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Introduction. The evolution of the concept of function goes back 4000 years; 3700 
of these consist of anticipations. The idea evolved for close to 300 years in intimate
connection with problems in calculus and analysis. (A one-sentence definition of
analysis as the study of properties of various classes of functions would not be far off
the mark.) In fact, the concept of function is one of the distinguishing features of
“modern” as against “classical” mathematics. W. L. Schaaf [24, p. 500] goes a step
further:

The keynote of Western culture is the function concept, a notion not even
remotely hinted at by any earlier culture. And the function concept is
anything but an extension or elaboration of previous number concepts—it
is rather a complete emancipation from such notions.

The evolution of the function concept can be seen as a tug of war between two
elements, two mental images: the geometric (expressed in the form of a curve)
and the algebraic (expressed as a formula—first finite and later allowing infinitely

many terms, the so-called “analytic expression”). (See [7, p. 256].) Subsequently, a third
element enters, namely, the “logical” definition of function as a correspondence (with a
mental image of an input-output machine). In the wake of this development, the
geometric conception of function is gradually abandoned. A new tug of war soon ensues
(and is, in one form or another, still with us today) between this novel “logical”
(“abstract,” “synthetic,” “postulational”) conception of function and the old “algebraic”
(“concrete,” “analytic,” “constructive”) conception.

In this article, we will elaborate these points and try to give the reader a sense of the
excitement and the challenge that some of the best mathematicians of all time
confronted in trying to come to grips with the basic conception of function that we now
accept as commonplace.

1. Precalculus Developments. The notion of function in explicit form did not emerge
until the beginning of the 18th century, although implicit manifestations of the concept
date back to about 2000 B.C. The main reasons that the function concept did not emerge
earlier were:

• lack of algebraic prerequisites—the coming to terms with the continuum of real
numbers, and the development of symbolic notation;

• lack of motivation. Why define an abstract notion of function unless one had many
examples from which to abstract?



In the course of about two hundred years (ca. 1450–1650),there occurred a number of
developments that were fundamental to the rise of the function concept:

• Extension of the concept of number to embrace real and (to some extent) even
complex numbers (Bombelli,Stifel, et al.);

• The creation of a symbolic algebra (Viète, Descartes,et al.);

• The study of motion as a central problem of science (Kepler, Galileo,et al.);

• The wedding of algebra and geometry (Fermat, Descartes,et al.).

The 17th century witnessed the emergence of modern mathematized science and the
invention of analytic geometry. Both of these developments suggested a dynamic,
continuous view of the functional relationship as against the static, discrete view held 
by the ancients.

In the blending of algebra and geometry, the key elements were the introduction of
variablesand the expression of the relationship between variables by means of
equations. The latter provided a large number of examples of curves (potential
functions) for study and set the final stage for the introduction of the function concept.
What was lacking was the identification of the independent and dependent variables in
an equation:

Variables are not functions. The concept of function implies a unidirectional
relation between an “independent”and a “dependent”variable. But in the case of
variables as they occur in mathematical or physical problems,there need not be
such a division of roles. And as long as no special independent role is given to one
of the variables involved, the variables are not functions but simply variables 
[2, p. 348].

See [6],[15], [27] for details.

The calculus developed by Newton and Leibniz had not the form that students see today.
In particular, it was not a calculus of functions. The principal objects of study in 17th-
century calculus were (geometric) curves. (For example, the cycloid was introduced
geometrically and studied extensively well before it was given as an equation.) In fact,
17th-century analysis originated as a collection of methods for solving problems about
curves,such as finding tangents to curves,areas under curves,lengths of curves,and
velocities of points moving along curves. Since the problems that gave rise to the
calculus were geometric and kinematic in nature, and since Newton and Leibniz were
preoccupied with exploiting the marvelous tool that they had created, time and reflection
would be required before the calculus could be recast in algebraic form.

The variables associated with a curve were geometric—abscissas,ordinates,subtangents,
subnormals,and the radii of curvature of a curve. In 1692,Leibniz introduced the word
“function” (see [25,p. 272]) to designate a geometric object associated with a curve. 
For example, Leibniz asserted that “a tangent is a function of a curve” [12 p. 85].

Newton’s “method of fluxions” applies to “f luents,” not functions. Newton calls his
variables “f luents”—the image (as in Leibniz) is geometric, of a point “f lowing” along 
a curve. Newton’s major contribution to the development of the function concept was 
his use of power series. These were important for the subsequent development of 
that concept.
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As increased emphasis came to be placed on the formulas and equations relating the
functions associated with a curve, attention was focused on the role of the symbols
appearing in the formulas and equations and thus on the relations holding among these
symbols,independent of the original curve. The correspondence (1694–1698) between
Leibniz and Johann Bernoulli traces how the lack of a general term to represent
quantities dependent on other quantities in such formulas and equations brought about
the use of the term “function” as it appears in Bernoulli’s definition of 1718 (see[3,p. 9]
and [27,p. 57] for details):

One calls here Function of a variable a quantity composed in any manner
whatever of this variable and of constants [23,p. 72].

This was the first formal definition of function,although Bernoulli did not explain what
“composed in any manner whatever” meant. See [3],[6], [12], [27] for details of this
section.

2. Euler’ s Intr oductio in Analysin Infinitorum. In the first half of the 18th century,
we witness a gradual separation of 17th-century analysis from its geometric origin and
background. This process of “degeometrization of analysis” [2, p. 345] saw the
replacement of the concept of variable, applied to geometric objects,with the concept of
function as an algebraic formula. This trend was embodied in Euler’s classic Introductio
in Analysin Infinitorumof 1748,intended as a survey of the concepts and methods of
analysis and analytic geometry needed for a study of the calculus.

Euler’s Introductiowas the first work in which the concept of function plays an explicit
and central role. In the preface, Euler claims that mathematical analysis is the general
science of variables and their functions. He begins by defining a function as an “analytic
expression”(that is, a “f ormula”):

A function of a variable quantity is an analytical expression composed in any
manner from that variable quantity and numbers or constant quantities [23,p. 72].

Euler does not define the term “analytic expression,” but tries to give it meaning by
explaining that admissible “analytic expressions”involve the four algebraic operations,
roots,exponentials,logarithms,trigonometric functions,derivatives,and integrals. He
classifies functions as being algebraic or transcendental; single-valued or multivalued;
and implicit or explicit. The Introductiocontains one of the earliest treatments of
trigonometric functions as numerical ratios (see [13]),as well as the earliest algorithmic
treatment of logarithms as exponents. The entire approach is algebraic. Not a single
picture or drawing appears (in v. 1).

Expansions of functions in power series play a central role in this treatise. In fact,
Euler claims that any function can be expanded in a power series: “If anyone doubts
this, this doubt will be removed by the expansion of every function” [3, p. 10]. This
remark was certainly in keeping with the spirit of mathematics in the 18th century. 

Hawkins [10,p. 3] summarizes Euler’s contribution to the emergence of function as 
an important concept:

This term, which will appear often throughout this paper, was formally defined only in the late
19th century (see sec. 7).

Youschkevitch [27,p. 54] claims that “because of power series the concept of function 
as analytic expression occupied the central place in mathematical analysis.”
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Although the notion of function did not originate with Euler, it was he who first
gave it prominence by treating the calculus as a formal theory of functions.

As we shall see, Euler’s view of functions was soon to evolve. See [2],[3], [6], [27] 
for details of the above.

3. The Vibr ating-Str ing Controversy. Of crucial importance for the subsequent
evolution of the concept of the function was the Vibrating-String Problem:

An elastic string having fixed ends (0 and say) 
is deformed into some initial shape and then 
released to vibrate. The problem is to determine 
the function that describes the shape of the string 
at time t.

The controversy centered around the meaning of “function.” In fact,Grattan-Guinness
suggests that in the controversy over various solutions of this problem, “The whole of
eighteenth-century analysis was brought under inspection:the theory of functions,the
role of algebra, the real line continuum and the convergence of series . . .” [9, p. 2].

To understand the debates that surrounded the Vibrating-String Problem,we must first
mention an “article of faith” of 18th century mathematics:

If two analytic expressions agree on an interval, they agree everywhere.

This was not an unnatural assumption,given the type of functions (analytic expressions)
considered at that time. On this view, the whole course of a curve given by an analytic
expression is determined by any small part of the curve. This implicitly assumes that the
independent variable in an analytic expression ranges over the whole domain of real
numbers,without restriction.

In view of this,it is baffling (to us) that as early as 1744,Euler wrote to Goldbach
stating that

(See [27],p. 67.) Here, indeed, is an example of two analytic expressions that agree on
the interval but nowhere else:

Euler must surely have recognized this,but “This is not the only occasion on which EULER
knew examples which did not comply with his conceptions but which he may have considered to
be insignificant exceptions from the general rule” [27, p. 67]. See also [19].
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In 1747,d’Alembert solved the Vibrating-String Problem by showing that the motion of
the string is governed by the partial differential equation

(a is a constant),

the so-called wave equation. Using the boundary conditions and 
and the initial conditions

and

he solved this partial differential equation to obtain 
as the “most general” solution of the Vibrating-String Problem, being an “arbitrary”
function. It follows readily that 

on 

and 

Thus, is determined on by the initial shape of the string, and is continued 
(by the “article of faith”) as an odd periodic function of period 

D’Alembert believed that the function (and hence ) must be an “analytic
expression”—that is, it must be given by a formula. (To d’Alembert, these were the only
permissible functions.) Moreover, since this analytic expression satisfies the wave
equation, it must be twice differentiable.

In 1748,Euler wrote a paper on the same problem in which he agreed completely with
d’Alembert concerning the solution but differed from him on its interpretation. Euler
contended that d’Alembert’s solution was not the “most general,” as the latter had
claimed. Having himself solved the problem mathematically, Euler claimed his
experiments showed that the solution gives the
shapes of the string for different values of t, even when the initial shape is not given by
a (single) formula. From physical considerations,Euler argued that the initial shape of
the string can be given (a) by several analytic expressions in different subintervals of

(say, circular arcs of different radii in different parts of or, more generally,
(b) by a curve drawn free-hand. But according to the “article of faith” prevalent at the
time, neither of these two types of initial shapes could be given by a single analytic
expression,since such an expression determines the shape of the entire curve by its
behavior on any interval, no matter how small. Thus,d’Alembert’s solution could not be
the most general.

Euler called functions of types (a) and (b) “discontinuous,” reserving the word “continuous”
for functions given by a single analytic expression. (Thus,he regarded the two branches of a
hyperbola as a single continuous function! [18,p.301].) This conception of “continuity”
persisted until 1821,when Cauchy gave the definition used nowadays.
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D’Alembert, who was much less interested in the vibrations of the string than in the
mathematics of the problem,claimed that Euler’s argument was “against all rules of
analysis.” (Euler believed that it is admissible to apply certain of the operations of
analysis to arbitrary curves.) Langer [16,p.17] explains the differing views of Euler and
d’Alembert concerning the Vibrating-String Problem in terms of their general approach
to mathematics:

Euler’s temperament was an imaginative one. He looked for guidance in large
measure to practical considerations and physical intuition,and combined with a
phenomenal ingenuity, an almost naive faith in the infallibility of mathematical
formulas and the results of manipulations upon them. D’Alembert was a more
critical mind, much less susceptible to conviction by formalisms. A personality of
impeccable scientific integrity, he was never inclined to minimize short-comings
that he recognized, be they in his own work or in that of others.

Daniel Bernoulli entered the picture in 1753 by giving yet another solution of the
Vibrating-String Problem. Bernoulli, who was essentially a physicist,based his
argument on the physics of the problem and the known facts about musical vibrations
(discoveredearlier by Rameau et al.). It was generally recognized at the time that
musical sounds (and, in particular, vibrations of a “musical” string) are composed of
fundamental frequencies and their harmonic overtones. This physical evidence, and
some “loose” mathematical reasoning, convinced Bernoulli that the solution to the
Vibrating-String Problem must be given by

This,of course, meant that an arbitrary function can be represented on by a
series of sines,

(Bernoulli was only interested in solving a physical problem,and did not give a
definition of function. By an “arbitrary function” he meant an “arbitrary shape” of the
vibrating string.)

Both Euler and d’Alembert (as well as other mathematicians of that time) found
Bernoulli’s solution absurd. Relying on the 18th century “article of faith,” they argued
that since and the sine series agree on they must agree
everywhere. But then one arrived at the manifestly absurd conclusion that an “arbitrary”
function is odd and periodic. (Since Bernoulli’s initial shape of the string was given
by an analytic expression,Euler rejected Bernoulli’s solution as being the most general
solution.) Bernoulli retorted that d’Alembert’s and Euler’s solutions constitute “beautiful
mathematics but what has it to do with vibrating strings?”[22, p. 78].

Euler’s, but not d’Alembert’s “rules of analysis” would allow him to admit,for example,
the curve as the initial shape of a vibrating string. For, Euler would argue that 
one could change the shape of the curve at the “top” by an infinitely small amount and thus
“smooth” it out. Since infinitesimal changes were ignored in analysis,this would have no 
effect on the solution.
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The debate lasted for several more years (it was joined later by Lagrange) and then died
down without being resolved. Ravetz [22,p. 81] characterized the essence of the debate
as one between d’Alembert’s mathematical world, Bernoulli’s physical world, and
Euler’s “no-man’s land”between the two. The debate did, however, have important
consequences for the evolution of the function concept. Its major effect was to extend
that concept to include:

(a) Functions defined piecewise by analytic expressions in different intervals. (Thus,

was now, for the first time, considered to be a bona fide function.)

(b) Functions drawn freehand and possibly not given by any combination of analytic
expressions.

As Lützen [17] put it:

D’Alembert let the concept of function limit the possible initial values,while
Euler let the variety of initial values extend the concept of function. We thus see
that this extension of the concept of function was forced upon Euler by the
physical problem in question.

To see how Euler’s own view of functions evolved over a period of several years,
compare the definition of function he gave in his 1748 Introductiowith the following
definition given in 1755,in which the term “analytic expression”does not appear 
[23, pp. 72–73]:

If , however, some quantities depend on others in such a way that if the latter are
changed the former undergo changes themselves then the former quantities are
called functions of the latter quantities. This is a very comprehensive notion and
comprises in itself all the modes through which one quantity can be determined
by others. If, therefore, x denotes a variable quantity then all the quantities which
depend on x in any manner whatever or are determined by it are called its
functions ...

Euler’s view of functions was reinforced later in that century by work in partial
differential equations:

The work of Monge in the 1770s,giving a geometric interpretation to the
integration of partial differential equations,seemed to provide a conclusive proof
of the fact that functions ‘more general than those expressed by an equation’ were
legitimate mathematical objects ... [22,p. 86].

See [3],[4], [9], [16], [18], [19], [22], [27] for details on section 3.

4. Fourier and Fourier Series. Fourier’s work on heat conduction (submitted to the
Paris Academy of Sciences in 1807,but published only in 1822 in his classic Analytic
Theory of Heat) was a revolutionary step in the evolution of the function concept.
Fourier’s main result of 1822 was the following.

Theorem. Any function defined over is representable over this interval by
a series of sines and cosines,
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where the coefficients and are given by

and

Fourier’s announcement of this result met with incredulity. It upset several tenets of
18th-century mathematics. The result was known to Euler and Lagrange (among others),
but only for certain functions. Fourier, of course, claimed that it is true for all functions,
where the term “function” was given the most general contemporary interpretation:

In general, the function represents a succession of values or ordinates each of
which is arbitrary. An infinity of values being given to the abscissa x, there are an
equal number of ordinates All have actual numerical values,either positive
or negative or null. We do not suppose these ordinates to be subject to a common
law; they succeed each other in any manner whatever, and each of them is given
as if it were a single quantity [23,p. 73].

Fourier’s “proof” of his theorem was loose even by the standards of the early 19th
century. In fact,it was formalism in the spirit of the 18th century—“a play upon
symbols in accordance with accepted rules but without much or any regard for content
or significance”[16, p. 33]. To convince the reluctant mathematical community of the
reasonableness of his claim, Fourier needed to show that:

(a) The coefficients of the Fourier series can be calculated for any

(b) Any function can be represented by its Fourier series in 

He showed this by:

Interpreting the coefficients and in the Fourier series expansion of as
areas (which made sense for “arbitrary” functions not necessarily given by analytic
expressions)

Calculating the and (for small values of n) for a great variety of functions 
and noting the close agreement in (but not outside that interval) between the
initial segments of the resulting Fourier series and the functional values of 

Fourier accomplished all this using mathematical reasoning that would be clearly
unacceptable to us today. However,

It was,no doubt,partially because of his very disregard for rigor that he was able
to take conceptual steps which were inherently impossible to men of more critical
genius [16,p. 33].

Fourier’s work raised the analytic (algebraic) expression of a function to at least an
equal footing with its geometric representation (as a curve). His work had a fundamental
and far-reaching impact on subsequent developments in mathematics. (For example, it
forced mathematicians to reexamine the notion of integral, and was the starting point of
the researches that led Cantor to his creation of the theory of sets.) As for its impact on
the evolution of the function concept, Fourier’s work:

• Did away with the “article of faith” held by 18th-century mathematicians. (Thus,it
was now clear that two functions given by different analytic expressions can agree on
an interval without necessarily agreeing outside the interval.)

Fourier was among the first to highlight the issue of convergence of series,which was of 
little concern to mathematicians of the 18th century.
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• Showed that Euler’s concept of “discontinuous”was flawed. (Some of Euler’s
discontinuous functions were shown to be representable by a Fourier series—an
analytic expression—and were thus continuous in Euler’s sense.)

• Gave renewed emphasis to analytic expressions.

As we shall see, all this forced a re-evaluation of the function concept. See [3],[6], [7],
[9], [16], [19] for details.

As we have noted, the period 1720–1820 was characterized by a development and
exploitation of the tools of the calculus bequeathed by the 17th century. These tools
were employed in the solution of important “practical” problems (e.g., the Vibrating-
String Problem, the Heat-Conduction Problem). These problems,in turn, clamored for
attention to important “theoretical” concepts (e.g., function,continuity, convergence). A
new subject—analysis—began to take form, in which the concept of function was
central. But both the subject and the concept were still in their formative stages. It was a
period of “f ormalism” in analysis—formal manipulations dictated the “rules of the
game,” with little concern for rigor. The concept of function was in a state of flux—an
analytic expression (an “arbitrary” formula), then a curve (drawn freehand),and then
again an analytic expression (but this time a “specific” formula,namely a Fourier
series). Both the subject of analysis (certainly its basic notions) and the concept of
function were ripe for a reevaluation and a reformulation. This is the next stage in our
development.

5. Dir ichlet’s Concept of Function Dirichlet was one of the early exponents of the
critical spirit in mathematics ushered in by the 19th century (others were Gauss,Abel,
Cauchy). He undertook a careful analysis of Fourier’s work to make it mathematically
respectable. The task was not simple:

To make sense out of what he [Fourier] did took a century of effort by men of
“more critical genius,” and the end is not yet in sight [4,p. 263].

Fourier’s result that any function can be represented by its Fourier series was,of course,
incorrect. In a fundamental paper of 1829,Dirichlet gave sufficient conditions for such
representability:

Theorem. If a function f has only finitely many discontinuities and finitely many
maxima and minima in then f may be represented by its Fourier series on

(The Fourier series converges pointwise to f where f is continuous,and to
at each point x where f is discontinuous.)

For a mathematically rigorous proof of this theorem,one needed (a) clear notions of
continuity, convergence, and the definite integral, and (b) clear understanding of the
function concept. Cauchy contributed to the former, and Dirichlet to the latter. We first
turn very briefly to Cauchy’s contributions.

Cauchy was one of the first mathematicians to usher in a new spirit of rigor in analysis.
In his famed Cours d’Analyseof 1821 and subsequent works,he rigorously defined the
concepts of continuity, differentiability, and integrability of a function in terms of limits.

It should be noted that standards of rigor have changed in mathematics (not always from less
rigor to more),and that Cauchy’s rigor is not ours. Kitcher [14] suggests that Cauchy’s
motivation in rigorizing the basic concepts of the calculus came from work in Fourier series. See
also [8] for background to Cauchy’s work in analysis.
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(Bolzano had done much of this earlier, but his work went unnoticed for fifty years.) In
dealing with continuity, Cauchy addresses himself to Euler’s conceptions (footnote 4) of
“continuous”and “discontinuous.” He shows that the function

(which Euler considered discontinuous) can also be written as and 

which means that is also continuous in Euler’s sense. This paradoxical situation,
Cauchy claims,cannot happen when his definition of continuity is used.

Cauchy’s conception of function is not very different from that of his predecessors:

When the variable quantities are linked together in such a way that, when the
value of one of them is given, we can infer the values of all the others, we
ordinarily conceive that these various quantities are expressed by means of one of
them which then takes the name of independent variable; and the remaining
quantities,expressed by means of the independent variable, are those which one
calls the functionsof this variable [3, p. 104].

Although Cauchy gives a rather general definition of a function,his subsequent
comments suggest that he had in mind something more limited (see [10,p. 10]). He
classifies functions as “simple” and “mixed.” The “simple functions”are 

sin x, cos x, arcsin x, arc cos x; and the “mixed functions”are
composites of the “simple” ones—say, log(sin x). See [3],[6], [8], [9], [12], [14] for
Cauchy’s contribution.

Now let us consider Dirichlet’s definition of function:

y is a function of a variable x, defined on the interval if to every value
of the variable x in this interval there corresponds a definite value of the variable
y. Also, it is irrelevant in what way this correspondence is established [19].

The novelty in Dirichlet’s conception of function as an arbitrary correspondence lies not
so much in the definition as in its application. Mathematicians from Euler through
Fourier to Cauchy had paid lip service to the “arbitrary” nature of functions; but in
practice they thought of functions as analytic expressions or curves. Dirichlet was the
first to take seriously the notion of function as an arbitrary correspondence (but see [3,
p. 201]). This is made abundantly clear in his 1829 paper on Fourier series,at the end of
which he gives an example of a function (the Dir ichlet function),

that does not satisfy the hypothesis of his theorem on the representability of a function
by a Fourier series (see[10,p. 15]). The Dirichlet function:

• was the first explicit example of a function that was not given by an analytic
expression (or by several such), nor was it a curve drawn freehand;
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• was the first example of a function that is discontinuous (in our, not Euler’s sense)
everywhere;

• illustrated the concept of function as an arbitrary pairing.

Another important point is that Dirichlet, in his definition of function,was among the
first to restrict explicitly the domain of the function to an interval; in the past,the
independent variable was allowed to range over all real numbers. See [3],[5], [9], [10],
[15], [17], [27] for details about Dirichlet’s work.

6. “Pathological” Functions. With his new example Dirichlet “let the genie
escape from the bottle.” A flood of “pathological” functions,and classes of functions,
followed in the succeeding half century. Certain functions were introduced to test the
domain of applicability of various results (e.g., the “Dir ichlet function”was introduced
in connection with the representability of a function in a Fourier series). Certain classes
of functions were introduced in order to extend various concepts or results (e.g.,
functions of bounded variation were introduced to test the domain of applicability of the
Riemann integral).

The character of analysis began to change. Since the 17th century, the processes of
analysis were assumed to be applicable to “all” functions,but it now turned out that they
are restricted to particular classesof functions. In fact,the investigation of various
classes of functions—such as continuous functions,semi-continuous functions,
differentiable functions,functions with nonintegrable derivatives,integrable functions,
monotonic functions,continuous functions that are not piecewise monotonic—became a
principal concern of analysis. (One example is Dini’s study of continuous
nondifferentiable functions,for which he defined the so-called Dini derivatives.)
Whereas mathematicians had formerly looked for order and regularity in analysis,they
now took delight in discovering exceptions and irregularities. The towering personalities
connected with these developments were Riemann and Weierstrass,although many
others made important contributions (e.g., du Bois Reymond and Darboux).

The first major step in these developments was taken by Riemann in his
Habilitationsschrift of 1854,which dealt with the representation of functions in Fourier
series. As we recall,the coefficients of a Fourier series are given by integrals. Cauchy
had developed his integral only for continuous functions,but his ideas could be
extended to  functions with finitely many discontinuities. Riemann extended Cauchy’s
concept of integral and thus enlarged the class of functions representable by Fourier
series. This extension (known today as the Riemann integral) applies to functions of
bounded variation, a much broader class of functions than Cauchy’s continuous
functions. Thus,a function can have infinitely many discontinuities (which can be dense
in any interval) and still be Riemann-integrable. Riemann gave the following example
(published in 1867) in his Habilitationsschrift:

where for any real number the function is defined as 0 if 

There are, of course, restrictions on the discontinuities of a Riemann-integrable function. As
we now know (following Lebesgue),a function is Riemann-integrable if and only if its
discontinuities form a set of Lebesgue measure zero.
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(k, an integer), and minus the nearest integer when (k, integral). This
function is discontinuous for all where m is an integer relatively prime to 2n
(see [6,p. 325]). In contrast to Dirichlet’s function this one is given by an analytic
expression and is Riemann-integrable.

Riemann’s work may be said to mark the beginning of a theory of the mathematically
discontinuous (although there are isolated examples in Fourier’s and Dirichlet’s works).
It planted the discontinuous firmly upon the mathematical scene. The importance of this
development can be inferred from the following statement of Hawkins [10,p. 3]:

The history of integration theory after Cauchy is essentially a history of attempts
to extend the integral concept to as many discontinuous functions as possible;
such attempts could become meaningful only after existence of highly
discontinuous functions was recognized and taken seriously.

In 1872,Weierstrass startled the mathematical community with his famous example 
of a continuous nowhere-differentiable function

where a is an odd integer, b a real number in and (see [12,
p. 387]). (Bolzano had given such an example in 1834,but it went unnoticed.) This
example was contrary to all geometric intuition. In fact,up to about 1870,most books
on the calculus “proved” that a continuous function is differentiable except possibly at a
finite number of points! (See [10,p. 43].) Even Cauchy believed that.

Weierstrass’example began the disengagement of the continuous from the differentiable
in analysis. Weierstrass’work (and others’ in this period) necessitated a reexamination of
the foundations of analysis and led to the so-called arithmetization of analysis,in which
process Weierstrass was a prime mover. As Birkhoff notes [3,p. 71]:

Weierstrass demonstrated the need for higher standards of rigor by constructing
counterexamplesto plausible and widely held notions.

Counterexamples play an important role in mathematics. They illuminate relationships,
clarify concepts,and often lead to the creation of new mathematics. (An interesting case
study of the role of counterexamples in mathematics can be found in the book Proofs
and Refutationsby I. Lakatos.) The impact of the developments we have been
describing was,as we already noted, to change the character of analysis. A new subject
was born—the theory of functions of a real variable. Hawkins [10,p. 119] gives a vivid
description of the state of affairs:

The nascent theory of functions of a real variable grew out of the development of
a more critical attitude, supported by numerous counterexamples,towards the 

The malaise in the understanding and use of the function concept around this time can be
gathered from the following account by Hankel (in 1870) concerning the function concept 
as it appears in the “better textbooks of analysis” (Hankel’s phrase):“One [text] defines 
function in the Eulerian manner; the other that y should change with x according to a rule,
without explaining this mysterious concept; the third defines them as Dirichlet; the fourth 
does not define them at all; but everyone draws from them conclusions that are not contained
therein” [17]. See also [3,p. 198].
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reasoning of earlier mathematicians. Thus, for example, continuous
nondifferentiable functions,discontinuous series of continuous functions,and
continuous functions that are not piecewise monotonic were discovered. The
existence of exceptions came to be accepted and more or less expected. And the
examples of nonintegrable derivatives,rectifiable curves for which the classical
integral formula is inapplicable, nonintegrable functions that are the limit of
integrable functions,Harnack-integrable derivatives for which the Fundamental
Theorem II is false, and counterexamples to the classical form of Fubini’s
Theorem appear to have been received in this frame of mind. The idea,as
Schoenflies put it in his report ... , was to proceed, as in human pathology, to
discover as many exceptional phenomena as possible in order to determine the
laws according to which they could be classified.

It should be pointed out,however, that not everyone was pleased with these
developments (at least in analysis),as the following quotations from Hermite (in 1893)
and Poincaré (in 1899),respectively, attest [15,p. 973]:

“I turn away with fright and horror from this lamentable evil of functions which
do not have derivatives.”

“Logic sometimes makes monsters. For half a century we have seen a mass of
bizarre functions which appear to be forced to resemble as little as possible honest
functions which serve some purpose. More of continuity, or less of continuity,
more derivatives, and so forth. Indeed, from the point of view of logic, these
strange functions are the most general; on the other hand those which one meets
without searching for them,and which follow simple laws appear as a particular
case which does not amount to more than a small corner.

In former times when one invented a new function it was for a practical purpose;
today one invents them purposely to show up defects in the reasoning of our
fathers and one will deduce from them only that.

If logic were the sole guide of the teacher, it would be necessary to begin with the
most general functions,that is to say with the most bizarre. It is the beginner that
would have to be set grappling with this teratologic museum.”

The effect of the events we have been describing on the function concept can be
summarized as follows. Stimulated by Dirichlet’s conception of function and his
example the notion of function as an arbitrary correspondence is given free rein
and gains general acceptance; the geometric view of function is given little
consideration. (Riemann’s and Weierstrass’functions could certainly not be “drawn,” nor
could most of the other examples given during this period.) After Dirichlet’s work, the
term “function” acquired a clear meaning independent of the term “analytic expression.”
During the next half century, mathematicians introduced a large number of examples of
functions in the spirit of Dirichlet’s broad definition, and the time was ripe for an effort
to determine which functions were actually describable by means of “analytic
expressions”,a vague term in use during the previous two centuries. See [3],[10], [14],
[15] for details of this period.

7. Baire’s Classification Scheme. The question whether every function in Dirichlet’s
sense is representable analytically was first posed by Dini in 1878 (see [5,p. 31]). Baire
had undertaken to give an answer in his doctoral thesis of 1898. The very notion of
analytic representability had to be clarif ied, since it was used in the past in an informal
way. Dini himself used it vaguely, asking “if every function can be expressed
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analytically, for all values of the variable in the interval, by a finite or infinite series of
operations (“opérations du calcul”) on the variable” [5, p. 32].

The starting point for Baire’s scheme was the Weierstrass Approximation Theorem
(published in 1885):Every continuous function on an interval is a uniform
limit of polynomials on Baire called the class of continuous functions class0.
Then he defined the functions of class1 to be those that are not in class 0,but which are
(pointwise) limits of functions of class 0. In general, the functions of class mare those
functions which are not in any of the preceding classes,but are representable as limits of
sequences of functions of class This process is continued, by transfinite
induction,to all ordinals less than the first uncountable ordinal (Since the Baire
functions thus constructed are closed under limits,nothing new results if this process is
repeated.) This classification into Baire classes is called the Baire
classification, and the functions which constitute the union of the Baire classes are
called Baire functions.

Baire called a function analytically representable if it belonged to one of the Baire
classes. Thus,a function is analytically representable (in Baire’s sense) if it can be built
up from a variable and constants by a finite or denumerable set of additions,
multiplications,and passages to pointwise limits.

The collection of analytically representable functions (Baire functions) is very
encompassing. For example, discontinuous functions representable by Fourier series
belong to class 1. Thus,functions representable by Fourier series constitute only a part
of the totality of analytically representable functions. (Recall Fourier’s claim that every
function can be represented by a Fourier series!) As another example, Baire showed that
the “pathological” Dirichlet function is of class 2,since

Moreover, any function obtained from a variable and constants by an application 
of the four algebraic operations and the operations of analysis (such as differentiation,
integration, expansion in series,use of transcendental functions)—the kind of function
known in the past as an “analytic expression”—was shown to be analytically
representable.

Lebesgue pursued these studies and showed (in 1905) that each of the Baire classes is
nonempty, and that the Baire classes do not exhaust all functions. Thus,Lebesgue
established that there are functions which are not analytically representable (in Baire’s
sense). This he did by actually exhibiting a function outside the Baire classification,

In fact,there are (Lebesgue-) measurable functions which are not Baire functions. At the
same time, Lebesgue showed that to every measurable function f there corresponds a Baire
function which differs from f only on a set of measure zero.
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“using a profound but extremely complex method”[19]. According to Luzin [19],
“the impact of Lebesgue’s discovery was just as stunning as that of Fourier in his time.”
See [5], [19], [20], [21] for details.

Not all functions in the sense of Dirichlet’s conception of function as an arbitrary
correspondence are analytically representable (in the sense of Baire), although it is
(apparently) very difficult to produce a specific function that is not. Do such
nonanalytically representable functions “really” exist? This is part of our story in the
next section.

8. Debates about the Natur e of Mathematical Objects. Function theory was
characterized by some at the turn of the 20th century as “the branch of mathematics
which deals with counterexamples.” This view was not universally applauded, as the
earlier quotations from Hermite and Poincaré indicate. In particular, Dirichlet’s general
conception of function began to be questioned. Objections were raised against the
phrase in his definition that “it is ir relevant in what way this correspondence is
established.” Subsequently, the arguments for and against this point linked up with the
arguments for and against the axiom of choice (explicitly formulated by Zermelo in
1904) and broadened into a debate over whether mathematicians are free to create their
objects at will. 

There was a famous exchange of letters in 1905 among Baire, Borel, Hadamard, and
Lebesgue concerning the current logical state of mathematics (see [5],[20], [21] for
details). Much of the debate was about function theory—the critical question being
whether a definition of a mathematical object (say a number or a function),however
given,legitimizes the existence of that object; in particular, whether Zermelo’s axiom of
choice is a legitimate mathematical tool for the definition or construction of functions.
In this context, Dirichlet’s conception of function was found to be too broad by some
(e.g., Lebesgue) and devoid of meaning by others (e.g., Baire and Borel), but was
acceptable to yet others (e.g., Hadamard). Baire, Borel, and Lebesgue supported the
requirement of a definite “law” of correspondence in the definition of a function. The
“law,” moreover, must be reasonably explicit—that is, understood by and communicable
to anyone who wants to study the function.

To illustrate the point,Borel compares the number (whose successive digits can be
unambiguously determined, and which he therefore regards as well defined) with the
number obtained by carrying out the following “thought experiment.” Suppose we lined
up infinitely many people and asked each of them to name a digit at random. Borel
claims that, unlike this number is not well defined since its digits are not related by 

The construction is quite “messy”and uses the axiom of choice. Using nonconstructive
arguments,one can show by a counting argument that the Baire functions have cardinality c.
Since the set of all functions has cardinality there are uncountably many functions which 
are not analytically representable in Baire’s sense.

Baire’s notion of analytic representability is not the last word on the subject. Luzin [19]
mentions the example of an “analytic expression”

which, for a suitable choice of the polynomials is not expressible as a Baire function.Pm, nsx, yd,
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any law. This being so,two mathematicians discussing this number will never be certain
that they are talking about the samenumber. Put briefly, Borel’s position is that without
a definite law of formation of the digits of an infinite decimal,one cannot be certain of
its identity.

Hadamard had no difficulty in accepting as legitimate the number resulting from Borel’s
thought experiment. By way of illustration, he alluded to the kinetic theory of gases,
where one speaks of the velocities of molecules in a given volume of gas although no
one knows them precisely. Hadamard felt that “the requirement of a law that determines
a function . . . strongly resembles the requirement of an analytic expressionfor that
function,and that this is a throwback to the 18th century” [19]. 

The issues described here were part of broad debates about various ways of doing
analysis—synthetic versus analytic, or idealist versus empiricist. These debates,in turn,
foreshadowed subsequent “battles” between proponents and opponents of the various
philosophies of mathematics (e.g., formalism and intuitionism) dealing with the nature
and meaning of mathematics. And, of course, the issue has not been resolved. See [4],
[5], [19], [20], [21] for details.

The period 1830–1910 witnessed an immense growth in mathematics,both in scope and
in depth. New mathematical fields were formed (complex analysis,algebraic number
theory, non-Euclidean geometry, abstract algebra,mathematical logic), and older ones
were deepened (real analysis,probability, analytic number theory, calculus of
variations). Mathematicians felt free to create their systems (almost) at will, without
finding it necessary to seek motivation from or applications to concrete (physical)
settings. At the same time there was,throughout the 19th century, a reassessment of
gains achieved, accompanied by a concern for the foundations of (various branches of)
mathematics. These trends are reflected in the evolution of the notion of function. 
The concept unfolds from its modest beginnings as a formula or a geometric curve 
(18th and early 19th centuries) to an arbitrary correspondence (Dirichlet). This latter
idea is exploited throughout the 19th century by way of the construction of various
“pathological” functions. Toward the end of the century, there is a reevaluation of past
accomplishments (Baire classification, controversy relating to use of the axiom of
choice),much of it in the broader context of debates about the nature and meaning 
of mathematics.

9. Recent Developments. Here we briefly touch on three more recent developments
relating to the function concept.

A) Functions. The set is Lebesgue-integrable} forms a “Hilbert
space”— a fundamental object in functional analysis. Two functions in are
considered to be the same if they agree everywhere except possibly on a set of Lebesgue
measure zero. Thus,in Function Theory, one can always work with representatives in
an equivalence class rather than with individual functions. These notions,as Davis and
Hersh observed [4,p. 269],

There has recently been a renewed interest,among others by computer scientists,in
Brouwer’s “intuitionistic mathematics.” The revival, in the form of “constructive mathematics,”
was led by E. Bishop,and is highlighted in an article by M. Mandelkern, “Constructive
Mathematics,” Math. Mag. 58 (1985) 272–280.
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involve a further evolution of the concept of function. For an element in is not
a function,either in Euler’s sense of an analytic expression or in Dirichlet’s sense
of a rule or mapping associating one set of numbers with another. It is function-
like in the sense that it can be subjected to certain operations normally applied to
functions (adding, multiplying, integrating). But since it is regarded as unchanged
if its values are altered on an arbitrary set of measure zero, it is certainly not just
a rule assigning values at each point in its domain.

B) Generalized Functions(Distributions). The concept of a distribution or generalized
function is a very significant and fundamental extension of the concept of function. The
theory of distributions arose in the 1930s and 1940s. It was created to give mathematical
meaning to the differentiation of nondifferentiable functions—a process which the
physicists had employed (unrigorously) for some time. Thus,Heaviside (in 1893)
“dif ferentiated” the function

to obtain the impulse “function”

(In 1930,Dirac introduced as a convenient notation in the mathematical
formulation of quantum theory.)

In formal terms,a distribution is a continuous linear functional on a space D of
infinitely differentiable functions (called “test functions”) that vanish outside some
interval To any continuous (or locally integrable) function F, there corresponds 

a distribution given by However, not every 

distribution comes from such a function:The distribution given by 
corresponds to the “Dir ac -function” mentioned above, and does not 

arise from any function F in the way described above. See[4],[18], [26].

A basic property of distributions is that each distribution has a derivative that is again a
distribution. In fact,

The following is a heuristic argument:Approximate by a sequence of differentiable
functions as in the diagram:

then as 

In particular, every continuous function is “dif ferentiable” (that is, has a distribution as its
“derivative”). In fact,L. Schwartz, one of the creators of the theory of distributions,claimed 
that he had introduced distributions to be able to differentiate continuous functions. Lützen [18,
p. 305] asserts that “the theory of distributions probably constitutes the closest approximation to
Euler’s vision of a generalized calculus,” a vision that Euler tried to put into practice in his
solution of the Vibrating-String Problem. 
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The enduring merit of distribution theory has been that the basic operations of
analysis,differentiation and convolution,and the Fourier/Laplace transforms and
their inversion,which demanded so much care in the classical framework, could
now be carried out without qualms by obeying purely algebraic rules [26,p. 338].

C) Category Theory. The notion of a function as a mapping between arbitrary sets
gradually became dominant in the mathematics of the 20th century. Algebra had a
major impact on this development,in which the concept of a function was placed in the
general framework of the concept of a mapping from one set into another. Thus,linear
transformations of vector spaces (principally, and ) were dealt with throughout
much of the 19th century. Homomorphisms of groups and automorphisms of fields were
introduced in the latter part of that century. As early as 1887,Dedekind gave a fairly
“modern” definition of the term “mapping” [23, p. 75]:

By a mapping of a system Sa law is understood, in accordance with which to each
determinate element sof Sthere is associated a determinate object,which is called
the image of s and is denoted by we say too, that corresponds to the
element s, that is caused or generated by the mapping out of s, that s is
transformed by the mapping into 

Analysis,too,played a major role in this extension of the domain and range of
definition of a function to arbitrary sets. (Recall that Dirichlet’s definition of function
was as an arbitrary correspondence between (real) numbers.) Thus,Euler and others in
the 18th century treated (informally) functions of several variables. In 1887,considered
the year of birth of functional analysis,Volterra defined the notion of a “functional”
which he called a “ function of functions.” (A functionalis a function whose domain is a
set of functions and whose range is the real or complex numbers.) In the first two
decades of the 20th century, the notions of metric space, topological space, Hilbert
space, and Banach space were introduced; functions (operators, linear operators)
between such spaces play a prominent role. See [15] for details.

In 1939,Bourbaki gave the following definition of a function [3,p. 7]:

Let E and F be two sets,which may or may not be distinct. A relation between a
variable element x of E and a variable element y of F is called afunctional relation
in y if , for all there exists a unique which is in the given relation with
x.

We give the name of functionto the operation which in this way associates with
every element the element which is in the given relation with x; y is
said to be the valueof the function at the element x, and the function is said to be
determinedby the given functional relation. Two equivalent functional relations
determine the samefunction.

Bourbaki then also gave the definition of a function as a certain subset of the Cartesian
product This is,of course, the definition of function as a set of ordered pairs.

All of these “modern” general definitions of function were given in terms of sets,and
hence their logic must receive the same scrutiny as that of set theory. 

In category theory, which arose in the late 1940s to give formal expression to certain
aspects of homology theory, the concept of function assumes a fundamental role. It can
be described as an “association” from an “object” A to another “object” B. The 

“Naive” set theory was developed by Cantor during the last three decades of the 19th century.15
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“objects” A and B need not have any elements (that is, they need not be sets in the usual
sense). In fact,the objects A and B can be entirely dispensed with. A “category” can
then be defined as consisting of functions (or “maps”), which are taken as undefined
(primitive) conceptssatisfying certain relations or axioms. In fact,in 1966 Lawvere
outlined how category theory can replace set theory as a foundation for mathematics.
See [11] for details.

In the recent developments outlined in this section,we have seen the function concept
modified ( functions),generalized (distributions),and finally “generalized out of
existence”(category theory). Have we come full circle?
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