
Laboratorio di
Programmazione

Prof. Marco Bertini
marco.bertini@unifi.it

http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/

Code versioning:
techniques and tools

Software versions

• All software has multiple versions:

• Each time you edit a program

• Versions within a development cycle

• Test release with debugging code

• Alpha, beta of final release

• Variations for different platforms

• Hardware and software

• Different releases of a product

Version control
• Version control tracks multiple versions of code.

• In particular, allows:

• old versions to be recovered

• multiple versions to exist simultaneously

• Typically multiple users can contribute to software
development and version control systems allow them
to collaborate:

• multiple versions of multiple users, merging their
contribute

• tracks who did what

Version control
• Version control tracks multiple versions of code.

• In particular, allows:

• old versions to be recovered

• multiple versions to exist simultaneously

• Typically multiple users can contribute to software
development and version control systems allow them
to collaborate:

• multiple versions of multiple users, merging their
contribute

• tracks who did what

In general version control (or revision
control, or source control) is about
managing multiple versions of documents,
programs, web sites.
It works best on text documents but can
manage also binary files such as images.

Why using version control?
• Because it is useful

• You will want old/multiple versions

• Without version control, can’t recreate project history

• Allows to go back in history, to solve bugs introduced
since the last version of the code

• Because everyone does

• A basic software development tool.  
Beware of those who do not use it.

• If you need to share coding responsibilities or maintenance
of a codebase with another person, you need version
control.

Why using version control?

• When working by yourself:

• It gives you a “time machine” for going back
to earlier versions

• It gives you great support for different
versions of the same project

• When working with others:

• It greatly simplifies concurrent work,
merging changes

Code base

• A Code Base does not just mean code! 
It also includes:

• Documentation

• Build Tools (CMake files, Makefiles, etc.)

• Configuration files

• All these files may change over time and older
versions have to be kept.

Code base

• A Code Base does not just mean code! 
It also includes:

• Documentation

• Build Tools (CMake files, Makefiles, etc.)

• Configuration files

• All these files may change over time and older
versions have to be kept.

Manage these things using a version control
system (VCS)
A version control system is a system which
allows for the management of a code base.

Types of Version Control Systems

• Local only - keeps a local database of changes
in your local machine filesystem.

• Centralized - (Subversion, CVS), require a
connection to a central server and “checkout”

• Distributed - (Git, Mercurial) allow for local
systems to be “mirrors” of the central repo.
You don’t need to be connected to the central
server to get work or commits done.

Local only

• IDE like CLion and Eclipse maintain a local
history of each file developed within the IDE.

• Pros: you don’t have to do anything. This
versioning is automatic.

• Cons: each file has its own history. You do not
know which versions of several files was used
at a certain moment.

Local only

• IDE like CLion and Eclipse maintain a local
history of each file developed within the IDE.

• Pros: you don’t have to do anything. This
versioning is automatic.

• Cons: each file has its own history. You do not
know which versions of several files was used
at a certain moment.

Local only

• IDE like CLion and Eclipse maintain a local
history of each file developed within the IDE.

• Pros: you don’t have to do anything. This
versioning is automatic.

• Cons: each file has its own history. You do not
know which versions of several files was used
at a certain moment.

Centralized
• Traditional version control system

• Server with database

• Clients have a working version

• Examples

• CVS

• Subversion

• Visual Source Safe

• Challenges

• Multi-developer conflicts

• Client/server communication

Distributed
• Authoritative server by

convention only

• Every working checkout is
a repository

• Get version control even
when detached

• Backups are trivial

• Examples

• Git

• Mercurial

• BitKeeper

• Bazaar

Overview of the process

• Files are kept in a repository

• Repositories can be local or remote to the user

• The user edits a copy called the working copy

• Changes are committed to the repository
when the user is finished making changes

• Other people can then access the repository to
get the new code

• Can also be used to manage files when working
across multiple computers

Branching
• Branches allows multiple copies of the code base

within a single repository.

• Different customers have different requirements

• Customer A wants features A,B, C

• Customer B wants features A & C but not B
because his computer is old and it slows down too
much.

• Customer C wants only feature A due to costs

• Each customer has their own branch.

• Different versions can easily be maintained

Branching
• Branches allows multiple copies of the code base

within a single repository.

• Different customers have different requirements

• Customer A wants features A,B, C

• Customer B wants features A & C but not B
because his computer is old and it slows down too
much.

• Customer C wants only feature A due to costs

• Each customer has their own branch.

• Different versions can easily be maintained

Common practice:
When releasing a 1.0 version of a system, and
start working on version 2.0, you want to keep
them separated in the VCS: 1.0 for bug fixing and
2.0 for features development.

Basic features of a VCS

• Check-in and check-out of items to repository

• Creation of baselines (labels/tags)

• e.g. “Version 1.0 released!”

• Control and manipulation of branching

• management of multiple versions

• Overview of version history

• Allows to see who changed what

Check out / check in
• If you want to make a change the file needs to be

checked out from the repository.

• When changes are completed the new code is
checked-in.

• A commit consists of a set of checked in files and
the diff between the new and parent versions of each
file.

• Each check-in is accompanied by a user name and
other meta data.

• Check-ins can be exported from the Version Control
System the form of a patch.

Revision
• Consider

• Check out a file

• Edit it

• Check the file back in

• This creates a new version of the file

• With each revision, system stores

• The diffs for that version (typically for efficiency, the VCS doesn’t store entire new file, but stores
diff with previous version)

• The new file version number

• Other metadata

• Author

• Time of check in

• Log file message

Merge

• There are occasions when multiple versions of
a file need to be collapsed into a single
version.

• E.g. a feature from one branch is required in
another, or two developers worked on the
same file.

• This process is known as a merge.

Merge

• There are occasions when multiple versions of
a file need to be collapsed into a single
version.

• E.g. a feature from one branch is required in
another, or two developers worked on the
same file.

• This process is known as a merge.

Merging
1. Start with a file, e.g. v.1.5

2. Bob makes changes A to v.1.5

3. Alice makes changes B to v.1.5

4. Assume Alice checks in first

5. Current revision is v.1.6 = apply(B,
v.1.5)

6. Now Bob checks in

7. System notices that Bob checked
out v.1.5, but current version is v.1.6

8. Bob has not made his changes in
the current version!

9. The system complains

10. Bob is told to update his local
copy of the code

11. Bob does an update

12. This applies Alice’s changes B to
Bob’s code

13. Two possible outcomes of an
update:

• Success

• Conflicts

Merge success

• Assume that:

• apply(A, apply(B, v.1.5)) = apply(B, apply(A, v.1.5))

• Then then order of changes didn’t matter

• Same result whether Bob or Alice checks in first

• The version control system is happy with this

• Bob can now check in his changes

• Because apply(B, apply(A, v.1.6)) = apply(B, v.1.6)

Merge conflict

• Assume

• apply(A,apply(B,1.5) ≠ apply(B,apply(A,1.6))

• There is a conflict

• The order of the changes matters

• Version control will complain

• Arise when two programmers edit the same
piece of code

• One change overwrites another

Merge conflict

• System cannot apply changes when there are
conflicts:

• Final result is not unique

• Depends on order in which changes are
applied

• Version control shows conflicts on update

• Conflicts must be resolved by hand

Conflicts

• Conflict detection is based on “nearness” of
changes

• Changes to the same line will conflict

• Changes to different lines will likely not
conflict

• Note: Lack of conflicts does not mean Alice’s
and Bob’s changes work together

Merging conflicts

• Merging is syntactic

• Semantic errors may not create conflicts

• But the code is still wrong

• You are lucky if the code doesn’t compile

• It is worse if it does . . . run unit tests to
check nothing is broken!

Git

History

• Came out of Linux development community

• Linus Torvalds, 2005

• Initial goals:

• Speed

• Support for non-linear development (thousands
of parallel branches)

• Fully distributed

• Able to handle large projects like Linux efficiently

Problem example

• The Linux kernel runs on different processors
(ARM, x86, MIPS). These can require
significant differences in low level parts of the
code base

• Many different modules

• Old versions are required for legacy systems

• Because it is open source, any one can
download and suggest changes.

Features

• It is distributed

• Everyone has the complete history

• Everything is done offline

• No central authority

• Changes can be shared even without a server

• Snapshot storage instead of diff

Features

• It is distributed

• Everyone has the complete history

• Everything is done offline

• No central authority

• Changes can be shared even without a server

• Snapshot storage instead of diff

Code base

Contains:
• directories
• files

Repository

• Contains

• files

• commits

• ancestry relationships

• records history of changes

Ancestry relationships

• form a directed acyclic graph 
 (DAG)

Ancestry graph features

• HEAD

• is current checkout

• usually points to a branch

Git component

• Index

• “staging area”

• what is to be  
committed

Getting started

• Three areas of Git

• The HEAD

• last commit snapshot, next parent

• Index

• Proposed next commit snapshot

• Working directory

• Sandbox
Unmodified/modified

Files
Staged
Files

Committed
Files

HEADIndex

Basic workflow

• Init a repo(sitory): init to start a new project
or clone an existing project

• will create a “.git” directory.  
This is your local repo.

• Edit files

• Stage the changes (add files to repo)

• Review your changes

• Commit the changes

Basic workflow

• Init a repo(sitory): init to start a new project
or clone an existing project

• will create a “.git” directory.  
This is your local repo.

• Edit files

• Stage the changes (add files to repo)

• Review your changes

• Commit the changes

You can work as much as you like in your
working directory, but the repository isn’t
updated until you commit something

What not to track

• It’s important to tell Git what files you do not
want to track

• Temp files, executable files, etc. do not need
version control (and can cause major issues
when merging!)

• We add the filenames to the special
file .gitignore. We store this file in the
repository

Getting started: edit file

• A basic workflow

• Edit files

• Stage the changes

• Review your changes

• Commit the changes

Getting started: stage

• A basic workflow

• Edit files

• Stage the changes

• Review your changes

• Commit the changes

Getting started: review

• A basic workflow

• Edit files

• Stage the changes

• Review your
changes

• Commit the changes status
zachary@zachary-desktop:~/code/gitdemo$ git add hello.txt
zachary@zachary-desktop:~/code/gitdemo$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: hello.txt
#

Getting started: commit

• A basic workflow

• Edit files

• Stage the changes

• Review your changes

• Commit the
changes

Getting started

• A basic workflow

• Edit files

• Stage the changes

• Review your changes

• Commit the changes

File life lifecycle

Files outside Git

Commits and graphs

• A commit is when you tell git that a change (or addition) you have made is ready
to be included in the project

• When you commit your change to git, it creates a commit object, that represents
the complete state of the project, including all the files in the project

• The very first commit object has no “parents”

• Usually, you take some commit object, make some changes, and create a new
commit object; the original commit object is the parent of the new commit object

• Hence, most commit objects have a single parent

• You can also merge two commit objects to form a new one, in this case the
new commit object has two parents

• Hence, commit objects form a directed graph

• Git is all about using and manipulating this graph

Commits and graphs

• A commit is when you tell git that a change (or addition) you have made is ready
to be included in the project

• When you commit your change to git, it creates a commit object, that represents
the complete state of the project, including all the files in the project

• The very first commit object has no “parents”

• Usually, you take some commit object, make some changes, and create a new
commit object; the original commit object is the parent of the new commit object

• Hence, most commit objects have a single parent

• You can also merge two commit objects to form a new one, in this case the
new commit object has two parents

• Hence, commit objects form a directed graph

• Git is all about using and manipulating this graph

• A head is a reference to a commit object
• The “current head” is called HEAD (all caps)
• Usually, you will take HEAD (the current
commit object), make some changes to it, and
commit the changes, creating a new current
commit object

• This results in a linear graph: A → B → C → …
→ HEAD

Good practice

• In git, “Commits are cheap.” Do them often.

• When you commit, you must provide a one-
line message stating what you have done

• Terrible message: “Fixed a bunch of things”

• Better message: “Corrected the calculation
of median scores”

• Commit messages can be very helpful, to
yourself as well as to your team members

Branching and merging

• Branch annotates which commit we are
working on

• E.g. we can work on development, create a
new branch to handle a bug, write code in the
branch and then merge to the master branch

master

A B C

Branching and merging

• Branch annotates which commit we are
working on

• E.g. we can work on development, create a
new branch to handle a bug, write code in the
branch and then merge to the master branch

bug123

master

A B C

Branching and merging

• Branch annotates which commit we are
working on

• E.g. we can work on development, create a
new branch to handle a bug, write code in the
branch and then merge to the master branch

master

A B C

D E
bug123

Branching and merging

• Branch annotates which commit we are
working on

• E.g. we can work on development, create a
new branch to handle a bug, write code in the
branch and then merge to the master branch

master

A B C

D E
bug123

Branching and merging

• Branch annotates which commit we are
working on

• E.g. we can work on development, create a
new branch to handle a bug, write code in the
branch and then merge to the master branch

bug123

master

A B C D E

Retrieve old commit

• Use checkout to select a committed version
of the project or to branches

• allows to go back in time, e.g. to see when a
bug was introduced

• we can also just evaluate the difference
between current ad older versions of code
base

Working with remote

• Add and Commit your changes to your
local repo

• Pull from remote repo to get most recent
changes (fix conflicts if necessary, add and
commit them to your local repo)

• Push your changes to the remote repo

• Fetch to retrieve from remote without
merging with current code.

Working with remote

• Add and Commit your changes to your
local repo

• Pull from remote repo to get most recent
changes (fix conflicts if necessary, add and
commit them to your local repo)

• Push your changes to the remote repo

• Fetch to retrieve from remote without
merging with current code.

Good practice: Pull then Push

Push will update the remote server.
If you are out of date, Git will reject that push.

Git at a glance

Git and CLion

Check git install

• OSX command line development tools include
git. Linux and Windows require to install it.

Start using git on a project

• Enable VCS integration

Start using git on a project

• Enable VCS integration

Start using git on a project

• Enable VCS integration

Start using git on a project

• Enable VCS integration

Add files

• Stage files adding them to git versioning. Use project view or Version
Control tab that shows also invisible files like those of the CLion project.

Commit

• Commit whole directory or single files

Commit

• Commit whole directory or single files

Commit

• Commit whole directory or single files

Ignore files

• Add to .gitignore with Ignore

Branch

• Use the contextual menu to add new
branches, or to checkout them.

• The same menu can be used to merge the
current branch with one of the list. The same
applies for comparison.

Branching: example

• Create a branch to manage coding related to
bug solving on an older commit. Checkout the
older commit and start working toward
solution.

Branching: example

• Create a branch to manage coding related to
bug solving on an older commit. Checkout the
older commit and start working toward
solution.

Branching: example

• Create a branch to manage coding related to
bug solving on an older commit. Checkout the
older commit and start working toward
solution.

It may happen that while you
are working on the branch
your colleagues will continue
development of master branch:

Branching: example
• Commit the solution, checkout the old master,

then select the branch and merge with current
checkout.

Branching: example
• Commit the solution, checkout the old master,

then select the branch and merge with current
checkout.

Branching: example
• Commit the solution, checkout the old master,

then select the branch and merge with current
checkout.

Branching: example
• Commit the solution, checkout the old master,

then select the branch and merge with current
checkout.

Branching: example
• Commit the solution, checkout the old master,

then select the branch and merge with current
checkout.

Branching: example
• Commit the solution, checkout the old master,

then select the branch and merge with current
checkout.

When you run merge, the changes
from your feature branch are
integrated into the HEAD of the
target branch:

Github

• CLion can use Github as remote server, and
allows also to create an account from the
options

Use scenarios

Scenario 1: bug fix

1.0

Time

Releases

First public release of the
hot new product

Scenario 1: bug fix

1.0

Time

Releases

First public release of the
hot new product

1.3

Scenario 1: bug fix

1.0

Time

Releases

First public release of the
hot new product

1.3 Internal development continues,
progressing to version 1.3

Scenario 1: bug fix

1.0

Time

Releases

First public release of the
hot new product

1.3 Internal development continues,
progressing to version 1.3

1.0
bugfix

A fatal bug is discovered in the
product (1.0), but 1.3 is not stable
enough to release. Solution: Create a
version based on 1.0 with the bug fix.

Scenario 1: bug fix

1.0

Time

Releases

First public release of the
hot new product

1.3 Internal development continues,
progressing to version 1.3

1.0
bugfix

A fatal bug is discovered in the
product (1.0), but 1.3 is not stable
enough to release. Solution: Create a
version based on 1.0 with the bug fix.

Note that there are now two lines of development
beginning at 1.0.
This is branching.

Scenario 1: bug fix

1.0

Time

Releases

First public release of the
hot new product

1.3

1.0
bugfix

A fatal bug is discovered in the
product (1.0), but 1.3 is not stable
enough to release. Solution: Create a
version based on 1.0 with the bug fix.

Note that there are now two lines of development
beginning at 1.0.
This is branching.

Scenario 1: bug fix

1.0

Time

Releases

First public release of the
hot new product

1.3

1.0
bugfix

A fatal bug is discovered in the
product (1.0), but 1.3 is not stable
enough to release. Solution: Create a
version based on 1.0 with the bug fix.

Note that there are now two lines of development
beginning at 1.0.
This is branching.

1.4

Scenario 1: bug fix

1.0

Time

Releases 1.3

1.0
bugfix

A fatal bug is discovered in the
product (1.0), but 1.3 is not stable
enough to release. Solution: Create a
version based on 1.0 with the bug fix.

Note that there are now two lines of development
beginning at 1.0.
This is branching.

1.4

Scenario 1: bug fix

1.0

Time

Releases 1.3

1.0
bugfix

A fatal bug is discovered in the
product (1.0), but 1.3 is not stable
enough to release. Solution: Create a
version based on 1.0 with the bug fix.

Note that there are now two lines of development
beginning at 1.0.
This is branching.

1.4

The bug fix should also be
applied to the main code line so
that the next product release has
the fix.

Scenario 1: bug fix

1.0

Time

Releases 1.3

1.0
bugfix

A fatal bug is discovered in the
product (1.0), but 1.3 is not stable
enough to release. Solution: Create a
version based on 1.0 with the bug fix.

Note that there are now two lines of development
beginning at 1.0.
This is branching.

1.4

The bug fix should also be
applied to the main code line so
that the next product release has
the fix.

Note that two separate lines of
development come back together in
1.4.
This is merging.

Scenario 2: normal dev.

1.5

Time

Releases

You are in the middle of a
project with three developers
named a, b, and c.
1.6

Scenario 2: normal dev.

1.5

Time

Releases

You are in the middle of a
project with three developers
named a, b, and c.1.5a

1.5b

1.5c

1.6

Scenario 2: normal dev.

1.5

Time

Releases

You are in the middle of a
project with three developers
named a, b, and c.1.5a

1.5b

1.5c

At the beginning of the day everyone checks out a copy
of the code.
A check out is a local working copy of a project, outside
of the version control system. Logically it is a (special
kind of) branch.

1.6

Scenario 2: normal dev.

1.5

Time

Releases

You are in the middle of a
project with three developers
named a, b, and c.1.5a

1.5b

1.5c

At the beginning of the day everyone checks out a copy
of the code.
A check out is a local working copy of a project, outside
of the version control system. Logically it is a (special
kind of) branch.

The local versions isolate the developers from each
other’s possibly unstable changes. Each builds on 1.5, the
most recent stable version.

1.6

Scenario 2: normal dev.

1.5

Time

Releases

You are in the middle of a
project with three developers
named a, b, and c.1.5a

1.5b

1.5c

At the beginning of the day everyone checks out a copy
of the code.
A check out is a local working copy of a project, outside
of the version control system. Logically it is a (special
kind of) branch.

The local versions isolate the developers from each
other’s possibly unstable changes. Each builds on 1.5, the
most recent stable version.

1.6

At the end of the day everyone checks in their tested
modifications. A check in is a kind of merge where local
versions are copied back into the version control
system.

Scenario 3: debugging

1.5

Time

Releases

1.6 1.7

A software system is developed
through several revisions.

Scenario 3: debugging

1.5

Time

Releases

1.6 1.7

A software system is developed
through several revisions.

In 1.7 you suddenly discover a bug has
crept into the system. When was it
introduced?

With version control you can check out old
versions of the system and see which
revision introduced the bug.

Scenario 4: external libraries
Time

Releases

Library A 0.7

You are building software on top of a third-
party library, for which you have source.

You begin implementation of your software,
including modifications to the library.

Scenario 4: external libraries
Time

Releases

Library A 0.7

You are building software on top of a third-
party library, for which you have source.

You begin implementation of your software,
including modifications to the library.

Library B

Scenario 4: external libraries
Time

Releases

Library A 0.7

You are building software on top of a third-
party library, for which you have source.

You begin implementation of your software,
including modifications to the library.

Library B

A new version of the library is released.
Logically this is a branch: library development
has proceeded independently of your own
development.

Scenario 4: external libraries
Time

Releases

Library A 0.7

You are building software on top of a third-
party library, for which you have source.

You begin implementation of your software,
including modifications to the library.

Library B

A new version of the library is released.
Logically this is a branch: library development
has proceeded independently of your own
development.

0.8

You merge the new library into the main
code line, thereby applying your
modifications to the new library version.

Reading material

• E. Sink, “Version Control by Example” - cap. 2,
4, 8

Credits

• These slides are based on the material of:

• Prof. Aiken,

• Dr. N. Benatar,

• Prof. R. Anderson, Univ. Washington

• P. Chen, Stanford

