
Programmazione
Prof. Marco Bertini

marco.bertini@unifi.it
http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/

Deep vs. shallow copy

Methods created by the compiler

• We have seen that the compiler creates for
each class a default constructor and
destructor…

• … but it creates also default copy
constructor and assignment operator, to
create a new object cloning another one or
copying its attributes.

• C++11 compiler may create other
methods, not discussed in this lecture.

Copy methods

• C++ treats variables of user-defined types
with value semantics. This means that objects
are implicitly copied in various contexts.

• The copy constructor creates a fresh
object based on the state of an existing object.

• The assignment operator copies the
state of a source object onto an existing
target object, thus it has to work a bit more
to deal with the already existing target.

The compiler

• According to the C++ standard:

• The compiler will implement copy constructor
and assignment operator if they are used but not
provided by the programmer (implicit definition)

• The implicitly-defined copy constructor for a
non-union class X performs a member-wise copy
of its sub-objects.

• The implicitly-defined copy assignment operator
for a non-union class X performs member-wise
copy assignment of its sub-objects.

Shallow copy

• The implicit methods copy the content of the
attributes of the class, i.e. they perform a bit-
by-bit copy of their content (shallow copy).

• Is this enough to get a working copy of our
object ?

Shallow copy example
class GameCharacter {

public:  
 GameCharacter(std::string& name,  
 int hp) : name(name), hp(hp)  
 { }  
 
private:  
 std::string name;  
 int hp;

};

// Implicit methods created by the  
// compiler. The default constructor  
// is not created because of the  
// constructor provided by us.

// 1. copy constructor  
GameCharacter(GameCharacter& that) :  
 name(that.name), hp(that.hp) { }

// 2. copy assignment operator  
GameCharacter& operator=(GameCharacter&  
 that) {  
 name = that.name;  
 hp = that.hp;  
 return *this;  
}

// 3. destructor  
~GameCharacter() {  
}

Shallow copy example
class GameCharacter {

public:  
 GameCharacter(std::string& name,  
 int hp) : name(name), hp(hp)  
 { }  
 
private:  
 std::string name;  
 int hp;

};

// Implicit methods created by the  
// compiler. The default constructor  
// is not created because of the  
// constructor provided by us.

// 1. copy constructor  
GameCharacter(GameCharacter& that) :  
 name(that.name), hp(that.hp) { }

// 2. copy assignment operator  
GameCharacter& operator=(GameCharacter&  
 that) {  
 name = that.name;  
 hp = that.hp;  
 return *this;  
}

// 3. destructor  
~GameCharacter() {  
}

Member-wise copy.
The attributes are  
copied bit-by-bit

Shallow copy example
class GameCharacter {

public:  
 GameCharacter(std::string& name,  
 int hp) : name(name), hp(hp)  
 { }  
 
private:  
 std::string name;  
 int hp;

};

// Implicit methods created by the  
// compiler. The default constructor  
// is not created because of the  
// constructor provided by us.

// 1. copy constructor  
GameCharacter(GameCharacter& that) :  
 name(that.name), hp(that.hp) { }

// 2. copy assignment operator  
GameCharacter& operator=(GameCharacter&  
 that) {  
 name = that.name;  
 hp = that.hp;  
 return *this;  
}

// 3. destructor  
~GameCharacter() {  
}

Member-wise copy.
The attributes are  
copied bit-by-bit

Typically these are “constant” arguments. 
We’ll see what is const in a future lecture.

Deep copy

• If an attribute of the class is a pointer, e.g. to
an array the bit-by-bit copy is not enough,
since it results in copying the address and not
the objects that are pointed.

• We need a deep copy that copies all the
objects pointed, or we risk that the
destruction of a copied object destroys the
original.

Deep copy

• If an attribute of the class is a pointer, e.g. to
an array the bit-by-bit copy is not enough,
since it results in copying the address and not
the objects that are pointed.

• We need a deep copy that copies all the
objects pointed, or we risk that the
destruction of a copied object destroys the
original.

Think of a bad photocopier that creates magical copies that once
destroyed cause automatic destruction of the original…

Shallow copy problem
class GameCharacter {  
public:  
 // ...  
 ~GameCharacter() {  
 delete[] inventory;  
 }

private:  
 std::string name;  
 int hp;  
 Potion* inventory;

};

Shallow copy problem
class GameCharacter {  
public:  
 // ...  
 ~GameCharacter() {  
 delete[] inventory;  
 }

private:  
 std::string name;  
 int hp;  
 Potion* inventory;

};

Elrond

12

0x954FFA

Potion object 1 Potion object 2 … Potion object n

std::string name

int hp

Potion* inventory

GameCharacter hero

Original object

Elrond

12

0x954FFA

std::string name

int hp

Potion* inventory

GameCharacter copied_hero

Shallow copy object

If the shallow copy object copied_hero gets
destructed then also the original object hero loses

its inventory

Shallow copy problem
class GameCharacter {  
public:  
 // ...  
 ~GameCharacter() {  
 delete[] inventory;  
 }

private:  
 std::string name;  
 int hp;  
 Potion* inventory;

};

Elrond

12

0x954FFA

Potion object 1 Potion object 2 … Potion object n

std::string name

int hp

Potion* inventory

GameCharacter hero

Original object

Elrond

12

0x954FFA

std::string name

int hp

Potion* inventory

GameCharacter copied_hero

Shallow copy object

If the shallow copy object copied_hero gets
destructed then also the original object hero loses

its inventory

A deep copied object causes no issue to the source:
it has its own copy of the resources.

Elrond

12

0x954FFA

Potion object 1 Potion object 2 … Potion object n

std::string name

int hp

Potion* inventory

GameCharacter hero

Original object

Elrond

12

0x32BA84

std::string name

int hp

Potion* inventory

GameCharacter copied_hero

Deep copy object

Copied Potion object
1

Copied Potion object
2 … Copied Potion object

n

“Rule of three”

• When our class manages a resource, i.e. when
an object of the class is responsible for that
resource, then we need to declare explicit
methods for copying and creating objects from
other objects.  
Typically the resource is acquired in the
constructor (or passed into the constructor)
and released in the destructor.

• Implement copy constructor, destructor and
assignment operation.

How to create the methods ?

• Both copy constructor and assignment operator
receive a reference to the original (source) object.

• Actually a const reference…

• The methods share a lot of code. Think about
factorizing it in an helper method.

• The destructor should release the resource

• The operator returns a reference, to allow multiple
assignments. The operator must handle the existing
resources of the target object and avoid self
assignment.

Disable copy/cloning

If you do not want to allow copying an object
disable the copy constructor and assignment
operators with C++11 =delete method syntax:  
 
class Foo {  
public:  
 Foo& operator=(const Foo&) = delete;  
 // disallow use of assignment operator  
 Foo(const Foo&) = delete;  
 // disallow copy construction  
};

Reading material
• M. Bertini, “Programmazione Object-Oriented in C++”

- pp. 49-53

• B. Stroustrup, “C++, guida essenziale per
programmatori” - pp. 48-50, pp. 55-56

• B. Stroustrup, “C++, Linguaggio, libreria standard,
principi di programmazione”, pp. 460-466

• L.J. Aguilar, “Fondamenti di programmazione in C++.
Algoritmi, strutture dati e oggetti” - cap. 12, pag.
381-383

• D.S. Malik, “Programmazione in C++” - cap. 10, pag.
510-512

Credits

• These slides are based on the material of:

• D.S. Malik, “Programmazione in C++”

