
Programmazione
Prof. Marco Bertini

marco.bertini@unifi.it
http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it%0D?subject=
http://www.micc.unifi.it/bertini/


Building a “Hello 
world” with CLion

“When debugging, novices insert corrective code; 
experts remove defective code.”

- Richard Pattis



Use the start dialog

• Create a new project using the start dialog of 
CLion



Use the project wizard
• File > New Project

• You can decide to use the old window or 
create a new wind, to work on two 
projects at the same time



Select the tools

• When you install CLion it 
will discover if there is the 
required compiler:

• OS X: LLVM with Clang 
(most recent)

• Windows: MINGW GCC

• Linux: GCC

• CLion has its own 
debugger. You can change 
the selected tools.



Add a .cpp and .h files

• Add, for example a .h file that contains a 
function to greet a user, given his name, and add 
the prototype in the include

• if the include is generated by CLion, it will 
provide automatically the #define guards



Add a .cpp and .h files

• Add, for example a .h file that contains a 
function to greet a user, given his name, and add 
the prototype in the include

• if the include is generated by CLion, it will 
provide automatically the #define guards



Compile
• Let’s say the code has been written in 

the .cpp (including all the includes required, 
e.g. iostream and the greeter.h): compile 
using Run > Build or using the toolbar icon.

• Check the compile errors (shown in the 
message panel)



Compile
• Let’s say the code has been written in 

the .cpp (including all the includes required, 
e.g. iostream and the greeter.h): compile 
using Run > Build or using the toolbar icon.

• Check the compile errors (shown in the 
message panel)



Compile
• Let’s say the code has been written in 

the .cpp (including all the includes required, 
e.g. iostream and the greeter.h): compile 
using Run > Build or using the toolbar icon.

• Check the compile errors (shown in the 
message panel)



Compile errors

• Don’t panic

• Start reading (carefully) the messages from the 
first to the last. Solve the first errors, perhaps 
they have an influence on the others.

• In the example the first error is in the .cpp



Compile errors - cont.



Compile errors - cont.

CLion shows in 
the editor where 
there’s a problem



Compile errors - cont.

CLion shows in 
the editor where 
there’s a problem

Read the message: the type string is 
unknown. The compiler even suggests 

the correct type.
Error messages will vary depending 

on the compiler though !



Compile errors - cont.

• Correct the error: in this case it was 
necessary to add std:: to string (we are not 
using “using namespace std;” in this file !

• Build again to check the correction



Run the program
• Use the menu Run > Run… > Select the executable 

to run (a project may have more than one).  
Later on the program will appear in the Run History



Run the program
• Use the menu Run > Run… > Select the executable 

to run (a project may have more than one).  
Later on the program will appear in the Run History



Run the program
• Use the menu Run > Run… > Select the executable 

to run (a project may have more than one).  
Later on the program will appear in the Run History



Debug the program
• In order to debug the program must be compiled so that additional 

information, useful for the debugger, is added to the files

• Add a breakpoint in CLion (click the left side of the line), then execute 
the program in the debugger (Run > Debug application)



Debug the program
• In order to debug the program must be compiled so that additional 

information, useful for the debugger, is added to the files

• Add a breakpoint in CLion (click the left side of the line), then execute 
the program in the debugger (Run > Debug application)



Debug the program
• In order to debug the program must be compiled so that additional 

information, useful for the debugger, is added to the files

• Add a breakpoint in CLion (click the left side of the line), then execute 
the program in the debugger (Run > Debug application)



Some style guidelines

• There are a plethora of C++ coding style 
recommendations, sometimes even 
contradictory.

• Two very good recommendations:

1. Any violation to the guidelines is allowed if 
it enhances readability.

2. The rules can be violated if there are strong 
personal objections against them.



Naming conventions

• Names representing types must be in mixed 
case starting with upper case: follow this rule 
when writing classes.

• Variable names must be in mixed case starting 
with lower case (like Java).

• Names representing methods or functions 
must be verbs and written in mixed case 
starting with lower case (like Java).



Naming conventions - cont.

• Names representing namespaces should be all 
lowercase.

• All names should be written in English.



Files

• C++ header files should have the extension .h 
(preferred) or .hpp. Source files can have the 
extension .c++, .C, .cc or .cpp.

• A class should be declared in a header file and 
defined in a source file where the name of the 
files match the name of the class.

• Header files must contain an include guard.

• Include statements must be located at the top 
of a file only.


