nonempty collection of nonempty sets,
then [],c 4 Xa is nonempty.

Proof. Let X =|J,c4 Xa- Pick a well ordering on X and, for a € A, let f()
be the minimal element of X,. Then f € [, 4 Xa- »

0.5 Corollary. If { X, }aca is a disjoint collection of nonempty sets, there is a set
Y CUaea Xa such that Y N X, contains precisely one element for each a € A.

Proof. TakeY = f(A) where f € [[,ca Xa- B

We have deduced the axiom of choice from the Hausdorff maximal principle; in
fact, it can be shown that the two are logically equivalent.

0.3 CARDINALITY

If X and Y are nonempty sets, we define the expressions
card(X) < card(Y), card(X) = card(Y), card(X) > card(Y)

to mean that there exists f : X — Y which is injective, bijective, or surjective,
respectively. We also define

card(X) < card(Y), card(X) > card(Y)

to mean that there is an injection but no bijection, or a surjection but no bijection,
from X to Y. Observe that we attach no meaning to the expression “card(X)” when
it stands alone; there are various ways of doing so, but they are irrelevant for our
purposes (except when X is finite — see below). These relationships can be extended
to the empty set by declaring that

card(@) < card(X) and card(X) > card(@) forall X # @.

For the remainder of this section we assume implicitly that all sets in question are
nonempty in order to avoid special arguments for @. Our first task is to prove that
the relationships defined above enjoy the properties that the notation suggests.
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0.6 Proposition. card(X) < card(Y) iff card(Y") > card(X).

Proof. If f : X — Y is injective, pick z9 € X and define g : ¥ — X by
9(y) = f~Yy) ify € f(X), g(y) = zo otherwise. Then g is surjective. Conversely,
if g : Y — X is surjective, the sets g~ ({z}) (x € X) are nonempty and disjoint, so
any f € [T.ex 97 ({z}) is an injection from X to Y. i

0.7 Proposition. For any sets X and Y, either card(X) < card(Y) or card(Y') <
card(X).

Proof. Consider the set J of all injections from subsets of X to Y. The members
of J can be regarded as subsets of X x Y, so J is partially ordered by inclusion. It is
easily verified that Zorn’s lemma applies, so J has a maximal element f, with (say)
domain A and range B. If zp € X \ Aand yo € Y \ B, then f can be extended
to an injection from A U {zo} to Y U {yo} by setting f(z¢) = yo, contradicting
maximality. Hence either A = X, in which case card(X) < card(Y),or B=Y,in
which case f~! is an injection from Y to X and card(Y") < card(X). ]

0.8 The Schroder-Bernstein Theorem. If card(X) < card(Y) and card(Y) <
card(X) then card(X) = card(Y).

Proof. Letf: X — Y andg:Y — X be injections. Consider a point x € X:
Ifz € g(Y), we form g~1(z) € Y;if g~ !(z) € f(X), we form f~1(g~1(z)); and
so forth. Either this process can be continued indefinitely, or it terminates with an
element of X \ g(Y') (perhaps z itself), or it terminates with an element of Y\ f(X).
In these three cases we say that z isin X, Xx, or Xy; thus X is the disjoint union
of X, Xx,and Xy. In the same way, Y is the disjoint union of three sets Y, Yx,
and Yy . Clearly f maps X, onto Y, and X x onto Yx, whereas g maps Yy onto
Xy. Therefore, if we define h : X — Y by h(z) = f(z) if X € Xoo U Xx and
h(z) = g~!(z) if z € Xy, then h is bijective. 5

0.9 Proposition. For any set X, card(X) < card(P(X)).

Proof.  On the one hand, the map f(z) = {«} is an injection from X to P(X).
On the other, if g: X — P(X),letY ={z € X :2 ¢ g(x)}. ThenY ¢ g(X), for
if Y = g(z¢) for some 2o € X, any attempt to answer the question “Is o € Y'?”
quickly leads to an absurdity. Hence g cannot be surjective. [

A set X is called countable (or denumerable) if card(X) < card(N). In
particular, all finite sets are countable, and for these it is convenient to interpret
“card(X)” as the number of elements in X:

card(X) = niff card(X) = card({1,...,n}).

If X is countable but not finite, we say that X is countably infinite.
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0.10 Proposition.
a. If X andY are countable, sois X x Y.
b. If A is countable and X, is countable for every a € A, then |J,c 4 Xa is
countable.
c. If X is countably infinite, then card(X ) = card(N).

Proof. To prove (a) it suffices to prove that N? is countable. But we can define
a bijection from N to N? by listing, for n successively equal to 2,3,4, ..., those
elements (4, k) € N2 such that j + k = n in order of increasing 7, thus:

(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1),...

As for (b), for each o € A there is a surjective f, : N — X, and then the map
fiNxA - J,eca Xadefined by f(n, a) = fa(n) is surjective; the result therefore
follows from (a). Finally, for (c) it suffices to assume that X is an infinite subset
of N. Let f(1) be the smallest element of X, and define f(n) inductively to be the
smallest element of E'\ {f(1),..., f(n—1)}. Then f is easily seen to be a bijection
from N to X. B

0.11 Corollary. Z and Q are countable.

Proof. 7 is the union of the countable sets N, {—n : n € N}, and {0}, and one
can define a surjection f : Z? — Qby f(m,n) = m/nifn # 0and f(m,0) = 0. g

A set X is said to have the cardinality of the continuum if card(X ) = card(R).
We shall use the letter ¢ as an abbreviation for card(R):

card(X) = ciff card(X) = card(R).
0.12 Proposition. card(P(N)) =c.

Proof. If A C N, define f(A) € Rtobe }° .,27" if N\ A is infinite and
1+ .42 ™if N\ Ais finite. (In the twocases, f(A) is the number whose base-2
decimal expansion is 0.ajas --- or l.ajas -+, wherea, =1ifn € Aanda, =0
otherwise.) Then f : P(N) — Risinjective. On the other hand, define g : P(Z) — R
by 9(A) = log(}_,c427") if A is bounded below and g(A) = 0 otherwise. Then
g is surjective since every positive real number has a base-2 decimal expansion.
Since card(P(Z)) = card(P(N)), the result follows from the Schréder-Bernstein
theorem. [

0.13 Corollary. If card(X) > ¢, then X is uncountable.

Proof. Apply Proposition 0.9. [

The converse of this corollary is the so-called continuum hypothesis, whose va-
lidity is one of the famous undecidable problems of set theory; see §0.7.
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0.14 Proposition.
a. Ifcard(X) < candcard(Y) <¢, thencard(X xY) <.
b. Ifcard(A) < ¢ and card(Xa) < ¢ forall o € A, then card(|J,c 4 Xo) < ¢

Proof. For (a) it suffices to take X = Y = P(N). Define ¢,¢ : N — N by
#(n) = 2n and ¥(n) = 2n — 1. It is then easy to check that the map f : P(N)2 —
P(N) defined by f(A, B) = ¢(A) U(B) is bijective. (b) follows from (a) as in the
proof of Proposition 0.10. ]

0.4 MORE ABOUT WELL ORDERED SETS

The material in this section is optional; it is used only in a few exercises and in some
notes at the ends of chapters.

Let X be a well ordered set. If A C X is nonempty, A has a minimal element,
which is its maximal lower bound or infimum; we shall denote it by inf A. If A is
bounded above, it also has a minimal upper bound or supremum, denoted by sup A.
If z € X, we define the initial segment of x to be

L ={yeX:y<z}.

The elements of I, are called predecessors of z.
The principle of mathematical induction is equivalent to the fact that N is well
ordered. It can be extended to arbitrary well ordered sets as follows:

0.15 The Principle of Transfinite Induction. Let X be a well ordered set. If A is
a subset of X such that x € A whenever [, C A, then A = X.

Proof. If X # A,letz =inf(X \ A). Then I, C Abutz ¢ A. »

0.16 Proposition. If X iswell ordered and A C X, then| ¢ 4 I is either an initial
segment or X itself.

Proof. LetJ =J,c 4o fJ # X, letb =inf(X \ J). If there existed y € J
with y > b, we would have y € I, for some x € A and hence b € I, contrary to
construction. Hence J C I, and it is obvious that I, C J. B

0.17 Proposition. If X and Y are well ordered, then either X is order isomorphic
toY, or X is order isomorphic to an initial segment inY', or Y is order isomorphic
to an initial segment in X.

Proof. Consider the set F of order isomorphisms whose domains are initial
segments in X or X itself and whose ranges are initial segments in Y or Y itself.
J is nonempty since the unique f : {inf X} — {inf Y’} belongs to F, and JF is
partially ordered by inclusion (its members being regarded as subsets of X x Y).



