
Programmazione
Prof. Marco Bertini

marco.bertini@unifi.it
http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/

C++ and casting

C++ casting

• C++ casts are more restricted than C style
casts

• In general the lesser we cast the better: C++
is a type safe language and casts subvert this
behaviour

• e.g. const_cast can be used to eliminate
code duplication: the benefits are worth the
risk

C and C++ casts
• C style casts, to cast an expression to be of type T:

• (T) expression

• T(expression)

• C++ style casts:

• static_cast<T>(expression)

• dynamic_cast<T>(expression)

• const_cast<T>(expression)

• reinterpret_cast<T>(expression)

static_cast
• static_cast forces implicit conversions,

such as non-const objects to const objects (as
seen in const/non-const methods), int to double,
void* to typed pointers, pointer-to-base to
pointer-to-derived (but no runtime check).

• it’s the most useful C++ style cast  
 

int j = 41;  
int v = 4;  
float m = j/v; // m = 10  
float d = static_cast<float>(j)/v; // d = 10.25  
 

BaseClass* a = new DerivedClass();  
static_cast<DerivedClass*>(a)->derivedClassMethod();

static_cast - cont.

• Prefer static_cast over C style cast, because we get the type safe conversion of C++:  
 
class MyClass : public MyBase { /* ... */ };  
class MyOtherStuff { /* ... */ } ;  
MyBase *pSomething; // filled somewhere  
MyClass *pMyObject;  
 
pMyObject = static_cast<MyClass*>(pSomething);  
// Safe, as long as we checked  
pMyObject = (MyClass*)(pSomething); // Same as static_cast<>  
// Safe; as long as we checked but harder to read  
 
MyOtherStuff *pOther;  
pOther = static_cast<MyOtherStuff*>(pSomething);  
// Compiler error: Can't convert  
pOther = (MyOtherStuff*)(pSomething); // No compiler error.
 // Same as reiterpret_cast<> and it's wrong!!!

dynamic_cast
• dynamic_cast performs safe (runtime check)

downcasting: i.e. determines if an object is of a
particular type in an inheritance hierarchy.

• it has a runtime cost depending on the
compiler implementation

 
class Window { //... };  
class SpecialWindow :
public Window {  
public:  
 void blink();  
};  
 

Window* pW;  
// …pW may point to whatever object  
// in Window hierarchy  
 
if(SpecialWindow*  
 pSW=dynamic_cast<SpecialWindow*>(pw))  
 pSW->blink();

const_cast

• const_cast is used to cast away the
constness of an object

• It’s the only cast that can do it

const member functions

• Let’s review again how to avoid code
duplication between const and non-const
member functions...

• the non-const method calls the const
method and then cast away its constancy
with const_cast

const member functions - cont.

class TextBlock {  
public:  
 const char& operator[](size_t pos) const {  
 //... checks over boundaries, etc.  
 //...  
 return text[pos];  
 }  
 char& operator[](size_t pos) {  
 return  
 const_cast<char&>(// take away constancy  
 static_cast<const TextBlock&>(*this)[pos] // add constancy  
);  
 }  
 //...  
};

const member functions - cont.

class TextBlock {  
public:  
 const char& operator[](size_t pos) const {  
 //... checks over boundaries, etc.  
 //...  
 return text[pos];  
 }  
 char& operator[](size_t pos) {  
 return  
 const_cast<char&>(// take away constancy  
 static_cast<const TextBlock&>(*this)[pos] // add constancy  
);  
 }  
 //...  
};

Overloading of operator[]:
A const version to read data and a non-const to modify it

Goal: write only a version of the method to avoid code duplication

const member functions - cont.

class TextBlock {  
public:  
 const char& operator[](size_t pos) const {  
 //... checks over boundaries, etc.  
 //...  
 return text[pos];  
 }  
 char& operator[](size_t pos) {  
 return  
 const_cast<char&>(// take away constancy  
 static_cast<const TextBlock&>(*this)[pos] // add constancy  
);  
 }  
 //...  
};

Don’t panic: first cast to const, to call
the const method, then remove const-
ness

Overloading of operator[]:
A const version to read data and a non-const to modify it

Goal: write only a version of the method to avoid code duplication

reinterpret_cast
• reinterpret_cast is used for low-level

casts, e.g. to perform conversions between
unrelated types, like conversion between
unrelated pointers and references or
conversion between an integer and a pointer.

• It produces a value of a new type that has the
same bit pattern as its argument. It is useful to
cast pointers of a particular type into a void*
and subsequently back to the original type.

• may be perilous: we are asking the compiler
to trust us...

Reading material

• B. Stroustrup, “C++, guida essenziale per
programmatori” - pp. 161

• L.J. Aguilar, “Fondamenti di programmazione in
C++. Algoritmi, strutture dati e oggetti” - pp.
125-128

• D.S. Malik, "Programmazione in C++” - pp.
43-45

• Thinking in C++, 2nd ed. Volume 1, pp. 181-186

Reading material

• M. Bertini, “Programmazione Object-Oriented in C++”,
cap. 3 - pp. 85-88

Credits

• These slides are based on the material of:

• Marshall Cline, C++ FAQ Lite

• Scott Meyers, “Effective C++”, 3rd edition,
Addison-Wesley

