
Programmazione
Prof. Marco Bertini

marco.bertini@unifi.it
http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/

Coding style guidelines

“Good code is its own best documentation.” 
- Steve McConnell

Why using a coding standard ?

• A coding standard may help to reduce
errors due to poorly written code, i.e. code
that uses programming facilities in
(unnecessarily) error-prone way or that
expresses ideas in obscure ways.

• As noted by Guido van Rossum (creator of
Python language): code is read much more
often than it is written.

• There’s no standard coding standard.

Consistency

• A style guide is about consistency. Consistency
with a style guide is important. Consistency
within a project is more important.
Consistency within one module, class or
function is the most important.

• However, know when to be inconsistent -
sometimes style guide recommendations just
aren't applicable.

Classes and Objects

• Names representing types (i.e. classes) and
namespaces must be in mixed case starting
with upper case, e.g.:  
 
Line, SavingsAccount

• Variable names must be in mixed case
starting with lower case, e.g.:  
 
line, savingsAccount  

Classes and Objects

• Names representing types (i.e. classes) and
namespaces must be in mixed case starting
with upper case, e.g.:  
 
Line, SavingsAccount

• Variable names must be in mixed case
starting with lower case, e.g.:  
 
line, savingsAccount  

This is the style
enforced in Java

Classes and Objects - cont.

• Bjarne Stroustrup despises this “camel” coding
style and in JSF++ proposes the use of
underscores, e.g.:  
 
number_of_elements, Device_driver  
 
instead of 
 
numberOfElements, DeviceDriver

• Suggestion: pick whatever you like and be
consistent

Classes and Objects - cont.

• Bjarne Stroustrup despises this “camel” coding
style and in JSF++ proposes the use of
underscores, e.g.:  
 
number_of_elements, Device_driver  
 
instead of 
 
numberOfElements, DeviceDriver

• Suggestion: pick whatever you like and be
consistent

This standard in used in Python

Classes and Objects - cont.

• The parts of a class must be sorted public,
protected and private.

• All sections must be identified explicitly.

• Not applicable sections should be left out.

Classes and Objects - cont.

• A class should be declared in a header file
and defined in a source file where the name
of the files match the name of the class.

• All definitions should reside in source files.  
 
Eclipse CDT let you decide to create the
getter/setter as inline methods within the
class declaration or in the .cpp file...

Classes and Objects - cont.

• Many IDEs (e.g.
CLion) have a
wizard to create
classes and
follow the
Classname.h +
Classname.cpp
approach:

Classes and Objects - cont.

• Many IDEs (e.g.
CLion) have a
wizard to create
classes and
follow the
Classname.h +
Classname.cpp
approach:

Classes and Objects - cont.

• Many IDEs (e.g.
CLion) have a
wizard to create
classes and
follow the
Classname.h +
Classname.cpp
approach:

Classes and Objects - cont.

• Also Eclipse
CDT has a
wizard to create
classes and
follow the
Classname.h +
Classname.cpp
approach:

Naming a variable

• The name of a variable should describe fully
and accurately the entity the variable
represents.

• State in words what the variable represents,
probably you’ll immediately see a good
name.

• Do not be cryptic, do not use strange
acronyms

Naming a variable: examples
Purpose of the

variable Good name Bad name

Current Date currentDate CD, current,
cD

Lines per page linesPerPage LPP, lines, l

Running total of
checks written to

date

runningTotal,
checksTotal,
numChecks,
nChecks

checks,
written,

checkTTL, x1

The 2 worst variable names

• “data” is a terrible name: every variable
contains data... a variable name should
describe what data is contained

• “data2” is another terrible name, like any
other variableX with X∈N

• rethink what’s the difference w.r.t.
variable and what it should contain.
Avoid to write code like:  
if(total2 < total3)

Variables
• Declarations shall be declared in the

smallest possible scope:

• keeping initialization and use close
together minimize chance of confusion;

• letting a variable go out of scope releases
its resources.

• In C++ you can declare a variable wherever
you want: do it!

• Initialize a variable: uninitialized variables are
a common source of errors

Methods
• Names representing methods or functions

must be verbs (followed by an object) and
written in mixed case starting with lower
case (like Java), e.g.:  
 
getName(), computeTotalWidth()

• The name of the object is implicit, and
should be avoided in a method name, e.g.:  
 
line.getLength();// NOT:
line.getLineLength();

Methods
• Names representing methods or functions

must be verbs (followed by an object) and
written in mixed case starting with lower
case (like Java), e.g.:  
 
getName(), computeTotalWidth()

• The name of the object is implicit, and
should be avoided in a method name, e.g.:  
 
line.getLength();// NOT:
line.getLineLength();

Alternatively, as in JSF++
standard:
example_function_name()

Methods - cont.

• Use strong verbs, not wishy-washy verbs:

• OK: calcMonthlyRevenue()

• NO: handleCalculation(),
processInput()

Attributes

• Private class variables often have underscore
suffix, e.g.:  
 
class SomeClass {  
 private:  
 int length_;  
};

• This is HIGHLY controversial. Other acceptable
approaches are: underscore prefix, m_ prefix, no
suffix/prefix (use syntax highlighting of the IDE)

Numbers

• Avoid “magic” numbers, i.e. numbers that appear
in code without being explained

• E.g.:  
 
for(int i = 0; i < 255; i++)...  
 
versus 
 
for(int i = 0; i < maxEntries; i++)...

Numbers

• Avoid “magic” numbers, i.e. numbers that appear
in code without being explained

• E.g.:  
 
for(int i = 0; i < 255; i++)...  
 
versus 
 
for(int i = 0; i < maxEntries; i++)...

Consider the case
in which the
number, used
through the code,
has to be changed...

String

• Avoid “magic” strings as you avoid “magic”
numbers. E.g.:  
 
if (inputChar == ‘\027’)...  
 
versus 
 
if (inputChar == ESCAPE)...

Indentation

• In C/C++ whitespace is insignificant, but
indentation of code blocks help readability
showing relationships between control flow
constructs.

• Can use tabs or spaces: many guidelines
suggest spaces, though.

• 1 space is to low, 5 is too much: 2, 3 or 4 are
OK. 
Suggestion: use 2 or 4 spaces.

Indentation

• In C/C++ whitespace is insignificant, but
indentation of code blocks help readability
showing relationships between control flow
constructs.

• Can use tabs or spaces: many guidelines
suggest spaces, though.

• 1 space is to low, 5 is too much: 2, 3 or 4 are
OK. 
Suggestion: use 2 or 4 spaces.

Python uses indentation instead of { and } so you
better learn to be very precise when indenting code.  
Python uses spaces not tabs.

Any good editor and IDE will help to indent code while
writing, and will re-indent badly written code: learn how to
do it.

Layout - cont.

• Use only one statement per line, to improve
readability / debugging, e.g.:  
 
// NO:  
if (p > q) cout << p;  
 
// OK:  
if (p > q)  
 cout << p; // notice also the use  
 // of indentation

Layout - cont.

• Group lines in “paragraphs” using empty lines

• If there’s need to split a line (some coding
standards require a certain length) make it
obvious and indent, e.g.:  
 
totalBill = shippingCost + customerPurchase[customerID] +  
 salesTax;  
drawLine(window.North, window.South, window.East,  
 window.West, currentWidth);

Layout - cont.

• Group lines in “paragraphs” using empty lines

• If there’s need to split a line (some coding
standards require a certain length) make it
obvious and indent, e.g.:  
 
totalBill = shippingCost + customerPurchase[customerID] +  
 salesTax;  
drawLine(window.North, window.South, window.East,  
 window.West, currentWidth);

+ and , signal that
the statement is not
complete

Format

• Formatting code is more than just indenting it.
Spaces, wrapping and braces, blank lines all
contribute to improve readability.

• There are several standards: choose one.

• Learn how to fully reformat code with your IDE.

Format

• Formatting code is more than just indenting it.
Spaces, wrapping and braces, blank lines all
contribute to improve readability.

• There are several standards: choose one.

• Learn how to fully reformat code with your IDE.

Comments

• Describe code intent, e.g.:  
 
// get current employees info  
 
instead of 
 
// update EmpRec vector

• Do not repeat the code, e.g.:  
 
delete aVehicle; // free pointer

Comments

• Describe code intent, e.g.:  
 
// get current employees info  
 
instead of 
 
// update EmpRec vector

• Do not repeat the code, e.g.:  
 
delete aVehicle; // free pointer

Code can only tell you how the program works;
comments can tell you why it works.

Preprocessor

• Do not use macros except for source control,
using #ifdef and #endif

• macros don’t obey scope and type rules and
make code hard to read. All that can be done
with macros can be done using C++ features

• #includes should precede all non-
preprocessor declarations

• nobody will notice the #include in the
middle of a file

Preprocessor

• Do not use macros except for source control,
using #ifdef and #endif

• macros don’t obey scope and type rules and
make code hard to read. All that can be done
with macros can be done using C++ features

• #includes should precede all non-
preprocessor declarations

• nobody will notice the #include in the
middle of a file

Examples of MACRO used for source control:

#ifdef VERBOSE_DEBUG
std::cerr << “Checkpoint # reached” <<  
 std::endl:
#endif

#ifdef __WIN
callSpecialWindowsAPI(somParam);
#endif

Header

• A suggested order of inclusion (Google’s C++
guideline) is:

• the header of the file

• C library

• C++ library

• other libraries' .h

• your project's .h.

Header

• A suggested order of inclusion (Google’s C++
guideline) is:

• the header of the file

• C library

• C++ library

• other libraries' .h

• your project's .h.

E.g., in fooserver.cpp:

 
#include "foo/public/fooserver.h" // file header

#include <sys/types.h> // C library
#include <unistd.h>
#include <hash_map> // C++ library
#include <vector>

#include “SDL/SDL.h” // other library header

#include “base/basictypes.h" // project’s headers
#include "base/commandlineflags.h"
#include "foo/public/bar.h"

Reading material

• M. Bertini, “Programmazione Object-Oriented in C++”,
parte III, cap. 1

Credits

• These slides are based on the material of:

• C++ Programming Style Guidelines 
Geotechnical Software Services 
http://geosoft.no/development/cppstyle.html

• “Code Complete”, Steve McConnell,
Microsoft Press

• JSF++ coding guidelines

• Python PEP-8 guideline

http://geosoft.no/development/cppstyle.html

