
Programmazione
Prof. Marco Bertini

marco.bertini@unifi.it
http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/

Generic programming

What is generic programming ?
• Generic programming is a style of computer programming in

which algorithms are written in terms of to-be-specified-later
types that are then instantiated when needed for specific types
provided as parameters.

• Generic programming refers to features of certain statically typed
programming languages that allow some code to effectively
circumvent the static typing requirements, e.g. in C++, a template
is a routine in which some parameters are qualified by a type
variable.  
 
Since code generation in C++ depends on concrete types, the
template is specialized for each combination of argument types
that occur in practice.

http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Static_typing
http://en.wikipedia.org/wiki/Programming_languages

What is generic programming ?
• Generic programming is a style of computer programming in

which algorithms are written in terms of to-be-specified-later
types that are then instantiated when needed for specific types
provided as parameters.

• Generic programming refers to features of certain statically typed
programming languages that allow some code to effectively
circumvent the static typing requirements, e.g. in C++, a template
is a routine in which some parameters are qualified by a type
variable.  
 
Since code generation in C++ depends on concrete types, the
template is specialized for each combination of argument types
that occur in practice.

Static type checking means that type checking occurs at compile
time. No type information is used at runtime in that case.
Dynamic type checking occurs when type information is used at
runtime.

http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Static_typing
http://en.wikipedia.org/wiki/Programming_languages

Generic programming

• Algorithms are written independently of data

• data types are filled in during compilation

• functions or classes instantiated with data types

• formally known as specialization

• A number of algorithms are data-type
independent, e.g.: sorting, searching, finding nth
largest value, swapping, etc.

Identical tasks for different
data types

• Approaches for functions that implement
identical tasks for different data types

• Naïve Approach

• Function Overloading

• Function Template

Naïve approach

• Create unique functions with unique names
for each combination of data types  
(e.g. atoi(), atof(), atol())

• difficult to keeping track of multiple
function names

• lead to programming errors

Function overloading

• The use of the same name for different C++
functions, distinguished from each other by
their parameter lists:

• Eliminates need to come up with many
different names for identical tasks.

• Reduces the chance of unexpected results
caused by using the wrong function name.

• Code duplication remains: need to code
each function for each different type

Function template

• A C++ language construct that allows the
compiler to generate multiple versions of a
function by allowing parameterized data
types.

• One function definition (a function
template).

• Compiler generates individual functions.

Generic programming
& templates

Why templates ?

• C++ templates are principally used for
classes and functions that can apply to
different types of data.

• Common examples are the STL container
classes and algorithms.  
E.g.: algorithms such as sort are
programmed to be able to sort almost any
type of items.

Generic programming in C++

• Templates = generic programming

• Two types:

• function templates 
special functions that can operate with
generic types.

• class templates 
can have members that use template
parameters as types

Templates & Inheritance

• Inheritance works hand-in-hand with
templates, and supports:

1. A template class based on a template class

2. A template class based on a non-template
class

3. A non-template class based on a template
class

Coding C++ templates

• The template begins with the heading
template<typename T>

• The tag T is used everywhere that the base type
is required. Use whatever letter or combination
of letters you prefer.

• In general, templates classes (and functions) can
have multiple “type” arguments and can also have
“non-type” arguments.

• Separate member functions are a separate
template.

Function Templates

• Special functions using template types.

• A template parameter is a special kind of
parameter used to pass a type as argument

• just like regular function parameters, but
pass types to a function

Function templates
declaration format

• template <typename identifier>
function_declaration;

• template <class identifier>
function_declaration;

• Same functionality, different keywords

• use <typename ...>

• older compilers only used <class...>
format

Function templates
declaration format - cont.

• template keyword must appear before
function or class templates...

• ... followed by the list of generic or template
types

• can have more than one generic type

• ... followed by function declaration and/or
definition

Function template example

• template <typename myType>  
myType getMax (myType a, myType b) {  
 return (a>b?a:b);  
}

• or even better, using references and const-ness:

• template <typename myType>  
const myType& getMax (const myType& a, const
myType& b) {  
 return (a>b?a:b);  
}

Function template usage
example

int main() {  
 int i=5, j=6, k;  
 long l=10,m=5,n;  
 
 k=getMax<int>(i,j); // OK  
 n=getMax<long>(l,m); //OK  
 std::cout << k << std::endl;  
 std::cout << n << std::endl;  
 return 0;  
}

int main() {  
 int i=5, j=6, k;  
 long l=10,m=5,n;  
 
 k=getMax(i,j); // OK  
 n=getMax(l,m); // OK  
 std::cout << k << std::endl;  
 std::cout << n << std::endl;  
 
 k=getMax(i,l); // Wrong:  
 // can’t mix types !  
 return 0;  
}

Multiple template types

• define all the required template types after the
template keyword, e.g.:

• template <typename T1, typename T2>  
const T1& getMax (T1& a, T2& b) {  
 return (a>(T1)b?a:(T1)b);  
}

Instantiating a function
template

• When the compiler instantiates a template, it
substitutes the template argument for the
template parameter throughout the function
template.

• Template function call:  
Function <TemplateArgList> (FunctionArgList)  

Function template
specialization example

• Function template specialization allows to specialize the code for certain specific
types, e.g.:

• template<typename T>  
inline std::string stringify(const T& x) {  
 std::ostringstream out;  
 out << x;  
 return out.str();  
 }

• template<>  
inline std::string stringify<bool>(const bool& x) {  
 std::ostringstream out;  
 out << std::boolalpha << x;  
 return out.str();  
 }

Class templates

• Classes can have members that use
template parameters as type, e.g. a class
that stores two elements of any valid type:

• template <typename T>  
class mypair {  
private:  
 T values [2];  
public:  
 mypair (T first, T second) {  
 values[0]=first;  
 values[1]=second;  
 }  
};

Class template:
non-inline definition

• To define a function member outside the
declaration of the class template, always precede
that definition with the template <...> prefix:

template <typename T>  
class mypair {  
 T values [2];  
public:  
 mypair(T first, T second) {  
 values[0]=first;  
 values[1]=second;  
 }  
 T getMax();  
};

template <typename T>  
T mypair<T>::getMax() {  
 T retval;  
 retval = a>b? a : b;  
 return retval;  
}

int main () {  
 mypair<int> myobject (100, 75);  
 cout << myobject.getMax();  
 return 0;  
}

C++ templates:
so many Ts !

• There are three T's in this declaration of the
method:

• first one is the template parameter.

• second T refers to the type returned by the
function

• third T (the one between angle brackets)
specifies that this function's template
parameter is also the class template parameter.

Instantiating a class template
• Class template arguments must be explicit.

• The compiler generates distinct class types called
template classes or generated classes.

• When instantiating a template, a compiler
substitutes the template argument for the
template parameter throughout the class
template.

• for efficiency, the compiler uses an “instantiate
on demand” policy of only the required
methods

Instantiating a class template - cont.

• To create lists of different data types
from a GList template class:  
// Client code  
GList<int> list1;  
GList<float> list2;  
GList<string> list3;  
 
list1.insert(356);  
list2.insert(84.375);  
list3.insert("Muffler bolt");  

Instantiating a class template - cont.

• To create lists of different data types
from a GList template class:  
// Client code  
GList<int> list1;  
GList<float> list2;  
GList<string> list3;  
 
list1.insert(356);  
list2.insert(84.375);  
list3.insert("Muffler bolt");  

The compiler generates 3 distinct
class types:  
GList_int list1;
Glist_float list2;  
GList_string list3;

Instantiating a class template - cont.

• It is possible to specialize a template with
another template:  
 
template<typename T>  
class Array {  
 // . . .  
};  
 
Array<Array<int>> aai;

Instantiating a class template - cont.

• It is possible to specialize a template with
another template:  
 
template<typename T>  
class Array {  
 // . . .  
};  
 
Array<Array<int>> aai;

Before C++11 you had to
have a space between the >>:
> >

Templates and polymorphism

• In OO programming the choice of the
method to be invoked on an object may be
selected a runtime (i.e. polymorphism, with
virtual methods)

• In generic programming it’s chosen at
compile time, when instantiating a template

Default parameters

• Class templates can have default type
arguments.

• As with default argument values of a function,
the default type of a template gives the
programmer more flexibility in choosing the
optimal type for a particular application. E.g.:  
 
template <typename T, typename S = size_t >  
class Vector {  
/*..*/  
};  
Vector <int> ordinary; //second argument is size_t  
Vector <int, unsigned char> tiny(5);

Default parameters

• Class templates can have default type
arguments.

• As with default argument values of a function,
the default type of a template gives the
programmer more flexibility in choosing the
optimal type for a particular application. E.g.:  
 
template <typename T, typename S = size_t >  
class Vector {  
/*..*/  
};  
Vector <int> ordinary; //second argument is size_t  
Vector <int, unsigned char> tiny(5);

If a template has default values for all its parameters
it can be instantiated without using any parameter:

template <typename T=int>
class Foo {
};

Foo<float> foo1;
Foo<double> foo2;
Foo<> foo3; // it’s a Foo<int>

Non-type parameters

• Templates can also have regular typed
parameters, similar to those found in
functions. They can have default parameters.

• template <typename T, int N>  
class MySequence {  
 T memblock [N];  
 public:  
 void setMember (int x, T value);  
 T getMember (int x);  
};

Non-type parameters - cont.

• template <typename T, int N>  
T MySequence<T,N>::getMember (int x) {  
 return memblock[x];  
}

• int main () {  
 MySequence <int,5> myints;  
 MySequence <double,5> myfloats;  
 myints.setMember (0,100);  
 myfloats.setMember (3,3.1416);  
 cout << myints.getMember(0) << '\n';  
 cout << myfloats.getMember(3) << '\n';  
 return 0;  
}

Class template specialization

• It is used to define a different implementation for a
template when a specific type is passed as template
parameter

• Explicitly declare a specialization of that template,
e.g.: a class with a sort method that sorts ints, chars,
doubles, floats and also need to sort strings based
on length, but the algorithm is different (not
lexicographic sorting)

• Need to explicitly create template specialization for
the sort method when string is passed as type

Class template specialization
example

template <typename T>  
class MyContainer {  
private:  
 T element[100];  
public:  
 MyContainer(T* arg)  
 { ... };  
 void sort() {  
 // sorting algorithm  
 }  
};

// class template specialization:  
template <>  
class MyContainer <string> {  
 string element[100];  
public:  
 MyContainer (string *arg) {...};  
 void sort() {  

// use a string-length  
 // based sort here  
 }  
};

About typename

Qualified and unqualified names

• A qualified name is one that specifies a scope.
For instance, the following references to cout
and endl are qualified names:  
 
std::cout << "Hello world!" <<
std::endl;

• The following instances instead are unqualified:  
 
using namespace std;  
cout << "Hello world!" << endl;

Dependent and non-dependent names

• A dependent name is a name that depends on
a template parameter:  
 
template <class T>  
class MyClass {  
int i; // non-dependent name  
vector<int> vi; // non-dependent name  

 
 T t; // dependent name  
 vector<T> vt; // dependent name  
 typedef T another_name_for_T;  
 another_name_for_T u; // dependent name  
};

Disambiguating dependent qualified type names

• Let us consider the following code:  
 

template <typename T>  
void foo() {  
 T::iterator * iter; // qualified and  
 // dependent name  
}

• What did the programmer intend this bit of code to do? Is there a
static iterator member in class T or is T::iterator a type ?

• In the first case we are multiplying two variables,

• In the second case we want a pointer to T::iterator type…

• The compiler can not understand the intent: we must specify.

Solution: typename
• The typename keyword tells the compiler to interpret a

particular name as a type.

• Assuming the programmer intended line 3 as a declaration, they
would have to write:  
 
template <typename T>  
void foo() {  
 typename T::iterator * iter;  
 / / ...  
}

• Without typename, there is a C++ parsing rule that says that
qualified dependent names should be parsed as non-types
even if it leads to a syntax error, e.g.:  
T::iterator iter; // syntax error…

Solution: typename
• The typename keyword tells the compiler to interpret a

particular name as a type.

• Assuming the programmer intended line 3 as a declaration, they
would have to write:  
 
template <typename T>  
void foo() {  
 typename T::iterator * iter;  
 / / ...  
}

• Without typename, there is a C++ parsing rule that says that
qualified dependent names should be parsed as non-types
even if it leads to a syntax error, e.g.:  
T::iterator iter; // syntax error…

Simple rule: if your type is a qualified name
that involves a template argument, you must
use typename.

Class template
A complete example

• Class template
definition

• Function definitions

• Stack constructor

• push

• pop

#ifndef TSTACK_H
#define TSTACK_H

template<typename T>
class Stack {
public:

Stack(int n = 10);
~Stack() {

delete[] stackPtr;
}
bool push(const T& pushValue);
bool pop(T& popValue);

private:
int size;
int top;
T* stackPtr;

bool isEmpty() const {
return(top == -1);

}
bool isFull() const {

return(top == (size-1));
}

};

• Class template
definition

• Function definitions

• Stack constructor

• push

• pop

// Constructor with default size 10
template<typename T>
Stack<T>::Stack(int n) {

size = n > 0 ? n : 10;
top = -1; // stack is initialy empty
stackPtr = new T[size]; // allocate space for stack elements

}

// push an element on the stack
// return true if successful, false if stack is full
template<typename T>
bool Stack<T>::push(const T& pushValue) {

if(!isFull()) {
stackPtr[++top] = pushValue; // update top and set value
return true; // push successfull

}
return false; // push unsuccessfull

}

template<typename T>
bool Stack<T>::pop(T& popValue) {

if(!isEmpty()) {
popValue = stackPtr[top--]; // get value and update top
return true;// pop successful

}
return false; // pop unsuccessful

}
#endif // TSTACK_H

• Include header

• Initialize doubleStack

• Initialize variables

• Function calls

• Function calls

• Output

#include <iostream>
#include "TStack.h"

int main(int argc, char *argv[]) {
Stack<double> doubleStack(5);
double f = 3.14;

std::cout << "Pushing elements on stack... ";
while(doubleStack.push(f)) {

std::cout << f << " ";
f *= 2;

}
std::cout << " . " << std::endl;

std::cout << "Popping elements from stack... ";
while(doubleStack.pop(f)) {

std::cout << f << " ";
}
std::cout << " . " << std::endl;

• Include header

• Initialize doubleStack

• Initialize variables

• Function calls

• Function calls

• Output

std::cout << "Popping elements from stack... ";
while(doubleStack.pop(f)) {

std::cout << f << " ";
}
std::cout << " . " << std::endl;

Stack<int> intStack;
int i = 1;

std::cout << "Pushing elements on stack... ";
while(intStack.push(i)) {

std::cout << i << " ";
i *= 2;

}
std::cout << " . " << std::endl;

std::cout << "Popping elements from stack... ";
while(intStack.pop(i)) {

std::cout << i << " ";
}
std::cout << " . " << std::endl;

}

Static members and variables

• Each template class or function generated
from a template has its own copies of any
static variables or members

• Each instantiation of a function template has
it's own copy of any static variables defined
within the scope of the function

Template constraints
• the operations performed within the implementation of a template

implicitly constrain the parameter types; this is called “constraints
through use”:  
template <typename T> class X {...  
.. // some code within a class template..  
.. T t1, t2; // implies existence of default c’tor  
.. t1 + t2 // implies a sum operator  
..

• the code implies that + should be supported by the type T:

• true for all built-in numerical types

• can be defined for user-defined types (classes)

• if missing, generates a compile-time error and reported immediately by
the compiler

Template constraints - cont.

• a template is partially checked at the point of its definition

• template parameter dependent code can be checked only when the template
becomes specified at its instantiation

• the code may work for some type arguments, and fail for some other type arguments
(at compile time)

• the implicit constraints of a class/function template are required only if the template
becomes instantiated (at compile time)

• and all templates are instantiated only when really needed: an object is created or its
particular operation is called

• note that all parameter types need not satisfy all requirements implied by the full
template definition - since only some member functions may be actually needed and
called for some code

C++ templates: source code
organization

• Template classes and functions are coded in the
header file: the compiler needs both declaration
and definition to produce the specialization.

• Very few compilers supported the coding of template functions
in a separate source file and the use of the keyword export
to make them available in other compilation units.

• C++11 standard has deprecated export, so just write your
templates in a header file

• ...templates can be seen as advanced textual substitution.

Templates vs. other
techniques

Why use templates ?

• Add extra type checking for functions that would otherwise take
void pointers: templates are type-safe. Since the types that
templates act upon are known at compile time, the compiler can
perform type checking before errors occur.

• Create a type-safe collection class (for example, a stack) that can
operate on data of any type.

• Create only one generic version of your class or function instead of
manually creating specializations.

• Code understanding: templates can be easy to understand, since
they can provide a straightforward way of abstracting type
information.

Templates vs. Macros

C++ templates resemble but are not macros:

• the once instantiated name identifies the same
generated class-instance at all places

• compiler typically represents the class with some
generated internal name and places the instantiation
into some internal repository for future use

• any free (parameter-independent) names inside a
template are bound at the point of the definition of
the template

Templates vs. Macros

Here are some problems with macros:

• There is no way for the compiler to verify that the macro parameters are
of compatible types. The macro is expanded without any special type
checking.

• The i and j parameters are evaluated twice. For example, if either
parameter has a post-incremented variable (e.g.: min(i++,j)), the
increment is performed two times.

• Because macros are expanded by the preprocessor, compiler error
messages will refer to the expanded macro, rather than the macro
definition itself.  
Also, the macro will show up in expanded form during debugging.

#define MIN(i, j) (((i) < (j)) ? (i) : (j))
vs.
template<class T> T min (T i, T j) { return ((i < j) ? i : j) }

Templates vs. void pointers

• Many functions that are implemented with void
pointers can be implemented with templates
instead.

• Void pointers are often used to allow functions to
operate on data of an unknown type.  
When using void pointers, the compiler cannot
distinguish types, so it cannot perform type
checking or type-specific behavior such as using
type-specific operators, operator overloading, or
constructors and destructors.

Templates vs. void pointers - cont.

• With templates, we can create functions and classes
that operate on typed data. The type looks abstracted
in the template definition.

• However, at compile time the compiler creates a
separate version of the function for each specified type.
This enables the compiler to treat class and function
templates as if they acted on specific types.

• Templates can also improve coding clarity, because you
don't need to create special cases for complex types
such as structures.

Issues and solutions

Templates and base classes
• There may be some issues with inheritance and

templates, e.g. if a base class template is specialized
and the specialization does not have the same
interface of the general template (remind: in templates
interfaces are “implicit”):  

class CompanyA {  
public:  
 void sendCleartext(const  
 string& msg);  
 void sendEncrypted(const  
 string& msg);  
 //...  
};

class CompanyZ {  
public:  
 void sendEncrypted(const  
 string& msg);  
 //...  
};  
 
class MsgInfo {...};  

Templates and base classes - cont.

 
 
 
 
template<typename Company>  
class MsgSender {  
public:  
 //...  
 void sendClear(const MsgInfo& info)  
 {  
 string msg;  
 //create msg from info;  
 ...  
 Company c;  
 c.sendCleartext(msg);  
 }  
 void sendSecret(const MsgInfo& info)  
 {  
 ...  
 };  
 //...  
};  

 
 
template<typename Company>  
class LoggingMsgSender : public
MsgSender<Company> {  
public:  
 //...  
 void sendClearMsg(const MsgInfo& info)  
 {  
 logMsg(...);  
 sendClear(info); // does NOT  
 // compile !  
 logMsg(...);  
 }  
 // ...  
};

Templates and base classes - cont.

 
 
 
 
template<typename Company>  
class MsgSender {  
public:  
 //...  
 void sendClear(const MsgInfo& info)  
 {  
 string msg;  
 //create msg from info;  
 ...  
 Company c;  
 c.sendCleartext(msg);  
 }  
 void sendSecret(const MsgInfo& info)  
 {  
 ...  
 };  
 //...  
};  

 
 
template<typename Company>  
class LoggingMsgSender : public
MsgSender<Company> {  
public:  
 //...  
 void sendClearMsg(const MsgInfo& info)  
 {  
 logMsg(...);  
 sendClear(info); // does NOT  
 // compile !  
 logMsg(...);  
 }  
 // ...  
};

This template does not work
with CompanyZ: the sendClear
requires a working sendCleartext
that is not available !

Templates and base classes - cont.

• To solve the problem create a specialized
version of MsgSender, that does not have a
sendClear method:  
 
template<>  
class MsgSender<CompanyZ> {  
public:  
 //...  
 void sendSecret(const MsgInfo& msg) {  
 //...  
 }  
 //...  
};

Templates and base classes - cont.

• Still it’s not enough: in LoggingMsgSender we have to
tell the compiler to look at the MsgSender base class
to check if the interface is completely implemented:

• preface base class calls with this->:  
void sendClearMsg(const MsgInfo& info) {  
 logMsg(...);  
 this->sendClear(info); // OK: assumes that it will be inherited  
 logMsg(...);  
}

• use a using declaration, to force compiler to
search base class scope:  
template<typename Company>  
class LoggingMsgSender : public MsgSender<Company> {  
public:  
 using MsgSender<Company>::sendClear; // OK: tell compilers it’s in base class

Code bloat
• Because templates are handled by textual

substitution, multiple instances of the same
template with different types will result in
multiple instances of the code.

• Made worse by the common requirement to
place all member functions inline (resulting in
additional multiple copies).

• every call to a template function or the
member functions of a template class will be
inlined potentially resulting in numerous copies
of the same code.

Reducing code bloat

• Code a template class as a wrapper class that
does relatively little, but it can inherit from a
non-template class whose member functions can
then be coded in a separately compiled module.

• This technique is employed in STL for many
standard containers and standard algorithms
whereby the non-template base class handles a
generic void* pointer type.  
The template class provides a type-safe interface
to the unsafe base class.

Reducing code bloat in C++11

• The fact that instantiations are generated
when a template is used means that the same
instantiation may appear in multiple object
files: if two or more separately compiled
source files use the same template with the
same template arguments, there is an
instantiation of that template in each of those
files !

• C++11 has introduced “extern templates” to
avoid this

extern templates (C++11)

• extern templates (a.k.a. explicit instantiation) is
based on the keyword extern:  
 
extern template declaration;  
// instantiation declaration  
 
where declaration is a class or function
declaration in which all the template
parameters are replaced by the template
arguments.

extern templates (C++11)
• When the compiler sees an extern template

declaration, it will not generate code for that instantiation
in that file.

• Declaring an instantiation as extern is a promise that
there will be a nonextern use of that instantiation
elsewhere in the program.

• There may be several extern declarations for a given
instantiation but there must be exactly one definition for
that instantiation.

• Because the compiler automatically instantiates a
template when we use it, the extern declaration must
appear before any code that uses that instantiation.

extern templates: example

• Let us have:  
template <typename T>  
int compare(const T&, const T&);  
template <typename T> class Blob;

• // Application.cpp  
// these template types must be instantiated elsewhere in the program  
extern template class Blob<string>;  
extern template int compare(const int&, const int&);  
 
Blob<string> sa1, sa2; // instantiation will appear elsewhere  
Blob<int> a1(10);  
// Blob<int> and its constructor instantiated in this file  
Blob<int> a2(a1); // copy constructor instantiated in this file  
int i = compare(a1[0], a2[0]); // instantiation will appear elsewhere

extern templates: example

• Let us have:  
template <typename T>  
int compare(const T&, const T&);  
template <typename T> class Blob;

• // Application.cpp  
// these template types must be instantiated elsewhere in the program  
extern template class Blob<string>;  
extern template int compare(const int&, const int&);  
 
Blob<string> sa1, sa2; // instantiation will appear elsewhere  
Blob<int> a1(10);  
// Blob<int> and its constructor instantiated in this file  
Blob<int> a2(a1); // copy constructor instantiated in this file  
int i = compare(a1[0], a2[0]); // instantiation will appear elsewhere

The file Application.o will contain instantiations for
Blob<int>, along with the constructor and copy
constructors for that class. The compare<int> function
and Blob<string> class will not be instantiated in
that file. There must be definitions of these templates in
some other file in the program.

extern templates: example

• // templateBuild.cc  
/* instantiation file must provide a
(nonextern) definition for every type and
function that other files declare as
extern */  
template int compare(const int&, const
int&);  
template class Blob<string>;  
// instantiates all members of  
// the class template

extern templates: example

• // templateBuild.cc  
/* instantiation file must provide a
(nonextern) definition for every type and
function that other files declare as
extern */  
template int compare(const int&, const
int&);  
template class Blob<string>;  
// instantiates all members of  
// the class template

When the compiler sees an instantiation definition (as
opposed to a declaration), it generates code.
Thus, the file templateBuild.o will contain the
definitions for compare instantiated with int and for the
Blob<string> class.
When we build the application, we must link
templateBuild.o with the Application.o files.
There must be an explicit instantiation definition
somewhere in the program for every instantiation
declaration.

Instantiation definition

• An instantiation definition for a class template
instantiates all the members of that template
including inline member functions: the compiler
cannot know which member functions the program
uses, thus instantiates all the members of that class,
unlike the ordinary class template instantiations.

• Even if we do not use a member, that member will
be instantiated. Consequently, we can use explicit
instantiation only for types that can be used with all
the members of that template.

Reading material

• M. Bertini, “Programmazione Object-Oriented in
C++”, cap. 6 - pp. 129-142

• B. Stroustrup, “C++, Linguaggio, libreria standard,
principi di programmazione”, cap. 23, 27

• B. Stroustrup, “C++, guida essenziale per
programmatori” - cap. 5

• L.J. Aguilar, “Fondamenti di programmazione in
C++. Algoritmi, strutture dati e oggetti” - cap. 21

• Thinking in C++, 2nd ed. Volume 1, cap. 16

Credits

• These slides are (heavily) based on the material
of:

• Dr. Ian Richards, CSC2402, Univ. of Southern
Queensland

• Prof. Paolo Frasconi, IIN 167, Univ. di Firenze

• S.P. Adam, University of Athens

• Junaed Sattar, McGill University

