
Programmazione
Prof. Marco Bertini

marco.bertini@unifi.it
http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/


Const correctness



What is const correctness ?

• It is a semantic constraint, enforced by the 
compiler, to avoid modification of a particular 
object marked as const

• const can be used in various scopes:

• outside of classes at global/namespace scope: 
 
const double AspectRatio = 1.653;  
// much better than a C style define:  
#define ASPECT_RATIO 1.653



Class constants
• It’s usable for static objects at file, function and 

block level

• It’s usable also for class specific constants, e.g. for 
static and non-static data members:  
 
class VideoFrame {  
private:  
  static const int PALFrameRate;  
  ...  
};  
const int VideoFrame::PALFrameRate = 25;



Pointers and constancy

• We can specify that a pointer is constant, that 
the data pointed to is constant, that both are 
constant (or neither):  
 
char greeting[] = “Hello”;  
char* p = greeting; // nothing is constant  
 
const char* p = greeting; //non-const pointer  
                          //    const data  
char* const p = greeting; //    const pointer  
                          // non-const data  
const char* const p = greeting; // everything is const



Pointers and constancy - cont.

• If const appears to the left of * then what 
is pointed to is constant, if it’s on the right 
then the pointer is constant:  
 
const char* const p means that p is 
a constant pointer to constant chars

• according to this writing char const* 
p is the same of const char* p



References and constancy

• You can not change an alias, i.e. you can’t 
reassign a reference to a different object, so:  
 
Fred& const x makes no sense (it’s the 
same thing of Fred& x), however:  
 
const Fred& x is OK: you can’t change 
the Fred object using the x reference.



Functions and constancy
• The most powerful use of const is its application to 

function declarations: we can refer to function return 
value, function parameters and (for member functions) 
to the function itself

• Helps in reducing errors, e.g. you are passing an object 
as parameter using a reference/pointer and do not 
want to have it modified:  
 
void foo(const bar& b);  
// b can’t be modified  
// use const params whenever possible



const return value
• Using a const return value reduces errors in client code, e.g.:  
 
class Rational { //...};  
const Rational operator*(  
                    const Rational& lhs,  
                    const Rational& rhs  
                        );  
 
Rational a,b,c;  
// let’s say we missed an =  
// to make a comparison...  
(a*b)=c; // it’s now illegal thanks to  
         // const return value !



const return value - cont.

• When returning a reference probably it’s better to 
return it as constant or it may be used to modify 
the referenced object:  
 
class Person {  
public:  
  string& badGetName() {  
       return name;  
  }  
  //...  
private:  
  string name;  
};  
 
void myCode(Person& p) {  
  p.badGetName() = “Igor”; // can change the name  
                           // attribute of Person  
}



const member functions

• The purpose of const member functions is 
to identify which functions can be invoked 
on const objects.  
These functions inspect and do not mutate 
an object.

• NOTE: it’s possible to overload methods 
that change only in constancy ! 
It’s useful if you need a method to inspect 
and mutate with the same name



const member functions - cont.

class TextBlock {  
public:  
 const char& operator[](size_t pos) const {  
   return text[pos];  
 }  
 char& operator[](size_t pos) { // has to be reference  
   return text[pos];             // to be modifiable:  
 }                              // C++ returns by value !  
private:  
 string text;  
};

• this is useful when dealing with objects that are 
passed as const references: 
 

void print(const TextBlock& ctb, size_t pos) {  
  cout << ctb[pos]; // calls the const version of []  
};



const member functions - cont.

• C++ compilers implement bitwise constancy, but 
we are interested in logical constancy, e.g. the 
const reference return value seen before or we 
may need to modify some data member within a 
const method (declared mutable):  

class TextBlock {  
public:  
  size_t length() const;  
private:  
  string text;  
  mutable size_t length;  
  mutable bool isValidLength;  
};  
 

size_t TextBlock::length() 
const {  
 if(!isValidLength) {  
  length=text.size();  
  isValidLength=true;  
 }  
 return length;  
}  



const member functions - cont.

• To avoid code duplication between const 
and non-const member functions that have 
the same behaviour can be solved:

• putting common tasks in private methods 
called by the two versions of the const/
non-const methods

• casting away constancy, with the non-const 
method calling the const method (see 
future lecture)



Reading material

• M. Bertini, “Programmazione Object-Oriented in C++” 
- pp. 46-49

• B. Stroustrup, “C++, guida essenziale per 
programmatori” - pp. 8-9

• B. Stroustrup, “C++, Linguaggio, libreria standard, 
principi di programmazione”, pp. 42, 173-174, 281, 420

• L.J. Aguilar, “Fondamenti di programmazione in C++. 
Algoritmi, strutture dati e oggetti” - pp. 84, pp. 125-128

• D.S. Malik, "Programmazione in C++” - pp. 43-45, 
47-48



Credits

• These slides are based on the material of:

• Marshall Cline, C++ FAQ Lite

• Scott Meyers, “Effective C++”, 3rd edition, 
Addison-Wesley


