MMedia Integration and Communication Center - University of Florence, Italy

Programmazione

Prof. Marco Bertini
marco.bertini@unifi.it
http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/

MMedia Integration and Communication Center - University of Florence, Italy [L_. /;f\

C++ and casting

MMedia Integration and Communication Center - University of Florence, ltaly f’ @4\

C++ casting

® (C++ casts are more restricted than C style
casts

® |n general the lesser we cast the better: C++
is a type safe language and casts subvert this
behaviour

® cg.CONSt_Cast can be used to eliminate

code duplication: the benefits are worth the
risk

MMedia Integration and Communication Center - University of Florence, ltaly f’ @4\

C and C++ casts

® (style casts, to cast an expression to be of type T:

® (T) expression
® T(expression)
® (C++ style casts:
® static_cast<T>(expression)
® dynamic_cast<T>(expression)
® const_cast<T>(expression)

® reinterpret_cast<T>(expression)

MMedia Integration and Communication Center - University of Florence, ltaly f’ @4\

static_cast

e static_cast forces implicit conversions,

such as non-const objects to const objects (as
seen in const/non-const methods), int to double,

vO1d* to typed pointers, pointer-to-base to
pointer-to-derived (but no runtime check).

® it’s the most useful C++ style cast

int j = 41;

int v = 4;

float m = 3/v; // m = 10

float d = static_cast<float>(3)/v; // d = 10.25

BaseClass* a = new Derived(Class();
static_cast<DerivedClass*>(a)->derivedClassMethod();

MMedia Integration and Communication Center - University of Florence, Italy ’ é,f\

static_cast ...

® Prefer static_cast over C style cast, because we get the type safe conversion of C++:

class MyClass : public MyBase { /* ... */ };
class MyOtherStuff { /* ... */ } ;

MyBase *pSomething; // filled somewhere
MyClass *pMyObject;

pMyObject = static_cast<My(Class*>(pSomething);

// Safe, as long as we checked

pMyObject = (MyClass*)(pSomething); // Same as static_cast<>
// Safe; as long as we checked but harder to read

MyOtherStuff *pOther;

pOther = static_cast<MyOtherStuff*>(pSomething);

// Compiler error: Can't convert

pOther = (MyOtherStuff*)(pSomething); // No compiler error.
// Same as reiterpret_cast<> and 1t's wrong!!!

MMedia Integration and Communication Center - University of Florence, Italy | @4\

dynamic_cast

e dynamic_cast performs safe (runtime check)

downcasting: i.e. determines if an object is of a
particular type in an inheritance hierarchy.

® it has a runtime cost depending on the
compiler implementation

Window* pW;
// .pW may point to whatever object
// 1n Window hierarchy

class Window { //... };
class SpecialWindow :
public Window {

pcglécélinkc). 1f(SpecialWindow*
}: ’ pSW=dynamic_cast<SpecialWindow*>(pw))
’ pSW->b1ink();

KMedia Integration and Communication Center - University of Florence, Italy

I

cConst_cast

® Cconst_cast is used to cast away the
constness of an object

® |t’s the only cast that can do it

KMedia Integration and Communication Center - University of Florence, ltaly f’ é\

N——

const member functions

® |et’s review again how to avoid code
duplication between const and non-const
member functions...

® the non-const method calls the const
method and then cast away its constancy

with const_cast

NMedia Integration and Communication Center - University of Florence, Italy

A

—

const member functions ...

class TextBlock {
public:
const char& operator[](size_t pos) const {
//... checks over boundaries, etc.
/7. ..
return text[pos];
¥
char& operator[](size_t pos) {
return
const_cast<char&>(// take away constancy
static_cast<const TextBlock&>(*this)[pos] // add constancy

),

/...
b

KMedia Integration and Communication Center - University of Florence, Italy E’ p,/f\

const member functions ...

Overloading of operator(]:
A const version to read data and a non-const to modify it
class TextBlock { Goal: write only a version of the method to avoid code duplication

public:
const char& operator[](size_t pos) const {
//... checks over boundaries, etc.

//. ..
return text[pos];

¥
char& operator[](size_t pos) {

return
const_cast<char&>(// take away constancy
static_cast<const TextBlock&>(*this)[pos] // add constancy

),

/...
b

MMedia Integration and Communication Center - University of Florence, Italy i @4\
-'.‘-- ' !\

const member functions ...

Overloading of operator(]:
A const version to read data and a non-const to modify it

class TextBlock { Goal: write only a version of the method to avoid code duplication
public:
const char& operator[](size_t pos) const {
//... checks over boundaries, etc.
YA
return text[pos];
¥
char& operator[](size_t pos) {
return

const_cast<char&>(// take away constancy
static_cast<const TextBlock&>(*this)[pos] // add constancy

),
h : D e
//. .. Don’t panic: first cast to const, to call
}; the const method, then remove const-

NESS

MMedia Integration and Communication Center - University of Florence, ltaly f’ @4\

reinterpret_cast

e reinterpret_cast is used for low-level

casts, e.g. to perform conversions between
unrelated types, like conversion between
unrelated pointers and references or
conversion between an integer and a pointer.

® |t produces a value of a new type that has the
same bit pattern as its argument. It is useful to
cast pointers of a particular type into a vo1d*

and subsequently back to the original type.

® may be perilous: we are asking the compiler
to trust us...

MMedia Integration and Communication Center - University of Florence, Italy f’ é,f\

Reading material

® B.Stroustrup,“C++, guida essenziale per
programmatori’ - pp. 161

® | J.Aguilar,”Fondamenti di programmazione in
C++. Algoritmi, strutture dati e oggetti’ - pp.

125-128

® D.S. Malik, "Programmazione in C++” - pp.
43-45

® Thinking in C++,2nd ed.Volume |, pp. I81-186

KMedia Integration and Communication Center - University of Florence, ltaly f’ é,f\

Reading material

® M. Bertini, “Programmazione Object-Oriented in C++7,
cap. 3 - pp. 85-88

MMedla Integration and Communication Center - University of Florence, Italy {’ @4\

Credits

® [hese slides are based on the material of:

® Marshall Cline, C++ FAQ Lite

® Scott Meyers, ‘Effective C++”, 3rd edition,
Addison-Wesley

