
Programmazione
Prof. Marco Bertini

marco.bertini@unifi.it
http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/

Inheritance
"In the one and only true way, the object-oriented

version of ‘Spaghetti code’ is, of course, ‘Lasagna code’.
(too many layers)."
- Roberto Waltman.

Why inheritance ?
• For software re-use: re-use an existing class in new

classes that are specializations of the base class

• A new class is derived from the base class and it
inherits the facilities of the base class

• A derived class may itself be the basis of further
inheritance -forms a class hierarchy

• The derived class extends the functionalities of
the base class

• Inheritance is the second most important concept
in object-oriented programming - the first is
abstract data type

Why inheritance ? - cont.

• Inheritance allows us to avoid duplication of
code or functions by getting all the features
of another class simply by naming it in an
inheritance.

• Then, if the private data or the coding
needed to implement any of the common
features needs to be changed, it is changed
only in the base class and not in the
derived classes that obtain the changes
automatically

When to use inheritance

• Use inheritance as a specification device.

• “Human beings abstract things on two
dimensions: part-of and kind-of. A Ford
Taurus is-a-kind-of-a Car, and a Ford Taurus
has-a Engine, Tires, etc. The part-of hierarchy
has been a part of software since the ADT
style became relevant; inheritance adds "the
other" major dimension of decomposition.”

From: C++ FAQ Lite - [19.2]

Using inheritance

• The design of class hierarchies is a key skill in
object oriented design.

• Only use inheritance when there is a clear "is
a" relationship between the derived classes
and the base class

• Inheritance expresses the natural relationship
that, for example, "a bus is a vehicle."

• An instance of a derived class could substitute
an instance of a base class (derived is_a base)

Inheritance in C++ - example

class Person {  
public:  
const string& getName() const;  
// ...  
};

 
class Student : public Person {  
// ...  
};  
class Staff : public Person {  
// ...  
};

class Permanent : public Staff {  
// ...  
};  
class Casual : public Staff {  
// ...  
};

• After each derived class name there is a colon “:” followed
by the keyword “public” and then the name of the class
from which it is inheriting. The colon represents inheritance.

• The keyword public after the colon says that we are using
public inheritance. This is the most common form of
inheritance although it is possible to have protected and
private inheritance.

• These different kinds of inheritance relate to whether the
public members of the base class will or will not be
accessible to the users of the derived class. With public
inheritance the public members of the base class effectively
become public members of the derived class.

Inheritance access specifiers

Base class member access

public protected private

Derived class
inheritance access

public whatever function
methods of D 
friends of D 

classes derived from D
not accessible

protected
methods of D 
friends of D 

classes derived from D

methods of D 
friends of D 

classes derived from D
not accessible

private methods of D 
friends of D

methods of D 
friends of D

not accessible

class D : public B {};
class D : protected B {};
class D : private B {};  

class B {  
public:  
 void pub();  
protected:  
 void prot();  
private:
 void priv();  
};

Inheritance access specifiers
• a public derived class inherits the public

and protected members of the base
maintaining their access level

• a protected derived class inherits the
public and protected members of the
base but expose them as protected

• a private derived class expose the public
and protected members of the base as
private

Class interface

• A class has two distinct interfaces for two
distinct sets of clients:

• It has a public interface that serves
unrelated classes

• It has a protected interface that serves
derived classes

Access control
• The private members of a class remain just

private! A derived class CAN NOT access
the private members of the base class, even
though they do inherit them (they are
included in an object of the derived class)

• Private members are only accessible via the
public methods of the base class. They
cannot be accessed directly by users of the
derived class nor can they be accessed
directly by the methods of the derived
class.

Protected Members

• What if we want a class member to be
visible to the methods of a derived class
but not to be visible to users of either
the base class or the derived class?

• C++ protected members.

• If there are levels of indirect inheritance
through a class hierarchy, protected
members will be accessible throughout
the class hierarchy.

Protected Members - cont.

class baseClass{  
public:  
 void method1();  
protected:  
 void method2();  
};

class derivedClass :
public baseClass {  
public:  
 void method3() {  
 method2(); // OK  
 };  
};

derivedClass d;

d.method1(); // OK

d.method3(); // OK

d.method2(); // ERROR!
method2 is protected

Access control hint

• Declare your base class's data members as
private and use protected inline access
functions by which derived classes will
access the private data in the base class. This
way the private data declarations can change,
but the derived class's code won't break
(unless you change the protected access
functions)

From: C++ FAQ Lite - [19.7]

Accessing Base Class Members

• An object of a derived class inherits the members of the base class, eg.

• Casual cas;  
std::cout << "Name: " << cas.getName() << endl;

• Real power of inheritance is when we don't know the actual type of an
object, e.g.

• Person *p;  
p = findPerson(...);  
std::cout << "Name: " << p->getName() <<
std::endl;

• This is an example of polymorphism.

Accessing Base Class Members

• An object of a derived class inherits the members of the base class, eg.

• Casual cas;  
std::cout << "Name: " << cas.getName() << endl;

• Real power of inheritance is when we don't know the actual type of an
object, e.g.

• Person *p;  
p = findPerson(...);  
std::cout << "Name: " << p->getName() <<
std::endl;

• This is an example of polymorphism.

Where is it implemented ? Looks
like implemented in Casual class,
but could be also in base class

Accessing Base Class Members

• An object of a derived class inherits the members of the base class, eg.

• Casual cas;  
std::cout << "Name: " << cas.getName() << endl;

• Real power of inheritance is when we don't know the actual type of an
object, e.g.

• Person *p;  
p = findPerson(...);  
std::cout << "Name: " << p->getName() <<
std::endl;

• This is an example of polymorphism.

Where is it implemented ? Looks
like implemented in Casual class,
but could be also in base class

p is a pointer to the base class 
findPerson may return derived
classes, but we can invoke methods
of the base class without knowing
what p has become.
There’s need of a bit of work... see it in a few slides

Inheritance vs. Composition

• Why not this?

class Student {  
public:  
 Person details;  
 // ...  
};

• This is composition. It is used when objects of one class contain or comprise
one or more objects of another class:

Student s;  
cout << "Name: " << s.details.getName();

Inheritance vs. Composition

• Why not this?

class Student {  
public:  
 Person details;  
 // ...  
};

• This is composition. It is used when objects of one class contain or comprise
one or more objects of another class:

Student s;  
cout << "Name: " << s.details.getName();

Notice access using two levels of member selection

Inheritance vs. Composition - cont.

• Use inheritance for "is_a" relationships, composition for
“has_a” or "contains" or "is_comprised_of" relationships.

• Consider the case of multiple instances of a class within
another class, e.g.

class Person {  
public:  
 Address home;  
 Address office;  
 // ...  
};

• Can't do this with inheritance!

Composition and relationships

• When an object contains another object
there could be a relation that is different from
has_a and is more like
is_implemented_in_terms_of, e.g. when one
class heavily relies on the behaviour of a
contained class, modifying some of its features

Using derived classes

It is possible to use an object instantiated
from a derived class whenever it is possible
to use an object instantiated from the base
class (because derived obj is_a base obj):

class Employee {  
 string first_name, family_name;  
 Date hiring_date;  
 short department;  
 // ...  
};  
class Manager : public Employee {  
 set<Employee*> group;  
 short level;  
 // ...  
};

void paySalary(Employee* e)  
{  
 //... code to pay salary  
}  
//...  
Employee *e1;  
Manager *m1;  
//...  
paySalary(e1);  
paySalary(m1);

Public inheritance and is_a

• If D extends publicly B then D is_a B and any
function that expects a B (or pointer to B or
reference to B) will also take D (or pointer to
D or reference to D)
class Person {...};  
class Student : public Person {...};  
void eat(const Person& p);  
void study(const Student& s);  
Person p;  
Student s;  
eat(p); // OK  
eat(s); //OK: s is_a p  
study(s); // OK  
study(p); // bad: p is not an s

Liskov substitution principle

• Substitutability is a principle in object-oriented
programming stating that if S is a subtype of T,
then objects of type T may be replaced with
objects of type S

• i.e. an object of type T may be substituted with
any object of a subtype S without altering any
of the desirable properties of the program
(correctness, task performed, etc.).

Liskov substitution principle

• Substitutability is a principle in object-oriented
programming stating that if S is a subtype of T,
then objects of type T may be replaced with
objects of type S

• i.e. an object of type T may be substituted with
any object of a subtype S without altering any
of the desirable properties of the program
(correctness, task performed, etc.).

Original definition by Barbara Liskov (1994):  
 
Subtype Requirement: Let ϕ(x) be a property provable
about objects x of type T. Then ϕ(y) should be true
for objects y of type S where S is a subtype of T.

Liskov substitution principle

• Substitutability is a principle in object-oriented
programming stating that if S is a subtype of T,
then objects of type T may be replaced with
objects of type S

• i.e. an object of type T may be substituted with
any object of a subtype S without altering any
of the desirable properties of the program
(correctness, task performed, etc.).

Original definition by Barbara Liskov (1994):  
 
Subtype Requirement: Let ϕ(x) be a property provable
about objects x of type T. Then ϕ(y) should be true
for objects y of type S where S is a subtype of T.

In other words, if you make a class that extends a
base class, it should not alter its parents behavior

significantly.

Liskov substitution principle

• The Liskov substitution principle (LSP), identifies
one particular mathematical notion of subtype with
the programming notion of class extension such as
C++ class derivation.

• It’s a principle of generally good class design for
polymorphism.

• When a class Derived extends a class Base, then
with respect to the properties guaranteed by the
Base specification, code that refers to a Base
object should work just as well if that object is
actually a Derived object.

Public inheritance and is_a - cont.

• But be careful with
design:  
 
class Bird {  
public:  
 virtual void fly();  
...  
};  
 
class Penguin : public
Bird { ... };  
 
Penguin p;  
p.fly(); // but penguins  
 // do not fly !

• Perhaps it’s better to
have:  
 
class Bird { ... };  
 
class FlyingBird : public
Bird {  
public:  
 virtual void fly();  
}  
 
class Penguin : public
Bird { ... };

Public inheritance and is_a - cont.

• Public inheritance asserts that everything
that applies to base object applies to derived
object

• it’s up to you to design correctly the base
class, so that penguins do not fly!

Private inheritance

• The behaviour is quite different when
inheriting privately: we do not have anymore
a is_a relation, the compiler will not convert
the derived class to base:  
 
class Student : private Person { ... };  
 
void eat(const Person& p);  
 
Student s;  
eat(s); // error: now a Student is not a Person !

Private inheritance - cont.

• All that is inherited becomes private: it’s an
implementation detail

• Private inheritance means that the derived
class D is_implemented_in_terms_of the base
class B, not that D is_a B

• Use private inheritance if you want to
inherit the implementation of the base class,
use public inheritance to get also the
interface

Private inheritance - cont.

• Remind that also composition let to
implement a class in terms of another
(composed) class

• Use composition whenever you can and
private inheritance when you need, e.g. when
you need to access protected parts of a
class or redefine virtual methods (more on
this later)

Constructors and inheritance

• When an object of a derived class is created,
the constructors (if any) of each inherited class
are invoked in sequence prior to the final class
constructor (if any). It’s a bottom-up process.

• Default constructors are invoked automatically.

• If a base class does not have a default
constructor, any other constructor must be
invoked explicitly by the derived class's
constructor in its initialisation list.

Constructors and inheritance - cont.

class Derived: public Base {  
private:  
 int d;  
public:  
 Derived();  
 Derived(int a, int b, int c, int d);  
 void print();  
};

Derived::Derived() { d=0;}  
Derived::Derived(int a=0, int b=0, int c=0, int d=0) :  
 Base(a,b,c) // Use a,b,c as parameters to the c’tor of Base  
 { this->d = d; }  
Derived::Derived(int a=0, int b=0, int c=0, int d=0) :  
 Base(a,b,c) , d(d) {}

class Base {  
public:  
 Base();
 Base(int a, int b, int c);
};

Destructors and Inheritance

• Just like constructors, except the order is
reversed! It’s a top-down process.

• When a derived class is destroyed, the
derived class destructor (if any) will be
invoked first and then the base class
destructor (if any) will be invoked.

• Destructors are not overloaded or invoked
explicitly so we don't have the confusion
over which destructor is invoked!

Multiple inheritance

• A class may derive from several base classes

• Just report all the base classes after the “:”,
and state the access level, e.g.:
class Employee { /* ... */ };  
class Manager : public Employee { /* ... */ };  
class Director : public Manager { /* ... */ };  
class Temporary { /* ... */ };  
class Secretary : public Employee { /* ... */ };  
class Tsec : public Temporary, public Secretary  
 { /* ... */ };  
class Consultant : public Temporary, public Manager  
 { /* ... */ };

A bit of UML class diagram

method() : return type
method(param type, ...) : return type
...

attribute1 name: type
attribute2 name: type
...

class name

Temporary

Tsec

Consultant

Employee

Secretary

Manager

Director

Polymorphism

Polymorphism
• In programming languages and type theory,

polymorphism (i.e. “many forms”, from Greek) is the
provision of a single interface to entities of
different types.

• There are several different kinds of polymorphism.
C++ caters for all them using:

• overloading

• generic programming (templates)

• subtyping: a name may denote instances of different
classes if they share a common base class.

Polymorphism
• In programming languages and type theory,

polymorphism (i.e. “many forms”, from Greek) is the
provision of a single interface to entities of
different types.

• There are several different kinds of polymorphism.
C++ caters for all them using:

• overloading

• generic programming (templates)

• subtyping: a name may denote instances of different
classes if they share a common base class.

In object-oriented programming, this is often
referred to simply as polymorphism

Polymorphism

• The main concept behind subtype
polymorphism is:  
 
we can refer to an instance of a
subclass as if it were an instance of its
superclass...  
 
...but each object responds to method calls
as specified by its actual type

Polymorphism

• A derived class can override a method inherited
from a base class

• the class should simply include a declaration of
the method (and provide an implementation)

• the overridden method often adds some
behaviour according to the specialization of the
derived class (may upcall the base method)

• The method is polymorphic because it has a
different implementation depending if it’s invoked
on the base or the derived class

Override vs. overload

• Overloaded method: same method name but
different parameters (in the same class)

• Overridden method: same name and
parameters in a class hierarchy

Override and overload

• Overloaded methods in a base class can be
overridden in a derived class

• A derived class can overload an overridden
method, adding a new behavior to its interface

Override and overload

• Overloaded methods in a base class can be
overridden in a derived class

• A derived class can overload an overridden
method, adding a new behavior to its interface

// OK  
class B {
public:

/* ... */
virtual void foo() {

std::cout << "B::foo()" << std::endl;
}
void foo(int i) { // overloaded

std::cout << "B::foo(int) : " << i << std::endl;
}

};
class D : public virtual B {
public:

/* ... */
virtual void foo() { // overridden

std::cout << "D::foo()" << std::endl;
}
void foo(int i) { // overloaded overridden

std::cout << "D::foo(int) : " << i << std::endl;
}  

 void foo(float j) { // overloaded
std::cout << "D::foo(float) : " << j << std::endl;

}
};

Override and overload

• Overloaded methods in a base class can be
overridden in a derived class

• A derived class can overload an overridden
method, adding a new behavior to its interface

// OK  
class B {
public:

/* ... */
virtual void foo() {

std::cout << "B::foo()" << std::endl;
}
void foo(int i) { // overloaded

std::cout << "B::foo(int) : " << i << std::endl;
}

};
class D : public virtual B {
public:

/* ... */
virtual void foo() { // overridden

std::cout << "D::foo()" << std::endl;
}
void foo(int i) { // overloaded overridden

std::cout << "D::foo(int) : " << i << std::endl;
}  

 void foo(float j) { // overloaded
std::cout << "D::foo(float) : " << j << std::endl;

}
};

B* pb;
pb = new D;
pb->foo();
pb->foo(42);
D ad;
ad.foo();
ad.foo(42);  
ad.foo(float(3.14));

Late binding

• The override feature lets different implementations of a method
to exist: this introduces a problem of binding the invocation of a
method to a particular implementation:

• the decision is based on the type of the class used to refer to a
method:

• <var>.op() uses the op() of the class of <var>

• <addr_expr>->op() uses the op() of the class of
<addr_expr> that may be different from the class of the
instantiated object

Late binding - example
class Base {  
public:  
 Base();  
 ~Base();  
 void foo() {  
 std::cout << "Base::foo" << std::endl;  
 };  
 int foo2() {  
 std::cout << "Base::foo2" << std::endl;  
 return -1;  
 }  
};

class Derived1: public Base {  
public:  
 Derived1();  
 ~Derived1();  
 void foo() {  
 Base::foo(); // upcall  
 std::cout << "Derived1::foo" << std::endl;  
 }  
 int foo2() {  
 std::cout << "Derived1::foo2()" << std::endl;  
 return 1;  
 }  
};

Base *pBase;  
Derived1 aD1;  
 
cout << "pBase = &D1" << endl;  
pBase = &aD1; // Base pointer to derived class  
pBase->foo(); // Base::foo() because of  
 // static bind  
 
cout << “D1.foo()" << endl;  
aD1.foo(); // Derived::foo()  
 
// cast to call the method of derived class  
((Derived *)pBase)->foo2(); // Derived::foo2()  

Virtual methods

• Virtual methods avoid the need for a
client of a class to know the concrete
type of the instance it is using

• in the previous example we had to cast
a base pointer to use a method
overridden in the derived class

• One or more methods of a derived class
can be declared as virtual adding the
keyword in their declaration

Virtual methods - cont.

• A virtual method in the base class remains
virtual in the derived classes (even if the
virtual declaration is not expressly used)

• The virtual declaration modifies the
binding: the implementation that is used is
always that of the instantiated class

Virtual methods - example
class Base {  
public:  
 Base();  
 virtual ~Base();  
 void foo() {  
 std::cout << "Base::foo" << std::endl;  
 };  
 virtual int bar(int i) {  

 std::cout << "Base::bar" << i <<  
 std::endl;  

 return (i);  
 }  
};

class Derived1: public Base {  
public:  
 Derived1();  
 virtual ~Derived1();  
 void foo() {  
 Base::foo(); // upcall  
 std::cout << "Derived1::foo" << std::endl;  
 };  
 virtual int bar(int i) {  
 std::cout << "Derived1::bar" << i <<  
 std::endl;  
 return (i+1);  
 };  
};

Base *pBase;  
Derived1 aD1;  
 
cout << "pBase = &D1" << endl;  
pBase = &aD1; // Base pointer to derived class  
pBase->foo(); // Base::foo()  
 
cout << "D1::foo()" << endl;  
aD1.foo(); // Derived1::foo()  
 
// NO need to cast the pointer: it’s a virtual
method  
pBase->bar(1); // Derived1::bar()  

Why virtual methods ?
• The use of virtual methods greatly reduces the

coupling of a client and a hierarchy of classes
developed from a base class

• a pointer of base class type does not require to
know what type it is pointing at: the late
(dynamic) binding will solve the problem !

• Virtual methods are the key facility to
polymorphism: the function that is invoked using
a base class pointer (or reference) can have many
form, depending upon the actual type of object
that is being used.

Rules for Virtual Functions

• A virtual function must be marked virtual in the base class.

• A function in a derived class with the same signature as a
virtual function in the base class will be virtual even if not
marked virtual. Always mark it anyway.

• A separate definition (i.e. not within the class declaration) of a
virtual function is not marked virtual.

• Top level functions cannot be virtual. It would not make any
sense...

• Class functions (marked static) cannot be virtual. It would not
make any sense...

override and final (C++11)

• The new C++11 standard introduces two
specifiers for virtual functions:

• override: indicates that a method in a
derived class intends to be an override of
a virtual method in the base class

• final: indicates that a method in a base
class can not be overridden in a base class

override and final (C++11)

• The new C++11 standard introduces two
specifiers for virtual functions:

• override: indicates that a method in a
derived class intends to be an override of
a virtual method in the base class

• final: indicates that a method in a base
class can not be overridden in a base class

Remember to tell the compiler to
use the new standard

override (C++11)
class B {  
public:  
 virtual void f1(int)  
 const;  
 virtual void f2();  
 void f3();  
};

class D1 : public B {  
public:  
 void f1(int) const override;  
 // ok: f1 matches f1 in the base  
 void f2(int) override;  
 // error: B has no f2(int)  
 void f3() override;  
 // error: f3 not virtual  
 void f4() override;  
 // error: B doesn't have a  
 // function named f4  
};

final (C++11)
class B {  
public:  
 virtual void f1(int)  
 const;  
 virtual void f2();  
 void f3();  
};  
 
class D2 : public B {  
public:  
// inherits f2() and  
// f3() from B and  
// overrides f1(int)  
 void f1(int) const  
 final;  
 // subsequent classes  
 // can't override f1 (int)  
};

class D3 : public D2 {  
public:  
 void f2();  
 // ok: overrides f2  
 // inherited from the  
 // indirect base, B  
 void f1(int) const;  
 // error: D2 declared f1  
 // as final

};

final (C++11)

• final can also block the possibility to derive
from a class, e.g.:  
 
class	SuperCar	final	:	public	Car 
{  
// 
};

• ... it’s not possible to derive from SuperCar.

Constructors and Destructors

• Constructors cannot be virtual: a
constructor is invoked on an explicit type,
there is no need for polymorphism to be
considered

• Destructors can be virtual. Making them
virtual ensures that the correct ones are
called if the object is identified by a base
class reference or pointer.

• Notice that the CLion and Eclipse class
wizards always create virtual destructors !

Constructors and Destructors

• Constructors cannot be virtual: a
constructor is invoked on an explicit type,
there is no need for polymorphism to be
considered

• Destructors can be virtual. Making them
virtual ensures that the correct ones are
called if the object is identified by a base
class reference or pointer.

• Notice that the CLion and Eclipse class
wizards always create virtual destructors !

Constructors and Destructors

• Constructors cannot be virtual: a
constructor is invoked on an explicit type,
there is no need for polymorphism to be
considered

• Destructors can be virtual. Making them
virtual ensures that the correct ones are
called if the object is identified by a base
class reference or pointer.

• Notice that the CLion and Eclipse class
wizards always create virtual destructors !

Virtual destructors
• Remind to declare virtual destructors in

polymorphic base classes (i.e. those who have at
least one virtual method)  

• class TimeKeeper {  
public:  
 TimeKeeper();  
 ~TimeKeeper();  
 virtual getCurrentTime();  
 ..  
};  
 
class AtomicTimeKeeper :
public TimeKeeper {...};  
 
class WristWatch : public
TimeKeeper {...};

• // this function allocates  
// a watch on the heap with  
// a new  
TimeKeeper* getTimeKeeper();  
...  
TimeKeeper* ptk =  
 getTimeKeeper(); // get it  
... // use it  
delete ptk; // release it

Virtual destructors
• Remind to declare virtual destructors in

polymorphic base classes (i.e. those who have at
least one virtual method)  

• class TimeKeeper {  
public:  
 TimeKeeper();  
 ~TimeKeeper();  
 virtual getCurrentTime();  
 ..  
};  
 
class AtomicTimeKeeper :
public TimeKeeper {...};  
 
class WristWatch : public
TimeKeeper {...};

• // this function allocates  
// a watch on the heap with  
// a new  
TimeKeeper* getTimeKeeper();  
...  
TimeKeeper* ptk =  
 getTimeKeeper(); // get it  
... // use it  
delete ptk; // release it

The derived part of
the object will not
be released leaking
resources

Virtual destructors
• Remind to declare virtual destructors in

polymorphic base classes (i.e. those who have at
least one virtual method)  

• class TimeKeeper {  
public:  
 TimeKeeper();  
 ~TimeKeeper();  
 virtual getCurrentTime();  
 ..  
};  
 
class AtomicTimeKeeper :
public TimeKeeper {...};  
 
class WristWatch : public
TimeKeeper {...};

• // this function allocates  
// a watch on the heap with  
// a new  
TimeKeeper* getTimeKeeper();  
...  
TimeKeeper* ptk =  
 getTimeKeeper(); // get it  
... // use it  
delete ptk; // release it

The derived part of
the object will not
be released leaking
resources

Solve the issue
declaring a virtual
destructor

Virtual destructors - cont.

• Guideline: if a class does not contain a
virtual method then probably it is not meant
to be a base class (or it’s a base class not to
be used polymorphically)

• Guideline: it is not useful to declare a virtual
destructor if there is no other virtual
method in the class:

• we waste memory for the creation of the
virtual table used to manage virtual
functions

Virtual destructors - cont.

• What happens if you derive from a class
with no virtual destructor ?

class SpecialString : public std::string { // std::string  
... // has no virtual  
}; // destructor  
 
SpecialString* pss = new SpecialString(“Problems are
coming”);  
 
std::string* ps;  
...  
ps = pss; // SpecialString is_a std::string  
...
delete ps; // Ouch! We use the std::string destructor, any  
 // resource managed by SpecialString is leaked

Factory

• A way to further exploit polymorphism
achieved using virtual methods is the use
of a factory class (covered later in the
course) that instantiate objects
depending on some conditions, e.g.:

class Factory {  
public:  
 Base* getInstance();  
 ...  
}  
Base* Factory::getInstance() {  
 if (...)  
 return new Base;  
 else  
 return new Derived;  
}

int main() {  
 Base* pBase;  
 Factory *pFactory;  
 ...  
 pBase = pFactory->getInstance();  
 ...  
 pBase->aVirtualMethod();  
 ...  
}  

Covariant return type

• In object-oriented programming, a covariant return type of
a method is one that can be replaced by a "narrower" type
when the method is overridden in a subclass.

• C++ allows it, Java allows it partially, C# doesn’t allow it

• Covariant (wide to narrower) return type refers to a
situation where the return type of the overriding method is
changed to a type related to (but different from) the return
type of the original overridden method.

• The relationship between the two covariant return types
is usually one which allows substitution of the one type
with the other, following the Liskov substitution
principle.

Covariant return type

• An overridden method in a derived class can return a type
derived from the type returned by the base-class method.

class A {};  
class B : public A {};  
class C : public B {};  
 
class X {  
 public:  
 virtual B *m1()  
 { return new B();}  
};  
class Y : public X {  
 public:  
 virtual C *m1()  
 { return new C();}  
};  

int main() {  
 X x; Y y;  
 x.m1();  
 y.m1();  
}

Covariant return type

• An overridden method in a derived class can return a type
derived from the type returned by the base-class method.

class A {};  
class B : public A {};  
class C : public B {};  
 
class X {  
 public:  
 virtual B *m1()  
 { return new B();}  
};  
class Y : public X {  
 public:  
 virtual C *m1()  
 { return new C();}  
};  

int main() {  
 X x; Y y;  
 x.m1();  
 y.m1();  
}

Y::m1() can not return a B object if X::m1()
returns a C object

Covariant return type
• Covariant return type is useful to implement some

designs, like allowing a class to clone objects:
class Base {  
public:  
 virtual Base* clone() const;  
};  
Base* Base::clone() const {  
 return new Base(*this);  
}  
 

class Derived : public Base {  
public:  
 virtual Derived* clone() const;  
};  
 

Derived* Derived::clone() const {  
 return new Derived(*this);  
}

Base* b1 = new Base;
base* b2 = b1->clone();
// b2 gets a clone of b1

Derived *d1 = new Derived;
Derived *d2 = d1->clone();  
// d2 gets a clone of d1

Name hiding

• If a base class declares a member function
and a derived class declares a member
function with the same name but different
parameter types and/or constness, then the
base method is “hidden” rather than
“overloaded” or “overridden” (even if the
method is virtual)

http://www.parashift.com/c++-faq-lite/virtual-functions.html

Name hiding - example

class Base {  
 public:  
 void f(double x); // doesn't matter whether or not this is virtual  
 };

 class Derived : public Base {  
 public:  
 void f(char c); // doesn't matter whether or not this is virtual  
 };

 int main() {  
 Derived* d = new Derived;  
 Base* b = d;  
 b->f(65.3); // okay: passes 65.3 to f(double x)  
 d->f(65.3); // bizarre: converts 65.3 to a char ('A' if ASCII)  
 // and passes it to f(char c); does NOT call f(double x)!!  
 delete d;  
 return 0;  
}

Name hiding - example

class Base {  
 public:  
 void f(double x); // doesn't matter whether or not this is virtual  
 };

 class Derived : public Base {  
 public:  
 void f(char c); // doesn't matter whether or not this is virtual  
 };

 int main() {  
 Derived* d = new Derived;  
 Base* b = d;  
 b->f(65.3); // okay: passes 65.3 to f(double x)  
 d->f(65.3); // bizarre: converts 65.3 to a char ('A' if ASCII)  
 // and passes it to f(char c); does NOT call f(double x)!!  
 delete d;  
 return 0;  
}

Solutions:
 
class Derived : public Base {
 public:
 using Base::f; // This un-hides Base::f(double x)
 void f(char c);
 };

or otherwise:

class Derived : public Base {
 public:  
 // a redefinition that simply calls Base::f(double x)
 void f(double x) { Base::f(x); }  
 void f(char c);
 };

Name hiding - cont.

• The rationale of this behaviour is that it prevents from
accidentally inheriting overloads from a distant base
class when creating a new class, e.g. in a library

• if you need those overloads use the using
declaration seen before

• it’s something similar to name hiding of variables:  
double x;  
 
void someFunc() {  
 int x; // hides the global variable declared before  
 ...  
}

Name hiding - cont.

• Name hiding and public inheritance do not
mix well: remind that Derived object is_a
Base object, but hiding names make this not
to hold true !

• If you inherit publicly from a class and
redefine a method perhaps you should have
declared the method as virtual, when
accessing derived class through a base class
pointer, we may call the base class method
instead of redefined one

Name hiding - cont.

class B {  
public:  
 void mf();  
 ...  
};  
 
Class D: public B {  
public:  
 void mf(); // hides B::mf()  
 ...  
};  
 
 
 
 
 

D x;  
B* pB = &x;  
D* pD = &x;

pD->mf(); // calls D::mf()  
pB->mf(); // calls B::mf()  
// should have been virtual  
// to call D::mf()

This public inheritance does not behave
like a is_a relationship: D should have
inherited the implementation of B::mf() !  
This name hiding is bad design !  

Name hiding - cont.

class B {  
public:  
 void mf();  
 ...  
};  
 
Class D: public B {  
public:  
 void mf(); // hides B::mf()  
 ...  
};  
 
 
 
 
 

D x;  
B* pB = &x;  
D* pD = &x;

pD->mf(); // calls D::mf()  
pB->mf(); // calls B::mf()  
// should have been virtual  
// to call D::mf()

This public inheritance does not behave
like a is_a relationship: D should have
inherited the implementation of B::mf() !  
This name hiding is bad design !  

A better design requires either to:
1. Avoid to redefine mf() in D, thus inheriting the implementation of B
or
2. Declare B::mf() as virtual and provide a new specialized version in D  
 
 
In this way a D is_a B

Fragile base class

• Languages like C++ (and Java) suffer from a problem which is
known as fragile base classes. Base classes are termed fragile when
adding new features to a base class leads to breaking existing
derived classes.

• When adding a new virtual method to a base class, existing
methods with the same name in derived classes will automatically
override the new method. If the semantics of the new method
doesn't match the existing method in the derived class, which it
almost certainly won't, then trouble ensues. This problem occurs
because in C++ (and Java) the user cannot specify their intent
with respect to overriding, so overriding happens silently by
default.

Fragile base class

• Languages like C++ (and Java) suffer from a problem which is
known as fragile base classes. Base classes are termed fragile when
adding new features to a base class leads to breaking existing
derived classes.

• When adding a new virtual method to a base class, existing
methods with the same name in derived classes will automatically
override the new method. If the semantics of the new method
doesn't match the existing method in the derived class, which it
almost certainly won't, then trouble ensues. This problem occurs
because in C++ (and Java) the user cannot specify their intent
with respect to overriding, so overriding happens silently by
default.

Using override keyword in derived class doesn’t
helps as it only checks if the method in derived class

has the same signature of the base class.

Abstract classes

Why abstract classes ?

• There are many situations where the base
class in a class hierarchy should be an abstract
class, that is, no objects can be instantiated
from it.

• it includes special declarations of virtual
methods but not their implementation

• An abstract class is a base from which defining
other concrete classes

• A pure abstract class has no implementation
of its methods

Why abstract classes ? - cont.

• A client may rely on the “interface” provided
by an abstract class without need to know
details on the classes that implement it

• it’s a technique that decouples objects,
especially when considering pure abstract
classes that do NOT provide inheritance
of the implementation but allow the
substitution mechanism

Abstract classes: how

• An abstract base class is one that has at least one pure virtual
function.

• A pure virtual function is declared using the special syntax:

virtual void abstractMethod() = 0;

• The above function does not need to be defined as it does not
really exist and will never be called!

• A class derived from an abstract base class must override all of
its pure virtual functions or it too will be an abstract base class.

Class Hierarchy example

class Vehicle {  
public:  
 virtual int getNumWheels() const = 0;  
};

class MotorCycle: public Vehicle {  
public:  
 virtual int getNumWheels() const {  
 return 2;  
 }  
};

class Car : public Vehicle {  
public:  
 virtual int getNumWheels() const {  
 return 4;  
 }  
};

class Truck : public Vehicle {  
public:  
 Truck(int w = 10) : wheels(w) {}  
 virtual int getNumWheels() const {  
 return wheels;  
 }

private:  
 int wheels;  
};

Vehicle* p = new Car();  
std::cout << p->getNumWheels() <<
std::endl;

Back to Open-Closed Principle

• Let’s review how inheritance and
polymorphism help us to address the  
Open-Closed Principle in the problem:  

• We have an application that must be able to draw
circles and squares on a standard GUI. The circles
and squares must be drawn in a particular order.  
A list of the circles and squares will be created in
the appropriate order and the program must walk
the list in that order and draw each circle or square.  
We want to be able to add new shapes.

OCP - cont.

class Shape {  
public:  
 virtual void draw() const = 0;  
};

class Square : public Shape {  
public:  
 virtual void draw() const;  
};

class Circle : public Shape {  
public:  
 virtual void draw() const;  
};

void DrawAllShapes(Shape*
list[], int size) {  
 for(int i=0;  
 i < size;  
 i++) {  
 list[i]->draw();  
 }  
}

OCP - cont.

class Shape {  
public:  
 virtual void draw() const = 0;  
};

class Square : public Shape {  
public:  
 virtual void draw() const;  
};

class Circle : public Shape {  
public:  
 virtual void draw() const;  
};

void DrawAllShapes(Shape*
list[], int size) {  
 for(int i=0;  
 i < size;  
 i++) {  
 list[i]->draw();  
 }  
}

We use an abstract class and virtual methods to be open to
changes: new shapes have to extend the base abstract class, and
DrawAllShapes() does not require to change.

Pure virtual destructor

• If you want to make a base class abstract but
have no method that is pure virtual declare
the destructor as pure virtual !  
See the trick:

•class AWOV { // Abstract W/O Virtuals  
public:  
 virtual ~AWOV() = 0;  
 ...  
};  
 
AWOV::~AWOV() {} // REMIND: you HAVE to define the  
 // pure virtual destructor !

Pure virtual destructor

• If you want to make a base class abstract but
have no method that is pure virtual declare
the destructor as pure virtual !  
See the trick:

•class AWOV { // Abstract W/O Virtuals  
public:  
 virtual ~AWOV() = 0;  
 ...  
};  
 
AWOV::~AWOV() {} // REMIND: you HAVE to define the  
 // pure virtual destructor !

We have declared pure
virtual but the compiler
needs a destructor that is
called when it reaches the
base class. Forget it and the
linker will complain.

RTTI
Run-time type identification

Why RTTI ?

• Once we have obtained a pointer to an object, it is possible to use
it to invoke a polymorphic function without having to know the
type of the object

• the C++ late binding will ensure that the correct (virtual)
function is called according to the actual type of object.

• But what if there are operations that are unique to a particular
type ? If we have the wrong type then there is no point in invoking
a function that does not exist! One possible solution to this
problem is to be able to explicitly determine the type of objects
pointed to at runtime.

How RTTI works

• We have a base class pointer, we can then cast it to a
pointer to a specific derived class and then test to see if
the cast worked or not.

• If the actual object is of the desired type then the cast
can work, if not, then the cast will fail. Such a cast is
called a dynamic cast.

• We use the dynamic_cast to attempt to cast a pointer
to a base class to point to an object of a derived class.

C++ dynamic_cast
• The dynamic_cast is used to check at run-time

whether a cast is type safe.

• It is only legal on a polymorphic type, i.e. a class that
has at at least one virtual method. More specifically:

• The source type (in round brackets) must be a
pointer or reference to a polymorphic type.

• The target type (in angled brackets) must be a
pointer or reference, but need not be polymorphic.

• We are working on pointers, therefore a failure results
in a 0 pointer (always check if we got 0 as result!)

dynamic_cast example

class B {  
public:  
 virtual void f() {…}  
};

class D1 : public B {  
public:  
 virtual void f() {…}  
 void D1specific() {…}  
};

class D2 : public B {  
public:  
...  
};

B* bp;  
D1* dp;  
bp = new D1;  
dp = dynamic_cast<D1*>(bp);  
if (dp != 0) {  
 dp->D1specific();  
}  
bp = new D2;  
dp = dynamic_cast<D1*>(bp);  
if (dp != 0) {  
 dp->D1specific();  
}

dynamic_cast example

class B {  
public:  
 virtual void f() {…}  
};

class D1 : public B {  
public:  
 virtual void f() {…}  
 void D1specific() {…}  
};

class D2 : public B {  
public:  
...  
};

B* bp;  
D1* dp;  
bp = new D1;  
dp = dynamic_cast<D1*>(bp);  
if (dp != 0) {  
 dp->D1specific();  
}  
bp = new D2;  
dp = dynamic_cast<D1*>(bp);  
if (dp != 0) {  
 dp->D1specific();  
}

More realistically: when using a
Factory to get the instances, we
do not know what is the real
type of the object

dynamic_cast to reference
• If we use dynamic_cast to reference we can

not check for a 0, because a reference must always
be valid

• C++ uses a different error handling mechanism we
will see in a future lecture: exceptions:  
 
try {  
 T& tref = dynamic_cast<T&>(xref);  
} catch(bad_cast) {  
 // ...  
}

typeid
• The typeid operator returns an identification of the type of

a basic type, a class, a variable or any expression.  
May be useful to store objects to file, recording the type of
each object.

• Requires #include<typeinfo>.

• typeid actually returns a reference to an object in the
system class type_info, so compare results of typeid().

• You don't need to know the internal details, e.g. to test if a
variable is of a particular type:  
if(typeid(x) == typeid(float)) {  
 // ...  
}

Deleted methods

How ?

• Since C++11 it is possible to disallow the
definition of some functions.

• Add =delete at the end of the declaration
of a method

• Can be applied to any method of a class, like
one of the methods created automatically by
the compiler

• Can be applied to methods inherited from a
base class

Example

class A {  
public:  
 A(int a){};  
 A(double) = delete; // conversion disabled  
 A& operator=(const A&) = delete;  
 // assignment operator disabled  
};

Example: inheritance
class A {  
public:  
 virtual void foo() { }  
 void bar() { }  
 void foobar() { }  
};

class B : public A {  
public:  
 virtual void foo() { }  
 void bar() { }  
 void foobar() = delete;  
};

class C : public B {  
public:  
 C() {}  
 virtual void foo() { }  
 void bar() { }  
 void foobar() {};  
};

B b;  
b.foo();  
b.bar();  
b.foobar(); // compile error:  
 // it is deleted

 
A* pA;  
pA = &b;  
pA->foo();  
pA->bar();  
pA->foobar(); // foobar can not be  
 // virtual: Calling  
 // A::foobar()  
 
C c;  
c.foobar(); // OK

Example: inheritance
class A {  
public:  
 virtual void foo() { }  
 void bar() { }  
 void foobar() { }  
};

class B : public A {  
public:  
 virtual void foo() { }  
 void bar() { }  
 void foobar() = delete;  
};

class C : public B {  
public:  
 C() {}  
 virtual void foo() { }  
 void bar() { }  
 void foobar() {};  
};

B b;  
b.foo();  
b.bar();  
b.foobar(); // compile error:  
 // it is deleted

 
A* pA;  
pA = &b;  
pA->foo();  
pA->bar();  
pA->foobar(); // foobar can not be  
 // virtual: Calling  
 // A::foobar()  
 
C c;  
c.foobar(); // OK

Be careful: now B is NOT anymore an A

Multiple inheritance

Multiple inheritance

• It’s more complex than single inheritance:
the inheritance hierarchy is no longer a
strict hierarchy (tree) but becomes a
network (or graph).

• There’s the IS A relationship between a
derived class and its base classes, e.g.:  
a tutor IS A student and  
a tutor IS A temporary employee

Multiple Inheritance Rules

• No real changes from single to multiple inheritance.

• The derived class inherits all the data members and methods from the
bases classes.

• Protected members of base classes can be accessed by the derived class,
as before.

• Name conflicts can result in members of the base classes have the same
name (solve by appropriate using of declarations or by full qualification of
the names).

• Constructors of each base class (if any) will similarly be invoked prior to
the derived class constructor (if any). Destructors likewise but in the
reverse order.

Multiple Inheritance
characteristics

• Base c’tors are called in the order of the
inheritance declared in the class declaration,
e.g.:  
class Bat : public Mammal, public Winged {  
 public:  
 Bat(); // the Mammal() c’tor is called  
 // before Winged()  
}

• Solve ambiguities using scope resolution, e.g.:  
Bat aBat;  
aBat.Mammal::eat(); // if both Mammal and Winged  
 // have a eat() method

Diamond problem

• The diamond problem is an ambiguity that arises
with multiple inheritance when two classes B and
C inherit from A, and class D inherits from both B
and C.

• The result will be the replication of that base class
in the derived class that uses multiple inheritance.

• If a method in D calls a method defined in A (and
does not override the method), and B and C have
overridden that method differently, then from
which class does it inherit: B, or C?

http://en.wikipedia.org/wiki/Multiple_inheritance
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Inheritance_(computer_science)
http://en.wikipedia.org/wiki/Method_(computer_science)
http://en.wikipedia.org/wiki/Method_overriding_(programming)

Diamond problem

• The diamond problem is an ambiguity that arises
with multiple inheritance when two classes B and
C inherit from A, and class D inherits from both B
and C.

• The result will be the replication of that base class
in the derived class that uses multiple inheritance.

• If a method in D calls a method defined in A (and
does not override the method), and B and C have
overridden that method differently, then from
which class does it inherit: B, or C?

http://en.wikipedia.org/wiki/Multiple_inheritance
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Inheritance_(computer_science)
http://en.wikipedia.org/wiki/Method_(computer_science)
http://en.wikipedia.org/wiki/Method_overriding_(programming)

Diamond problem

• The diamond problem is an ambiguity that arises
with multiple inheritance when two classes B and
C inherit from A, and class D inherits from both B
and C.

• The result will be the replication of that base class
in the derived class that uses multiple inheritance.

• If a method in D calls a method defined in A (and
does not override the method), and B and C have
overridden that method differently, then from
which class does it inherit: B, or C?

turnOn()
engine : int

Vehicle

Seaplane

turnOn()
wingSpan : int
Airplane

turnOn()

displacement :
int

Boat

http://en.wikipedia.org/wiki/Multiple_inheritance
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Inheritance_(computer_science)
http://en.wikipedia.org/wiki/Method_(computer_science)
http://en.wikipedia.org/wiki/Method_overriding_(programming)

Virtual inheritance

• Virtual inheritance is a kind of inheritance
that solves some of the problems caused by
multiple inheritance (particularly the
“diamond problem”) by clarifying ambiguity
over which ancestor class members to use.

• A multiply-inherited base class is denoted as
virtual with the virtual keyword.

http://en.wikipedia.org/wiki/Inheritance_(computer_science)
http://en.wikipedia.org/wiki/Multiple_inheritance
http://en.wikipedia.org/wiki/Diamond_problem

Virtual inheritance example

class Base {  
 public:  
 ...  
 protected:  
 int data;  
 };

class Der1 : public virtual Base {  
 public:  
 ...  
 };

class Der2 : public virtual Base {  
 public:  
 ...  
 };

class Join : public Der1, public Der2 {  
 public:  
 void method()  
 {  
 data = 1;  
 // good: this is now  
 // unambiguous, otherwise should  
 // have used Der1::data|Der2::...  
 }  
 };

int main() {  
 Join* j = new Join();  
 Base* b = j; // good: this is now  
 // unambiguous

 }

Virtual inheritance example

class Base {  
 public:  
 ...  
 protected:  
 int data;  
 };

class Der1 : public virtual Base {  
 public:  
 ...  
 };

class Der2 : public virtual Base {  
 public:  
 ...  
 };

class Join : public Der1, public Der2 {  
 public:  
 void method()  
 {  
 data = 1;  
 // good: this is now  
 // unambiguous, otherwise should  
 // have used Der1::data|Der2::...  
 }  
 };

int main() {  
 Join* j = new Join();  
 Base* b = j; // good: this is now  
 // unambiguous

 }

this is the key

Pointer conversions
• Conversions (either implicit or explicit) from a

derived class pointer or reference to a base
class pointer or reference must refer
unambiguously to the same accessible base class
object, e.g.:  
class W { /* ... */ };  
class X : public W { /* ... */ };  
class Y : public W { /* ... */ };  
class Z : public X, public Y { /* ... */ };  
int main () {  
 Z z;  
 X* pX = &z; // valid  
 Y* pY = &z; // valid  
 W* pW = &z; // error, ambiguous reference to class W  
 // X's W or Y's W ?  
}

Pointer conversions
• Conversions (either implicit or explicit) from a

derived class pointer or reference to a base
class pointer or reference must refer
unambiguously to the same accessible base class
object, e.g.:  
class W { /* ... */ };  
class X : public W { /* ... */ };  
class Y : public W { /* ... */ };  
class Z : public X, public Y { /* ... */ };  
int main () {  
 Z z;  
 X* pX = &z; // valid  
 Y* pY = &z; // valid  
 W* pW = &z; // error, ambiguous reference to class W  
 // X's W or Y's W ?  
}

Just use virtual inheritance to
solve ambiguity

Liskov’s Substitution
Principle

Liskov substitution principle

• Rules to follow to implement LSP:

• Preconditions cannot be strengthened in the
subtype: you cannot require more than the parent

• Postconditions cannot be weakened in the
subtype: you cannot guarantee less than the parent

• Invariants must be preserved in the subtype.

• No new exceptions should be thrown, unless the
exceptions are subtypes of exceptions thrown by
the parent.

Preconditions

• A precondition is a condition which must hold
true before executing a method.

• Usually preconditions are concerned with the
arguments to a method, or the state of the
object, e.g. a method requires that an
argument is not null or 0

• If a method in the derived class adds
preconditions code that works fine with the
base class may not work with the derived one

Postcondition

• A postcondition is a condition which must
hold true after running a method.

• Postconditions usually concern the result of a
method, or the state of the object.

• If a base class method returns only non empty
strings and a derived class method returns
only strings that are not null the code using
that method may fail.

Invariant

• An invariant is a condition which must hold true
both before and after running a method.

• Usually invariants are concerned with the state of
the object they're defined on.

• This is actually one of the more difficult
constraints to fulfill, because invariants are often
not explicitly defined in code.

• Example: a Date class must make sure that there is
no Feb. 30th, before and after any call to a method.
A derived class should not eliminate this invariant.

Exceptions

• An exception is a way to signal a problem
while executing code.

• Code executing a method that may launch an
exception deals with these exceptions;
exceptions are classes and inherit.

• Code catching exceptions can deal with
subtypes exceptions, not with exceptions
outside the inheritance hierarchy.

Exceptions

• An exception is a way to signal a problem
while executing code.

• Code executing a method that may launch an
exception deals with these exceptions;
exceptions are classes and inherit.

• Code catching exceptions can deal with
subtypes exceptions, not with exceptions
outside the inheritance hierarchy.

If these sentences do not make sense to you now, do not
despair, there will be a lecture both them.

Violations of LSP

• RTTI and typeid, i.e. checking of dynamic
types in C++ are not compatible with LSP.

• The LSP makes clear that in OOD the ISA
relationship pertains to behavior. Not intrinsic
private behavior, but extrinsic public behavior;
behavior that clients depend upon.

Violations of LSP

• RTTI and typeid, i.e. checking of dynamic
types in C++ are not compatible with LSP.

• The LSP makes clear that in OOD the ISA
relationship pertains to behavior. Not intrinsic
private behavior, but extrinsic public behavior;
behavior that clients depend upon.

class Rectangle {
public:
 virtual void setWidth(double w) {itsWidth=w;}
 virtual void setHeight(double h) {itsHeight=h;}
 double getHeight() const {return itsHeight;}
 double getWidth() const {return itsWidth;}
private:
 double itsHeight;
 double itsWidth;
};

class Square : public Rectangle {
public:
 virtual void setWidth(double w);
 virtual void setHeight(double h);
};

void Square::setWidth(double w) {
 Rectangle::setWidth(w);
 Rectangle::setHeight(w);
}

void Square::setHeight(double h) {
 Rectangle::setHeight(h);
 Rectangle::setWidth(h);
}

Violations of LSP

• RTTI and typeid, i.e. checking of dynamic
types in C++ are not compatible with LSP.

• The LSP makes clear that in OOD the ISA
relationship pertains to behavior. Not intrinsic
private behavior, but extrinsic public behavior;
behavior that clients depend upon.

class Rectangle {
public:
 virtual void setWidth(double w) {itsWidth=w;}
 virtual void setHeight(double h) {itsHeight=h;}
 double getHeight() const {return itsHeight;}
 double getWidth() const {return itsWidth;}
private:
 double itsHeight;
 double itsWidth;
};

class Square : public Rectangle {
public:
 virtual void setWidth(double w);
 virtual void setHeight(double h);
};

void Square::setWidth(double w) {
 Rectangle::setWidth(w);
 Rectangle::setHeight(w);
}

void Square::setHeight(double h) {
 Rectangle::setHeight(h);
 Rectangle::setWidth(h);
}

// f expects that Rectangle can work after SetWidth()
// f may be fooled by the behavior of Square
void f(Rectangle& r) {
 r.setWidth(32); // calls Rectangle::SetWidth
}

// g expects that changing height or width leaves  
// the other parameter unchanged
// g can not be fooled by Square
void g(Rectangle& r) {
 r.setWidth(5);
 r.setHeight(4);
 assert(r.getWidth() * r.getHeight() == 20);
}

Violations of LSP

• RTTI and typeid, i.e. checking of dynamic
types in C++ are not compatible with LSP.

• The LSP makes clear that in OOD the ISA
relationship pertains to behavior. Not intrinsic
private behavior, but extrinsic public behavior;
behavior that clients depend upon.

class Rectangle {
public:
 virtual void setWidth(double w) {itsWidth=w;}
 virtual void setHeight(double h) {itsHeight=h;}
 double getHeight() const {return itsHeight;}
 double getWidth() const {return itsWidth;}
private:
 double itsHeight;
 double itsWidth;
};

class Square : public Rectangle {
public:
 virtual void setWidth(double w);
 virtual void setHeight(double h);
};

void Square::setWidth(double w) {
 Rectangle::setWidth(w);
 Rectangle::setHeight(w);
}

void Square::setHeight(double h) {
 Rectangle::setHeight(h);
 Rectangle::setWidth(h);
}

// f expects that Rectangle can work after SetWidth()
// f may be fooled by the behavior of Square
void f(Rectangle& r) {
 r.setWidth(32); // calls Rectangle::SetWidth
}

// g expects that changing height or width leaves  
// the other parameter unchanged
// g can not be fooled by Square
void g(Rectangle& r) {
 r.setWidth(5);
 r.setHeight(4);
 assert(r.getWidth() * r.getHeight() == 20);
}

In order for the LSP to hold, and with it the Open-Closed
principle, all derivatives must conform to the behavior that

clients expect of the base classes that they use.

Class adapter
Virtual methods, private inheritance, abstract classes

and multiple inheritance, all put together

Use of multiple inheritance

• In the following example is shown an interesting
use of multiple inheritance, along with abstract
class, virtual methods and private inheritance.

• A class (Adapter) adapts the interface of
another class (Adaptee) to a client, using the
expected interface described in an abstract
class (Target)

• This is the “Class Adapter” pattern: lets
classes work together that couldn’t otherwise
because of compatible interfaces

“Class Adapter” UML class
diagram

Client

request()
Target

specRequest()
Adaptee

request()
Adapter

The Client needs to
interact with a
Target object

The Adapter lets the Adaptee to
respond to request of a Target by
extending both Target and Adaptee

The Adaptee could
not respond to
Client because it
does not have the
required method

Class Adapter example

class Adaptee {  
public:  
 getAlpha() {return alpha;};  
 getRadius() {return radius;};  
private:  
 float alpha;  
 float radius;  
};

class Target {  
public:  
 virtual float getX() = 0;  
 virtual float getY() = 0;  
};

class Adapter : private Adaptee, public Target
{  
public:  
 virtual float getX();  
 virtual float getY();  
};  
float Adapter::getX() {  
 return
Adaptee::getRadius()*cos(Adaptee::getAlpha());  
}  
float Adapter::getY() {  
 return
Adaptee::getRadius()*sin(Adaptee::getAlpha());  
}

The Client can’t access Adaptee methods
because Adapter has obtained them using private
inheritance

Reading material

• M. Bertini, “Programmazione Object-Oriented in C++”,
cap. 3, cap. 4 - pp. 95-104

• B. Stroustrup, “C++, guida essenziale per programmatori” -
pp. 39-47

• B. Stroustrup, “C++ - Linguaggio, libreria standard, principi
di programmazione” - pp. 525-556

• L.J. Aguilar, “Fondamenti di programmazione in C+
+. Algoritmi, strutture dati e oggetti” - cap. 8, 9, 12

• D.S. Malik, "Programmazione in C++” - cap. 6, 8

• Thinking in C++, 2nd ed. Volume 1, cap. 4, 5

Credits

• These slides are (heavily) based on the
material of:

• Dr. Ian Richards, CSC2402, Univ. of Southern
Queensland

• Prof. Paolo Frasconi, IIN 167, Univ. di Firenze

• Scott Meyers, “Effective C++”, 3rd edition,
Addison-Wesley

• Stanley B. Lippman, “C++ Primer”, 5th
edition, Addison-Wesley

