
Programmazione
Prof. Marco Bertini

marco.bertini@unifi.it
http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/

Classes and objects

Why abstraction ?

• Helps in modeling the problem, separating
between necessary and unnecessary details

• We want to obtain a separation between:

• operations performed on data

• representation of data structures and
algorithms implementation

• abstraction is the structuring of a nebulous
problem into well-defined entities by defining
their data and (coupled) operations.

ADT (Abstract Data Type)

• An ADT is a specification of a set of data and the
set of operations (the ADT’s interface) that can
be performed on the data.

• It is abstract in the sense that it is independent of
various concrete implementations.

• When realized in a computer program, the ADT
is represented by an interface, which shields a
corresponding implementation. Users of an ADT
are concerned with the interface, but not the
implementation, that can change in the future.

http://en.wikipedia.org/wiki/Implementation

ADT (Abstract Data Type) - cont.

Stack ADT
data=<d1,d2,...,dn)  

n
Top-of-stack

Data Operations

push(x)
pop()
top()

Interface Interface

User

Why encapsulation ?

• The principle of hiding the used data
structure and to only provide a well-defined
interface is known as encapsulation.

• The separation of data structures and
operations and the constraint to only access
the data structure via a well-defined
interface allows you to choose data
structures appropriate for the application
environment.

Why classes ?
• A class is an actual representation of an ADT:  

it provides implementation details for the data
structure used and operations.

• Recall the important distinction between a class and
an object:

• A class is an abstract representation of a set of
objects that behave identically.

• Objects (i.e. variables) are instantiated from
classes.

• classes define properties and behaviour of sets of
objects.

Classes and objects

• A class is the implementation of an abstract
data type (ADT). It defines attributes and
methods which implement the data structure
and operations of the ADT, respectively.

• An object is an instance of a class. It can be
uniquely identified by its name and it defines
a state which is represented by the values of
its attributes at a particular time.

• The behaviour of an object is defined by the
set of methods which can be applied on it.

Procedural programming

• There’s a division between data and
operations on data

• The focus of procedural programming is to
break down a programming task into a
collection of variables, data structures, and
subroutines

• When programming in C we focus on data
structures and functions

http://en.wikipedia.org/wiki/Data_structures
http://en.wikipedia.org/wiki/Subroutines

OO programming

• In object-oriented programming the focus is
to break down a programming task into
objects and interactions between objects.

• An object is associated to data and
operations on its data, e.g.:

• an object “GameCharacter” has an
internal data representing position on a
map and an operation that changes the
position.

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object_(computer_science)

Why C++ classes ?

• A C++ class can provide information hiding:

• Hides the internal representation of data

• Hides the implementation details of
operations

• The class acts like a black box, providing a
service to its clients, without opening up its
code so that it can be used in the wrong
way

Open-Closed Principle

• Encapsulation is a key technique in following
the Open-Closed principle:

• classes should be open for extension and
closed for modification

• We want to allow changes to the system,
but without requiring to modifying existing
code

Open-Closed Principle

• Encapsulation is a key technique in following
the Open-Closed principle:

• classes should be open for extension and
closed for modification

• We want to allow changes to the system,
but without requiring to modifying existing
code

Open-Closed Principle:

Software entities (classes, modules,
functions, etc.) should be open for
extension, but closed for modification.
- Bertrand Meyer

Open-Closed Principle - cont.

• if a class has a particular behaviour, coded the
way we want, if nobody can change the class
code we have closed it for modification.

• but if, for some reasons, we have to extend
that behaviour we can let to extend the class
to override the method and provide new
functionality. The class is open for
extension.

• We’ll see how inheritance and composition
will help us to follow this principle.

Open-Closed Principle - cont.

• if a class has a particular behaviour, coded the
way we want, if nobody can change the class
code we have closed it for modification.

• but if, for some reasons, we have to extend
that behaviour we can let to extend the class
to override the method and provide new
functionality. The class is open for
extension.

• We’ll see how inheritance and composition
will help us to follow this principle.

“A module will be said to be closed if it is available for use by
other modules. This assumes that the module has been given a
well-defined, stable description (the interface in the sense of

information hiding).”
- Bertrand Meyer

Open-Closed Principle - cont.

• if a class has a particular behaviour, coded the
way we want, if nobody can change the class
code we have closed it for modification.

• but if, for some reasons, we have to extend
that behaviour we can let to extend the class
to override the method and provide new
functionality. The class is open for
extension.

• We’ll see how inheritance and composition
will help us to follow this principle.

“A module will be said to be closed if it is available for use by
other modules. This assumes that the module has been given a
well-defined, stable description (the interface in the sense of

information hiding).”
- Bertrand Meyer

“A module will be said to be open if it is still available for
extension. For example, it should be possible to add fields to the

data structures it contains, or new elements to the set of functions
it performs.” 

- Bertrand Meyer

Why OCP ?

• Here’s a small example (in C) that shows a
case in which the code is not closed to
modifications. We’ll see how, using
inheritance and abstractions, we can solve

Why OCP ?

• Here’s a small example (in C) that shows a
case in which the code is not closed to
modifications. We’ll see how, using
inheritance and abstractions, we can solve

enum ShapeType {circle, square};  

struct Shape {
 ShapeType itsType;  
};
 
struct Circle {
 ShapeType itsType;  
 double itsRadius;  
 Point itsCenter;
};

struct Square {
 ShapeType itsType;
 double itsSide;
 Point itsTopLeft;
};

// These functions are implemented elsewhere
void drawSquare(struct Square*);
void drawCircle(struct Circle*);

typedef struct Shape *ShapePointer;

void drawAllShapes(ShapePointer list[], int n)
{
 int i;
 for (i=0; i<n; i++) {
 struct Shape* s = list[i];
 switch (s->itsType) {
 case square:
 drawSquare((struct Square*)s);
 break;
 case circle:
 drawCircle((struct Circle*)s);
 break;
 }
 }
}

Why OCP ?

• Here’s a small example (in C) that shows a
case in which the code is not closed to
modifications. We’ll see how, using
inheritance and abstractions, we can solve

enum ShapeType {circle, square};  

struct Shape {
 ShapeType itsType;  
};
 
struct Circle {
 ShapeType itsType;  
 double itsRadius;  
 Point itsCenter;
};

struct Square {
 ShapeType itsType;
 double itsSide;
 Point itsTopLeft;
};

// These functions are implemented elsewhere
void drawSquare(struct Square*);
void drawCircle(struct Circle*);

typedef struct Shape *ShapePointer;

void drawAllShapes(ShapePointer list[], int n)
{
 int i;
 for (i=0; i<n; i++) {
 struct Shape* s = list[i];
 switch (s->itsType) {
 case square:
 drawSquare((struct Square*)s);
 break;
 case circle:
 drawCircle((struct Circle*)s);
 break;
 }
 }
}

It does not conform to the open-closed
principle because it cannot be closed against
new kinds of shapes.
If I wanted to extend this function to be able
to draw a list of shapes that included
triangles, I would have to modify the function.
In fact, I would have to modify the function
for any new type of shape that I needed to
draw.

Class identification

• Identify real world objects or entities as
potential classes of software objects

• The usual approach is to think about the real
world objects that exist in the application
domain which is being programmed.  
Instead of thinking about what processing
has to be done, as we so often do in
procedural programming, we instead think
about what things exist.

Class identification - cont.

• Identify groups of objects that behave
similarly, that can be implemented as classes

• Classes are specifications for objects

• Delay decisions about implementation
details, such as what data and operations will
apply to objects, until we have a clear idea of
what classes of object will be required

Class identification - cont.

• Begin class modeling by identifying candidate
classes - an initial list of classes from which
the actual design classes will emerge.

• A rule of the thumb to identify candidate
classes: identify the noun and noun phrases,
verbs (actions) and adjectives (attributes)
from the use cases and problem description

• there are more formal methods to identify
(e.g. CRC cards, use cases) and represent
(e.g. UML) classes

C++ Classes

• A C++ class extends the concept of C structs

• It collects together a group of variables
(attributes or data members) that can be
referenced to using a collective name and a
symbolic identifier

• It can have functions (methods or function
members) that operate within the context of
the class

• It defines a data type: we can create instances
(objects)

Class definition

• Use the keyword class, e.g.:
class IntStack {
 bool push(int value);
 bool pop(int* pValue);
 void init(int size);

 int TOS;
 int* buffer;
 int size;
}; // do NOT forget the ; !

Class definition

• Use the keyword class, e.g.:
class IntStack {
 bool push(int value);
 bool pop(int* pValue);
 void init(int size);

 int TOS;
 int* buffer;
 int size;
}; // do NOT forget the ; !

Note: this class is
still missing
something and
would NOT work
as expected... we’ll
see a more
complete
implementation in
a few slides

A C stack implementation

struct stack {
int TOS;
int *buffer;
int size;

};
bool push(struct stack *ptr, int value) {
...
}
bool pop(struct stack *ptr, int *pValue) {
...
}

Self reference

• An object can refer to itself using the keyword
this

• An object implicitly uses this when it refers to a
method or attribute

IntStack::push(int value) {

 // ...
 if (TOS > size)
 // ...
}
 

IntStack::push(int value) {

 // ...
 if (this->TOS > this->size)
 // ...
}

Access level

• All the members of a struct are visible as
soon as there’s a reference to the
structure, while in a class it is possible to
differentiate the access as public, private
and protected. The default class access is
private.

• We can design better the “interface” of the
class, i.e. decide what can is hidden and
what is visible in the class (encapsulation).
We can decouple classes.

Access levels

• public: a public member is visible to anyone
who has an address or a reference to the
object

• private: a private member is visible only to
the methods of the class in which it is defined

• protected: a protected member is visible only
to the methods of the class in which it is
defined, and in the derived classes (through
and inheritance mechanism)

Access levels: example
class Stack {
public:

bool push(int value);
bool pop(int* pValue);
void init(int size);

private:
int TOS;
int* buffer;
int size;

};
bool Stack::push(int value) { /* ... */ };

Access levels: rules of the thumb

• Always use explicit access control

• Do not have public data members

• use public methods to set/get their values

• many IDEs can create these methods
automatically

Getter/setter creation
in CLion

Getter/setter creation
in CLion

Getter/setter creation
in CLion

Getter/setter creation
in CLion

Getter/setter creation
in CLion

Getter/setter creation
in Eclipse

Getter/setter creation
in Eclipse

Getter/setter creation
in Eclipse

Getter/setter creation
in Eclipse

Getter/setter creation
in Eclipse

Method implementation

• The methods are usually defined
(implemented) in the .cpp files:  
add the class name in front of the method,
e.g.:  
 
bool Stack::push(data value) {  
// code to implement the method  
}

• We can implement them also in the
header (inline), but usually this is done
only if they are very short (e.g. ~5-7 lines)

Attributes

• A method may access the attributes of the
class: the attributes are visible within the
methods

• this greatly reduces the complexity of C
“interfaces”: compare the C++
implementation with a C implementation

• The attributes maintain the “state” of the
object

Attributes - cont.

• The attributes are a sort of a context
shared by the methods (that’s why
interfaces are simpler).

• However, the methods are more coupled
with the attributes.

• It’s well worth to pay for this price, if the
classes have been designed to have
cohesive responsibilities* 
 
*a responsibility is something that a class knows or does.

How to use methods
and attributes ?

• Class members can be referenced to
analogously to struct members:  
 
<var>.member_name  
<expr_addr>->member_name  
 
but taking into account their visibility, defined
by the access level, e.g. public.

How to use methods and
attributes: example

IntStack s;  
IntStack* pS;  
...  
pS = &s;  
...  
s.push(3);  
...

pS->push(8);

Argument passing
• In C the argument passing mechanism is

“pass by value”: the value of run-time
arguments are copied in the formal
parameters

• a function uses the copy of the values
to carry out its computation

• we have to use pointers to simulate a
“pass by reference”

• In C++ we can pass parameters by
reference

Argument passing
• In C the argument passing mechanism is

“pass by value”: the value of run-time
arguments are copied in the formal
parameters

• a function uses the copy of the values
to carry out its computation

• we have to use pointers to simulate a
“pass by reference”

• In C++ we can pass parameters by
reference

Note: references are not associated with classes: you can use
references in functions, as well.

Pass by reference

• A reference is essentially a synonym (alias) in
the sense that there is no copying of the data
passed as the actual argument.

• It is indicated by the ampersand (&) characters
following the argument base type.

• C++ call by reference and C-style simulated call
by reference using pointers are similar, but there
are no explicit pointers involved: no need to
dereference the argument.

Pass by reference

• A reference is essentially a synonym (alias) in
the sense that there is no copying of the data
passed as the actual argument.

• It is indicated by the ampersand (&) characters
following the argument base type.

• C++ call by reference and C-style simulated call
by reference using pointers are similar, but there
are no explicit pointers involved: no need to
dereference the argument.

References can be returned as method/function values:  
 

T& doSomething(T& value);  
T& T::doSomethingElse(T& otherValue);

Pass by reference - cont.

void add(int a, int b, int& sum) {
 sum = a + b;
}

int main() {  
 int i = 1;
 int j = 2;
 int total = 0;
 cout << “total: “ << total << endl;
 add(i, j, total);
 cout << “total: “ << total << endl;
}

Pass by reference - cont.

void f(int m, double& x) {
 m = 100;
 x = 3.14;
}
int main() {
 int s = 50;
 double t = 2.72;
 f(s,t);
 return 0;
}

Pass by reference - cont.

void f(int m, double& x) {
 m = 100;
 x = 3.14;
}
int main() {
 int s = 50;
 double t = 2.72;
 f(s,t);
 return 0;
}

50 50

2.72 x

s m

t

Function call f(s, t);

Pass by reference - cont.

void f(int m, double& x) {
 m = 100;
 x = 3.14;
}
int main() {
 int s = 50;
 double t = 2.72;
 f(s,t);
 return 0;
}

50 100

2.72 x

s m

t

m = 100;

Pass by reference - cont.

void f(int m, double& x) {
 m = 100;
 x = 3.14;
}
int main() {
 int s = 50;
 double t = 2.72;
 f(s,t);
 return 0;
}

50 100

3.14 x

s m

t

x = 3.14;

Pass by reference - cont.

• A reference can be specified as const: the
function/method can not modify the
content of the variable

• pass large data structures that should not
be modified as const references (it’s fast)

Reference variables

• It is possible to have a reference variable, but it must
always hold a valid reference and so must be
initialised when it is created.
int x;
int& y=x; // reference
y=2; // also x is modified
int& z; // Error: doesn’t compile ! Why ?
int *z; // pointer
z = &x; // & on the left is different from & on the right of =
*z = 3; // x is modified

Reference vs. pointer
Pointers

• Pointers are like other
variables

• Can have a pointer to
void

• Can be assigned
arbitrary values

• It is possible to do
arithmetic

References

• Must be initialised 

• Cannot have
references to void

• Cannot be assigned 

• Cannot do arithmetic

Reference vs. pointer

• References are much less powerful than
pointers

• However, they are much safer than pointers

• The programmer cannot accidentally misuse
references, whereas it is easy to misuse pointers

John Carmack on pointers vs. references

• “NULL pointers are the biggest problem in C/C++,
at least in our code. The dual use of a single value
as both a flag and an address causes an incredible
number of fatal issues. C++ references should be
favored over pointers whenever possible; while a
reference is “really” just a pointer, it has the implicit
contract of being not-NULL. Perform NULL checks
when pointers are turned into references, then you
can ignore the issue thereafter. There are a lot of
deeply ingrained game programming patterns that
are just dangerous, but I’m not sure how to gently
migrate away from all the NULL checking.”

C++11 nullptr

• The newest C++ standard (C++11) provides
a new special keyword: nullptr to set and
to determine if a pointer is pointing to
nothing.

• E.g.:  
 
int *pa = &a;  
pa = nullptr;  
if (pa != nullptr) { }

C++11 nullptr

• The newest C++ standard (C++11) provides
a new special keyword: nullptr to set and
to determine if a pointer is pointing to
nothing.

• E.g.:  
 
int *pa = &a;  
pa = nullptr;  
if (pa != nullptr) { }

•It means that you need:
• a C++11 compiler (e.g. g++ version >= 4.2 or clang++ >= 3.x)
• use the appropriate switches to activate C++11 compilation

•e.g. “-std=c++11 -stdlib=libc++” for clang++

nullptr vs. NULL vs. 0

• NULL is simply defined as 0

• nullptr is a fundamental type that’s specific
for pointers

• can not be converted to 0 or any int...

C++11 nullptr - cont.

• Using nullptr makes code more clear and
safe, e.g.:

void	test(int	*);	
void	test(int);	
		
void	foo()	
{	
	test(0);	
	test(NULL);	
}	
		
//	which	function		
//	will	be	called	?	

void	test(int	*)	
void	test(int);	
		
test(nullptr);	//	clear	now! 

Overloading

• We can define more than one method
with the same name and return type, but
with different (number and types)
parameters (signature). The method is
said to be overloaded.

• Commonly used to provide alternate
versions of functions to be used in
different situations

• the same abstract operation may have
different concrete implementations

Overloading - cont.

• We can not just change the return value: the compiler
should always check the type of the variable where
we put the value... and what if we discard it ?

• The compiler will
create a different code
segment and symbol
(through name
mangling), obtained
extending the method
name with suffixes  
related to the types of  
the parameters

Operator overloading

• It is possible to overload also operators, not
only methods (in real life: + is an operator used
for integers, real numbers, complex numbers...)

• Overload operators when it really makes sense

• e.g. overload == to compare strings, do not
overload * for strings...

• Some OO languages do not allow operator
overloading, most notably Java* 

 
*sort of... String + is operator overload

Operator overloading - cont.

• Operators are overloaded so that the objects
behave as primitive types. New operators
cannot be created, only the functionality of
existing operators on objects can be modified

• If you overload + do NOT expect that += is
given automatically !  
Define also that operator !

• Often operators are just friends... (more
later)

Operator overloading - cont.

class Array {  
public:  
 Array(int size); // constructor  
 bool operator ==(const Array& right) const; // the method can’t  
 // modify anything  
 // ... other members  
private:  
 int size;  
 int* data; // pointer to first element of array  
};  
bool Array::operator==(const Array& right) const {  
 if (size != right.size) // start checking the size of the arrays  
 return false;  
 // then check the whole content of arrays  
 for (int i=0; i < size; i++) {  
 if (data[i] != right.data[i])  
 return false;  
 }  
 return true; // both size and content are equal  
}

Operator overloading - cont.

class Array {  
public:  
 Array(int size); // constructor  
 bool operator ==(const Array& right) const; // the method can’t  
 // modify anything  
 // ... other members  
private:  
 int size;  
 int* data; // pointer to first element of array  
};  
bool Array::operator==(const Array& right) const {  
 if (size != right.size) // start checking the size of the arrays  
 return false;  
 // then check the whole content of arrays  
 for (int i=0; i < size; i++) {  
 if (data[i] != right.data[i])  
 return false;  
 }  
 return true; // both size and content are equal  
}

Array A;
Array B;
if (A == B)
 // do something

equivalent to

A.operator==(B);

Operator overloading - cont.

• Assignment Operator 
T& T::operator=(T rhs) {  
 // copy rhs attributes in current object attributes  
 return *this;  
}

• Binary arithmetic operators 
class X {  
 X& operator+=(const X& rhs) {  
 // actual addition of rhs to *this  
 return *this;  
 }  
};  
inline X operator+(X lhs, const X& rhs) {  
 lhs += rhs;  
 return lhs;  
}

Operator overloading - cont.

• Assignment Operator 
T& T::operator=(T rhs) {  
 // copy rhs attributes in current object attributes  
 return *this;  
}

• Binary arithmetic operators 
class X {  
 X& operator+=(const X& rhs) {  
 // actual addition of rhs to *this  
 return *this;  
 }  
};  
inline X operator+(X lhs, const X& rhs) {  
 lhs += rhs;  
 return lhs;  
}

Rules of thumb, + and its
companions should be non-

members, while their
compound assignment
counterparts (+= etc.),

changing their left
argument, should be a

member.

Operator overloading - cont.

• Comparison operators 
It is easy to write a different operator from an
equal comparison (using a !), or a > from a <
inverting arguments:  
 
bool operator==(const X& lhs, const X& rhs) { /* do actual comparison */ }  
bool operator!=(const X& lhs, const X& rhs) {return !operator==(lhs,rhs);}  
 
inline bool operator< (const X& lhs, const X& rhs) {  
 /* do actual comparison */  
}  
inline bool operator> (const X& lhs, const X& rhs) {  
 return operator< (rhs,lhs);  
}

Type checking

• C++ has a stricter type checking than C:
depending on the parameter cast you
determine the method that is executed !

• E.g.: cast void pointers when assigning
them to other pointers (in C it compiles)

Type checking

• C++ has a stricter type checking than C:
depending on the parameter cast you
determine the method that is executed !

• E.g.: cast void pointers when assigning
them to other pointers (in C it compiles)

Object creation

• Once a class is defined we can create the
instances (objects) from it, as it is done for the
variables of base types.

• Creation can be static (on the stack) or
dynamic (on the heap)

• The code of the methods is represented in the
code segment, shared between all the
instances of a class

• each object has the address of the function
that implements the methods

Dynamic object creation

• It is similar to the use of malloc/free
functions, but syntactically simplified, using new
and delete:

Stack* sPtr;

sPtr = new Stack;

...

delete sPtr;

Dynamic object creation

• The operator new automatically calculates
the size of memory to be allocated, e.g.:  
 
int* p = new int[5]; // gets space  
 // for 5 int  
delete[] p; // if new has [] then  
 // also delete must  
 // have []

Constructors

• A member function that will be invoked when an object of that
class is created. Returns no values.

• Always has the same name as the class. Constructors
generally perform some kind of initialisation on a new object.
If not constructor is defined a default one is created, with no
parameters .

• Common to overload a constructor function (i.e. provide
several versions) so the object can be created in a number of
different ways.

• Consider how objects of a new type may be created and what
constructors are needed.

Constructors - cont.

• If no constructor is defined the compiler
generates a “default” constructor that takes
no parameters

• The default constructor is invoked (usually)
without parentheses, e.g. in the previous
example:

sPtr = new Stack;

Stack myStack;

Constructors - cont.

• If no constructor is defined the compiler
generates a “default” constructor that takes
no parameters

• The default constructor is invoked (usually)
without parentheses, e.g. in the previous
example:

sPtr = new Stack;

Stack myStack;
A common mistake: Stack myStack();

declares a function, not an object !

Constructors - cont.

• If a class has any constructors but no default
constructor, its creation will be constrained to
situations handled by the constructors, e.g.
class B {
public:

B(int i) { ... }
};
B b1; // illegal
B b3(123); // ok

Constructors - cont.

• If a class has any constructors but no default
constructor, its creation will be constrained to
situations handled by the constructors, e.g.
class B {
public:

B(int i) { ... }
};
B b1; // illegal
B b3(123); // ok

If you really need
this, then you’ll have
to write the default
constructor
explicitly

Constructors - cont.

• If a class has any constructors but no default
constructor, its creation will be constrained to
situations handled by the constructors, e.g.
class B {
public:

B(int i) { ... }
};
B b1; // illegal
B b3(123); // ok

If you really need
this, then you’ll have
to write the default
constructor
explicitly

Guideline: it is almost always right to provide a default constructor if
other constructors are being defined.

Constructors - cont.

• There’s a compact and compiler-friendly way to
init attributes in a constructor:
class Stack {
public:

Stack(int s) : TOS(0), size(s), buffer(new data[s])
{...};

protected:
int TOS;
int size;
data *buffer;

};

Constructors - cont.

• There’s a compact and compiler-friendly way to
init attributes in a constructor:
class Stack {
public:

Stack(int s) : TOS(0), size(s), buffer(new data[s])
{...};

protected:
int TOS;
int size;
data *buffer;

};

Use the same order of the
attributes declaration, or
you’ll get a compiler warning

Constructors - cont.

• Constructors are typically public (but not
necessarily)

• If we do not want that a class is instantiated
we can declare a constructor as protected.
We can instantiate derived classes (if their
constructor is public).

• In other cases we can declare a constructor as
private.

• typically its use is related to static
methods

Constructor initializers

• Using constructor initializers is like performing
definition and initialization at the same time.

• If we do not explicitly initialize a member in
the constructor initializer list, that member
is default initialized before the constructor
body starts executing.

• Constant attributes and references need to
be initialized explicitly.

• Guideline: use initializer lists.

Default initializers
• Since C++11 it is possible to initialize attributes when declaring them in the class

definition (something that has always been possible in Java):  
 
class X {  
public:  
 int i = 4;  
 int j {5}; // alternative syntax  
};

• Those initializers then are implicitly used in any constructor unless you specifically
initialize the members in the member initializer list of that constructor, e.g.:  
 
class X {  
public:  
 X() {} // i==4, j==5  
 X(int ni) : i(ni) {} // j==5  
 int i = 4;  
 int j {5}; // alternative syntax  
};

Default initializers
• Since C++11 it is possible to initialize attributes when declaring them in the class

definition (something that has always been possible in Java):  
 
class X {  
public:  
 int i = 4;  
 int j {5}; // alternative syntax  
};

• Those initializers then are implicitly used in any constructor unless you specifically
initialize the members in the member initializer list of that constructor, e.g.:  
 
class X {  
public:  
 X() {} // i==4, j==5  
 X(int ni) : i(ni) {} // j==5  
 int i = 4;  
 int j {5}; // alternative syntax  
};

Default initializers make constructors less verbose reducing their
initializer lists

Explicit constructors

• In C++, the compiler is allowed to make one implicit
conversion to resolve the parameters to a function.

• Therefore, if needed, C++ constructors that have just
one parameter automatically perform implicit type
conversion, e.g.:  
if you pass an int when the constructor expects a
string pointer parameter, the compiler will add the
code it must have to convert the int to a string
pointer.

• You can add explicit to the constructor
declaration to prevent these implicit conversions.

Explicit constructors - cont.

• Declaring a constructor that has multiple
arguments to be explicit has no effect,
because such constructors cannot take part
in implicit conversions.

• However, explicit will have an effect if a
constructor has multiple arguments and all,
except one of the arguments, have a default
value.

Explicit constructors: example
class A {  
public:  
 A();  
};  
 
class B {  
public:  
 explicit B(int x=0, bool b=true);  
};

class C {  
public:  
 explicit C(B ab=B());  
};  

void doSomething(B objB);  
void doSomethingC(C objC);

B objB1; // x and b args set to  
 // default  
doSomething(objB1); // OK

B objB2(28); // OK, b arg is set  
 // to default

doSomething(objB2); // OK  
doSomething(28); // BAD: we need a  
// B obj, and we do not allow  
// implicit conversion  
doSomething(B(28)); // OK

C objC1;  
doSomethingC(objC1);  
doSomethingC(objB2); // BAD, we  
// need a C object, and we do not  
// allow implicit conversion

doSomething(“foo”); // BAD, thanks
the compiler for not allowing it

Explicit constructors: example
class A {  
public:  
 A();  
};  
 
class B {  
public:  
 explicit B(int x=0, bool b=true);  
};

class C {  
public:  
 explicit C(B ab=B());  
};  

void doSomething(B objB);  
void doSomethingC(C objC);

B objB1; // x and b args set to  
 // default  
doSomething(objB1); // OK

B objB2(28); // OK, b arg is set  
 // to default

doSomething(objB2); // OK  
doSomething(28); // BAD: we need a  
// B obj, and we do not allow  
// implicit conversion  
doSomething(B(28)); // OK

C objC1;  
doSomethingC(objC1);  
doSomethingC(objB2); // BAD, we  
// need a C object, and we do not  
// allow implicit conversion

doSomething(“foo”); // BAD, thanks
the compiler for not allowing it

We need the explicit for these functions, not for this constructor

Explicit constructors - cont.

• It’s preferable to use explicit constructor
(there is even a Google C++ guideline for it)

• When designing a type (i.e. class) think
about what conversions should be allowed:  
should you write a type conversion function
or a non explicit constructor (with a single
argument) ?

Delegate constructors

• A delegating constructor uses another
constructor from its own class to perform its
initialization.

• Introduced in C++11

• It’s useful if there’s lot of duplicated code in the
constructor: move it to a common constructor

Delegate constructors

• A delegating constructor uses another
constructor from its own class to perform its
initialization.

• Introduced in C++11

• It’s useful if there’s lot of duplicated code in the
constructor: move it to a common constructor

•It means that you need:
• a C++11 compiler (e.g. g++ version >= 4.2 or clang++ >= 3.x)
• use the appropriate switches to activate C++11 compilation

•e.g. “-std=c++11 -stdlib=libc++” for clang++

Delegate constructors - example
class Sales_data {  
 public:  
 
// non delegating constructor, uses init. list  
 Sales_data(std::string s, unsigned cnt, double price):  
 bookNo(s), units_sold(cnt), revenue(cnt*price) { }  
 
// remaining constructors all delegate  
// to another constructor

 Sales_data(): Sales_data("", 0, 0) {}  
 Sales_data(std::string s): Sales_data(s, 0,0) {}  
 Sales_data(std::istream &is): Sales_data() {}

// other members  
// ...  
};

Delegate constructors - example
class Sales_data {  
 public:  
 
// non delegating constructor, uses init. list  
 Sales_data(std::string s, unsigned cnt, double price):  
 bookNo(s), units_sold(cnt), revenue(cnt*price) { }  
 
// remaining constructors all delegate  
// to another constructor

 Sales_data(): Sales_data("", 0, 0) {}  
 Sales_data(std::string s): Sales_data(s, 0,0) {}  
 Sales_data(std::istream &is): Sales_data() {}

// other members  
// ...  
};

•It’s much safer than writing the
common code in a private method
•Can use common initialization list
for const and references
•Java language has had it for years...
uses this(xxx) instead of
constructor name

Destructors

• It’s a method with the name of the class
preceded by ~, e.g.: ~Stack();

• It takes no parameters and has no return
values, therefore it can not be overloaded.

• Called automatically when an object is
destroyed

• should perform housekeeping

C’tor and D’tor
class IntStack {
public:
 IntStack(int s);
 ~IntStack();
 //..
protected:
 int TOS;
 int size;  
 int* buffer;
};

// C’tor allocates memory
IntStack::IntStack(int s) {
 TOS=0;
 size=s;
 buffer = new int[size];
}

// D’tor has to  
// release memory
IntStack::~IntStack() {
 delete[] buffer;
}

Inversion of responsibility

• The use of this is essential when an object has
to pass a reference of itself to another object

• A typical application is the callback: obj A gives a
reference to itself that will be used by obj B to
invoke a method on obj A

• This is used to implement inversion of
responsibility schemas:  
obj A does not call obj B to perform an
operation but lets obj B call obj A

Inversion of responsibility - example
class Observer;  
class Subject;  
class Observer {  
public:  
 void update(subject*
pSubj);  
 int getState() {  
 return state;  
 }  
private:  
 int state;  
};  
 
class Subject {  
public:  
 Subject(Observer* pObs);  
 void setState(int aState);  
 int getState() {  
 return state;  
 }  
private:  
 int state;  
 Observer* pObs;  
}

 
Observer::update(subject* pSubj) {  
 if (...) // possible condition that  
 // starts an update  
 this->state = pSubj->getState();  
}  
Subject::Subject(Observer* pObs) {  
 this->pObs = pObs;  
}  
Subject::setState(int aState) {  
 this->state = aState;  
 this->pObs->update(this);  
}  
 
 
int main() {  
 Subject* pSubj;  
 Observer* pObs;  
 pObs = new Observer;  
 pSubj = new Subject(pObs);  
 // ...  
 pSubj->setState(10);  
 cout << “subj state: “ << pSubj->getState << endl;  
 cout << “obs state: “ << pObs->getState() << endl;  
}

Static members

• A static member is associated with the
class, not with object (instance of the
class), i.e. there’s only one copy of the
member for all the instances

• extends the static variables of C

• Static data member: one copy of the
variable

• Static function member: can be invoked
without requiring an object

Static data members
class Point {  
public:  
 Point() {  
 x=y=0;  
 n++;  
 }  
 ~Point() {  
 n--;  
 }  
 int count() const {  
 return n;  
 }  
 // ...  
private:  
 int x,y;  
 static int n; // declaration  
};  

 

// definition: must be in  
// namespace scope  
int Point::n = 0;  
 
int main() {  
 Point a,b;  
 cout << “n: “ << a.count()
<< endl;

 cout << “n: “ << b.count()
<< endl;  
}

Static data members
class Point {  
public:  
 Point() {  
 x=y=0;  
 n++;  
 }  
 ~Point() {  
 n--;  
 }  
 int count() const {  
 return n;  
 }  
 // ...  
private:  
 int x,y;  
 static int n; // declaration  
};  

 

// definition: must be in  
// namespace scope  
int Point::n = 0;  
 
int main() {  
 Point a,b;  
 cout << “n: “ << a.count()
<< endl;

 cout << “n: “ << b.count()
<< endl;  
}

.h

Static data members
class Point {  
public:  
 Point() {  
 x=y=0;  
 n++;  
 }  
 ~Point() {  
 n--;  
 }  
 int count() const {  
 return n;  
 }  
 // ...  
private:  
 int x,y;  
 static int n; // declaration  
};  

 

// definition: must be in  
// namespace scope  
int Point::n = 0;  
 
int main() {  
 Point a,b;  
 cout << “n: “ << a.count()
<< endl;

 cout << “n: “ << b.count()
<< endl;  
}

.h

.cpp

Static method members
class Point {  
public:  
 Point() {  
 x=y=0;  
 n++;  
 }  
 ~Point() {  
 n--;  
 }  
 static int n; // declaration  
 static float distance( 
 const Point& a,  
 const Point& b) {  
 //...calc distance  
 }  
 // ...  
private:  
 int x,y;  
};  

// definition: must be in  
// namespace scope  
int Point::n = 0;  
 
int main() {  
 // access static members even before  
 // the creation of any instance of  
 // the class  
 cout << “n: “ << Point::n << endl;  
 Point a,b;  
 // set a and b coordinates  
 Point::distance(a,b);  
}

Point.h Point.cpp

Static method members
class Point {  
public:  
 Point() {  
 x=y=0;  
 n++;  
 }  
 ~Point() {  
 n--;  
 }  
 static int n; // declaration  
 static float distance( 
 const Point& a,  
 const Point& b) {  
 //...calc distance  
 }  
 // ...  
private:  
 int x,y;  
};  

// definition: must be in  
// namespace scope  
int Point::n = 0;  
 
int main() {  
 // access static members even before  
 // the creation of any instance of  
 // the class  
 cout << “n: “ << Point::n << endl;  
 Point a,b;  
 // set a and b coordinates  
 Point::distance(a,b);  
}

Remind to:
1. declare the static attribute
2. define the static attribute

Point.h Point.cpp

Friend

• A class can allow access to its members
(even if private) declaring that top-level
functions (or even classes) are its friends

• Friends should only used in very special
situations, e.g. I/O operator overloads where
it is not desirable to provide accessor
member functions.

• It hinders encapsulation: use only when
really needed.

Friend - cont.

class Point{  
private:  
 int x,y;  
public:  
 friend bool operator==(Point a,  
 Point b);  
 Point() : x(0), y(0) {};  
 //...  
};  
 
bool operator==(Point a, Point b) {  
 if ((a.x != b.x) ||  
 (a.y != b.y))  
 return false;  
 else  
 return true;  
}

int main() {  
 Point p, q;  
 //...  
 if (p == q)  
 std::cout << "p and q are equal"  
 << endl;  
 return 0;  
}

Friend - cont.

• Spend some time to evaluate if you can avoid a
friend... the previous code could be rewritten as:

class Point{  
private:  
 int x,y;  
public:  
 bool operator==(Point right);  
 Point() : x(0), y(0) {};  
 //...  
};  
 
bool Point::operator==(Point right) {  
 if ((this->x != right.x) ||  
 (this->y != right.y))  
 return false;  
 else  
 return true;  
}

int main() {  
 Point p, q;  
 //...  
 if (p == q)  
 std::cout << "p and q are equal"
<< endl;  
 return 0;  
}

Friend - cont.

• Spend some time to evaluate if you can avoid a
friend... the previous code could be rewritten as:

class Point{  
private:  
 int x,y;  
public:  
 bool operator==(Point right);  
 Point() : x(0), y(0) {};  
 //...  
};  
 
bool Point::operator==(Point right) {  
 if ((this->x != right.x) ||  
 (this->y != right.y))  
 return false;  
 else  
 return true;  
}

int main() {  
 Point p, q;  
 //...  
 if (p == q)  
 std::cout << "p and q are equal"
<< endl;  
 return 0;  
}

Now the friend function
has been transformed in a
class method... it needs only
1 parameter

Inner class

• A inner class or nested class is a class
declared entirely within the body of another
class or interface. An instance of an inner
class cannot be instantiated without being
bound to a top-level class.

• Inner classes allow for the object orientation
of certain parts of the program that would
otherwise not be encapsulated into a class.

http://en.wikipedia.org/wiki/Class_(computer_science)

Inner class - cont.

• C++ nested classes are in the scope of their
enclosing classes.

• Except by using explicit pointers, references,
and object names, declarations in a nested
class can use only type names, static
members, and enumerators from the
enclosing class, without qualifying the name  
(other classes that are not one of its
enclosing classes have to qualify its name
with its enclosing class’s name).

Inner class - cont.

int x,y; // globals  
class enclose { // enclosing class  
 int x; // note: private members  
 static int s;  
 public:  
 struct inner { // nested class  
 void f(int i) {  
 x = i; // Error: can't write to non-static  
 // enclose::x without instance  
 s = i; // OK: can assign to the static enclose::s  
 ::x = i; // OK: can assign to global x  
 y = i; // OK: can assign to global y  
 }  
 void g(enclose* p, int i) {  
 p->x = i; // OK: assign to enclose::x  
 }  
 };  
};

Inner class
• Let an outer class access the members of the

nested class using friend

class Algorithm{  
public:  
 class AlgorithmResults{  
 friend class Algorithm;  
 public:  
 void readAlgorithmResult();  
 private:  
 void writeAlgorithmResult();  
 };

 void calculate(AlgorithmResults& results, Arguments...){  
 //calculate stuff  
 results.writeAlgorithmResult(results);  
 }

};

Single Responsibility Principle

• Every object in the system should have a
single responsibility, and all the object’s
services should be focused on carrying out
that single responsibility

• A class should have only one reason to
change

• A responsibility can be defined as a reason to
change

• It’s a concept related to cohesion

SRP & OCP

• Ideally, following the Open Closed Principle,
means to to write a class or a method and
then turn my back on it, comfortable that it
does its job and I won’t have to go back and
change it.

• It’s a a “laudable goal”, but elusive in practice:
you’ll never reach true Open-Closed nirvana,
but you can get close by following the related
Single Responsibility Principle: a class should
have one, and only one, reason to change.

SRP - cont

• As an example, consider a module that
compiles and prints a report: the content of
the report can change, the format of the
report can change.

• The single responsibility principle says that
these two aspects of the problem are really
two separate responsibilities, and should
therefore be in separate classes or modules.

• Do not couple two things that change for
different reasons at different times.

SRP: example

• Here’s a simple test to check if a class
follows SRP: for each method of the class
write a line that says 
 
The class name write method here itself.

• Adjust grammar and syntax the read aloud
each line. Does it make sense ?

• If it doesn’t probably the method belongs to
a different class. Use common sense !

SRP: example - cont.

• Apply the method to the Automobile class:

• We are still a bit far from having cars driving
themselves (we may need a Driver)

• Surely they won’t change their tires or wash
themselves (Mechanic and CarWash may help...)

• Think very well about the meaning of the methods:
getOil may simply mean that the car has a sensor

start()
stop()
changeTires(Tire[])
drive()
wash()
checkOil()
getOil() : int

Automobile

Reading material

• M. Bertini, “Programmazione Object-Oriented in
C++”, cap. 2, cap. 4 pp. 95-100

• B. Stroustrup, “C++, guida essenziale per
programmatori” - pp.15-18, pp. 33-39

• B. Stroustrup, “C++, Linguaggio, libreria standard,
principi di programmazione”, cap. 3, 16, 18

• L.J. Aguilar, “Fondamenti di programmazione in
C++. Algoritmi, strutture dati e oggetti” - cap. 8,
9, 12

• D.S. Malik, "Programmazione in C++” - cap. 6, 8

Credits

• These slides are (heavily) based on the
material of:

• Dr. Ian Richards, CSC2402, Univ. of
Southern Queensland

• Prof. Paolo Frasconi, IIN 167, Univ. di
Firenze

• “Head first: Object Oriented Analysis and
Design”, O’Reilly

