
Programmazione
Prof. Marco Bertini

marco.bertini@unifi.it
http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/

Error handling

• Error handling involves:

• Detecting an error

• Transmitting information about an error to some
handler code

• Preserve the state of a program in a valid state

• Avoid resource leaks

• It is not possible to recover from all errors. We
need a strategy to handle errors, especially if it is
not possible to recover from them.

Exceptions

What are exceptions ?

• Exceptions are a mechanism for handling an
error during execution.

• A function can indicate that an error has
occurred by throwing an exception.

• The code that deals with the exception is
said to handle it.

Why use exceptions ?

• Code where the error occurs and code to
deal with the error can be separated

• Exceptions can be used with constructors
and other functions/operators which can not
return an error code

• Properly implemented exceptions lead to
better code

How to use exceptions ?

• try
• Try executing some block of code

• See if an error occurs

• throw
• An error condition occurred

• Throw an exception to report the failure

• catch
• Handle an exception thrown in a try block

How to use exceptions ?

• try
• Try executing some block of code

• See if an error occurs

• throw
• An error condition occurred

• Throw an exception to report the failure

• catch
• Handle an exception thrown in a try block

An exception is an object that
contains info about the problem

When to use exceptions ?

• Exceptions are meant to signal “exceptional” events and
failures. Examples:

• A precondition that cannot be met

• A constructor that cannot construct an object (failure to
establish its class's invariant)

• An out-of-range error (e.g., v[v.size()] = 7)

• Inability to acquire a resource (e.g., the network is down)

• In contrast, termination of an ordinary loop is not exceptional.

• Do not use throw to return a method/function value !

• Exceptions are for error handling only.

How exceptions work ?

• Normal program control flow is halted

• At the point where an exception is thrown

• The program call stack “unwinds”

• Stack frame of each function in call chain “pops”

• Variables in each popped frame are destroyed

• Goes until an enclosing try/catch scope is reached

• Control passes to first matching catch block

• Can handle the exception and continue from there

• Can free some resources and re-throw exception

What’s right about exceptions

• Can’t be silently ignored: if there is no
applicable catch block for an exception the
program terminates

• Automatically propagate across scopes (due
to stack unwinding)

• Handling is out of main control flow, the
code that implements the algorithm is not
polluted

Exceptions syntax

C++ exceptions syntax

• Use try-catch blocks to catch an
exception

try

{

 statement(s);

}

catch (ExceptionClass identifier)

{

 statement(s);

}

catch (ExceptionClass identifier)

{

 statement(s);

}

Place a statement(s) (function or

method) that might throw an

exception within a try block.

A try block must be followed

by one or more catch blocks.

Appropriate code

to handle the

exception.

C++ exception flow

• When a statement (function or
method) in a try block causes an
exception:

• Rest of try block is ignored.

• Control passes to catch block
corresponding to the exception.

• After a catch block executes,
control passes to statement after
last catch block associated with the
try block.

try
{
 ...

 statement;
 ...
}
catch (ExceptionClass identifier)
{

 statement(s);
}

statement(s);

Throw an exception

C++ exception flow - cont.

• A more complex example of exception
flow:

void encodeChar(int i, string& str)

{

 ...

 str.replace(i, 1, 1, newChar);

}

Can throw the out_of_range exception.

void encodeString(int numChar, string& str)

{

 for(int i=numChar-1; i>=0; i--)

 encodeChar(i,str);

}

int main()

{

 string str1 = “NTU IM”;

 encodeString(99, str1);

 return 0;

}

Abnormal program termination

Catching the exception
• Two examples on how to catch the

exception:
void encodeChar(int i, string& str)

{

 try
 {

 ...

 str.replace(i, 1, 1, newChar);

 } catch (out_of_range e) {

 cout << “No character at ” << i << endl;
 }

}

void encodeString(int numChar, string& str)

{

 for(int i=numChar-1; i>=0; i--)

 encodeChar(i,str);

}

int main()

{

 string str1 = “NTU IM”;

 encodeString(99, str1);

 return 0;

}

No character at 98

No character at 97

…

Catching the exception
• Two examples on how to catch the

exception:
void encodeChar(int i, string& str)

{

 ...

 str.replace(i, 1, 1, newChar);

}

void encodeString(int numChar, string& str)

{

 try
 {

 for(int i=numChar-1; i>=0; i--)

 encodeChar(i,str);

 } catch (out_of_range e) {

 cout << “Something wrong” << endl;
 }

}

int main()

{

 string str1 = “NTU IM”;

 encodeString(99, str1);

 return 0;

}

Something wrong

Handlers

• A handler may re-throw the exception
that was passed:

• it forwards the exception

• Use: throw; // no operand

• after the local handler cleanup it will
exit the current handler

• A handler may throw an exception of a
different type

• it translates the exception

Catching multiple exceptions

• The order of catch clauses is important:

• Especially with inheritance-related exception
classes

• Put more specific catch blocks before more
general ones

• Put catch blocks for more derived exception
classes before catch blocks for their
respective base classes

• catch(...) catches any type

Catching multiple exceptions
example

try {  
 // can throw exceptions  
} catch (DerivedExc &d) {  
 // Do something  
} catch (BaseExc &d) {  
 // Do something else  
} catch (...) {  
 // Catch everything else  
}

What to catch ?
• Catch by reference not by value:

• it’s faster (no copying)

• it’s safer: no slicing in case of exception inheritance

• Most handlers do not modify their exception so catch const
references

Throwing exceptions

• When you detect an error within a method, you
can throw an exception by using a throw
statement.

• The remaining code within the function does not
execute.

• Syntax: throw ExceptionClass(stringArgument);
type of the exception more detailed information

void myMethod(int x) throw(MyException)

{

 if (...)

 throw MyException(“MyException: …”);

 ...

} // end myMethod

Throwing exceptions - cont.

• The exception is propagated back to the
point where the function was called.

try
{
 ...

 myMethod(int x);

 ...
}
catch (ExceptionClass identifier)
{

 statement(s);
}

back to here!!

What to throw

• Always throw by value, not by pointer:

• throw Exception(); // OK

• throw new Exception(); // Bad
1. You want to throw an exception, not a pointer.

2. There is no point in allocating on the heap if
you don’t have to.

3. You force to clean up memory for you when
catching.

Specifying exceptions

• Functions that throw an exception have a throw clause, to
restrict the exceptions that a function can throw.

• Allow stronger type checking enforced by the compiler

• By default, a function can throw anything it wants

• A throw clause in a function’s signature

• Limits what can be thrown

• A promise to calling function

• A throw clause with no types

• Says nothing will be thrown

• Can list multiple types, comma separated

Specifying exceptions examples
// can throw anything  
void Foo::bar();

// promises not to throw  
void Foo::bar() noexcept; //C++11

// promises to only throw int  
void Foo::bar() throw(int);

// throws only char or int  
void Foo::bar() throw(char,int);

These are four
alternative

declarations

Specifying exceptions examples
// can throw anything  
void Foo::bar();

// promises not to throw  
void Foo::bar() noexcept; //C++11

// promises to only throw int  
void Foo::bar() throw(int);

// throws only char or int  
void Foo::bar() throw(char,int);

These are four
alternative

declarations

Old (deprecated): void Foo::bar() throw();

Specifying exceptions examples
// can throw anything  
void Foo::bar();

// promises not to throw  
void Foo::bar() noexcept; //C++11

// promises to only throw int  
void Foo::bar() throw(int);

// throws only char or int  
void Foo::bar() throw(char,int);

Old (deprecated): void Foo::bar() throw();
Also throw specifications have been deprecated in  
C++11. In general simply use noexcept or nothing
at all.

The rationale for this change is that if a function
throws an exception different from the specified ones
then the program is terminated.  
So just throw whatever must be thrown and catch it
at the appropriate level.

noexcept
• Use noexcept if a function surely won’t

throw (e.g. all its operations do not throw)
or…

• if it’s unacceptable to throw an exception, e.g.
we are not willing or able to handle the
situation, so crashing the program is
acceptable

• Many standard-library functions are
noexcept including all the standard-library
functions from the C Standard Library.

Destructors and
exceptions

Destructors and exceptions

• Prevent exceptions from leaving destructors:
premature program termination or
undefined behaviour can result from
destructors emitting exceptions

• during the stack unwinding resulting from
the processing of the exception are called
the destructors of local objects, and one
may trigger another exception

How to behave: example
class DBConnection {  
public:  
 //...  
 
 // return a DBConnection object  
 static DBConnection create();  
 
 void close(); // close connection and  
 // throws exception if  
 // closing fails  
};

// class to manage DBConnection  
class DBConnMgr {  
public:  
 //...  
 DBConnMgr(DBConnection dbc);  
 ~DBConnMgr() {  
 db.close(); // we’re sure it  
 // gets closed  
 }

private:  
 DBConnection db;  
};

// client code  
{  
 DBConnMgr dbc(DBConnection::create());  
 //... use DBConnection through DBConnMgr interface  
} // DBConnMgr obj is automatically destroyed, calling the close

How to behave: example
class DBConnection {  
public:  
 //...  
 
 // return a DBConnection object  
 static DBConnection create();  
 
 void close(); // close connection and  
 // throws exception if  
 // closing fails  
};

// class to manage DBConnection  
class DBConnMgr {  
public:  
 //...  
 DBConnMgr(DBConnection dbc);  
 ~DBConnMgr() {  
 db.close(); // we’re sure it  
 // gets closed  
 }

private:  
 DBConnection db;  
};

// client code  
{  
 DBConnMgr dbc(DBConnection::create());  
 //... use DBConnection through DBConnMgr interface  
} // DBConnMgr obj is automatically destroyed, calling the close

If close() throws the
destructor propagates the
exception

(Not so good) solutions

• Terminate the program:
DBConnMgr::~DBConnMgr() {  
 try{ db.close(); }  
 catch (...) {  
 // log failure and...  
 std::abort();  
 }  
}

• Swallow the exception:
DBConnMgr::~DBConnMgr() {  
 try{ db.close() }  
 catch (...) {  
 // just log the error  
 }  
}

(Not so good) solutions

• Terminate the program:
DBConnMgr::~DBConnMgr() {  
 try{ db.close(); }  
 catch (...) {  
 // log failure and...  
 std::abort();  
 }  
}

• Swallow the exception:
DBConnMgr::~DBConnMgr() {  
 try{ db.close() }  
 catch (...) {  
 // just log the error  
 }  
}

With this solution we’re
just hiding the problem

A better strategy
// class to manage DBConnection  
class DBConnMgr {  
public:  
 //...  
 DBConnMgr(DBConnection dbc);  
 void close() {  
 db.close();  
 closed = true;  
 }  
 ~DBConnMgr() { // we’re sure it gets closed  
 if(!closed) {  
 try {  
 db.close();  
 } catch (...) {  
 // log and... terminate or swallow  
 }  
 }  
 }

private:  
 DBConnection db;  
 bool closed;  
};

A better strategy
// class to manage DBConnection  
class DBConnMgr {  
public:  
 //...  
 DBConnMgr(DBConnection dbc);  
 void close() {  
 db.close();  
 closed = true;  
 }  
 ~DBConnMgr() { // we’re sure it gets closed  
 if(!closed) {  
 try {  
 db.close();  
 } catch (...) {  
 // log and... terminate or swallow  
 }  
 }  
 }

private:  
 DBConnection db;  
 bool closed;  
};

Client code should use
this method...

A better strategy
// class to manage DBConnection  
class DBConnMgr {  
public:  
 //...  
 DBConnMgr(DBConnection dbc);  
 void close() {  
 db.close();  
 closed = true;  
 }  
 ~DBConnMgr() { // we’re sure it gets closed  
 if(!closed) {  
 try {  
 db.close();  
 } catch (...) {  
 // log and... terminate or swallow  
 }  
 }  
 }

private:  
 DBConnection db;  
 bool closed;  
};

Client code should use
this method...

...but if it doesn’t
there’s the destructor

Defining exceptions
classes

Syntax and example

Defining exceptions classes
• C++ Standard Library supplies a number of

exception classes.

• E.g., exception, out_of_range, … etc.

• You may also want to define your own exception
class.

• Should inherit from those pre-defined
exception classes for a standardized exception
working interface.

• Syntax:  
#include <exception>  
using namespace std;

Purpose-designed user-defined exceptions

• It is a good practice to use purpose-designed
user-defined types as exceptions:

• They do not clash with other people’s
exceptions

• Clear intent of the code

• Standard-library exceptions should be used as
base classes or for exceptions requiring
“generic handling”

Purpose-designed user-defined exceptions

• It is a good practice to use purpose-designed
user-defined types as exceptions:

• They do not clash with other people’s
exceptions

• Clear intent of the code

• Standard-library exceptions should be used as
base classes or for exceptions requiring
“generic handling”

BAD

void my_code() {
 // ...
 throw runtime_error{"moon in  
 the 4th quarter"};
 // ...
}

void your_code() {
 try {  
 // ...
 my_code();
 // ...
 }
 catch(const runtime_error&) {  
 // runtime_error means  
 // "input buffer too small"
 // ...
 }
}

GOOD

void my_code() {
 // ...
 throw Moonphase_error{};
 // ...
}

void your_code() {
 try {
 // ...
 my_code();
 // ...
 }
 catch(const  
 Bufferpool_exhausted&) {
 // ...
 }
}

Defining exceptions classes
example

#include <exception>

#include <string>
using namespace std;

class MyException : public exception
{
public:
 MyException(const string & Message = “”)

 : exception(Message.c_str()) {}
} // end class

throw MyException(“more detailed information”);

try
{
 ...

}
catch (MyExceptoin e)
{ cout << e.what();
}

A full example

• An ADT List implementation using
exceptions:

• out-of-bound list index.

• attempt to insert into a full list.

Define two exception classes

#include <exception>  
#include <string>  
using namespace std;

class ListIndexOutOfRangeException : public out_of_range {  
public:  
 ListIndexOutOfRangeException(const string& message = “”)  
 : out_of_range(message.c_str()) {}  
}; // end ListException

class ListException : public logic_error {  
public:  
 ListException(const string & message = “”)  
 : logic_error(message.c_str()) {}  
}; // end ListException

Declare the throw

#include “MyListExceptions.h”  
 . . .  
class List  
{  
public:  
 . . .  
 void insert(int index, const ListItemType& newItem)

 throw(ListIndexOutOfRangeException,  
 ListException);  
 . . .  
} // end List

Method implementation

void List::insert(int index, const ListItemType& newItem)  
 throw(ListIndexOutOfRangeException, ListException) {  
 if (size >= MAX_LIST)  
 throw ListException("ListException: List full on insert");  
 if (index >= 1 && index <= size+1) {  
 for (int pos = size; pos >= index; --pos)  
 items[translate(pos+1)] = items[translate(pos)];  
 // insert new item  
 items[translate(index)] = newItem;  
 ++size; // increase the size of the list by one  
 } else // index out of range  
 throw ListIndexOutOfRangeException( 
 "ListIndexOutOfRangeException: Bad index on insert");  
} // end insert

Good Programming Style
with C++ Exceptions

• Don’t use exceptions for normal program flow

• Only use where normal flow isn’t possible

• Don’t let exceptions leave destructors

• If during stack unwinding one more exception is
thrown then the program is terminated.

• Always throw some type

• So the exception can be caught

• Use exception specifications widely (deprecated)

• Helps caller know possible exceptions to catch

Constructors and exceptions

• Constructors can throw exceptions, but:

• if a constructor throws an exception, the object’s
destructor is not run.

• If your object has already done something that
needs to be undone (such as allocating some
memory, etc.), this must be undone:

• using smart pointers is a solution, since their
destruction will free the resource.

• handling the resource in the constructor
before leaving it

Constructors and exceptions

• Constructors can throw exceptions, but:

• if a constructor throws an exception, the object’s
destructor is not run.

• If your object has already done something that
needs to be undone (such as allocating some
memory, etc.), this must be undone:

• using smart pointers is a solution, since their
destruction will free the resource.

• handling the resource in the constructor
before leaving it

class Foo {
public:
 Foo() {
 try{
 p = new p;  
 throw /* something */;
 }
 catch (.. .) {
 delete p;
 throw; //rethrow. no memory leak
 }  
 }
private:
 int *p;
};

Where to catch an exception ?

• Don't try to catch every exception in every
function

• Catching an exception in a function that
cannot take a meaningful recovery action
leads to complexity and waste.

• Let an exception propagate until it reaches a
function that can handle it.

Exception-safe functions

• Exception-safe functions offer one of three
guarantees:

• basic guarantee: if an exception is thrown,
everything in the program remains in a valid state

• strong guarantee: if an exception is thrown,
the state of the program is unchanged. The call to
the function is atomic

• nothrow guarantee: promise to never throw
exception: they always do what they promise. All
operations on built-in types are nothrow.

Exception-safe code

• When an exception is thrown, exception
safe functions:

• leak no resource (e.g. new-ed objects,
handles, etc.)

• don’t allow data structures to become
corrupted (e.g. a pointer that had to point
to a new object was left pointing to
nowhere)

Reading material

• M. Bertini, “Programmazione Object-Oriented in C++”,
parte I, cap. 5

• B. Stroustrup, “C++, Linguaggio, libreria
standard, principi di programmazione”, cap. 13

• B. Stroustrup, “C++, guida essenziale per
programmatori” - pp. 27-28

• L.J. Aguilar, “Fondamenti di programmazione in
C++. Algoritmi, strutture dati e oggetti” - cap.
14

Credits

• These slides are based on the material of:

• Dr. Walter E. Brown, Fermi Lab

• Dr. Chien Chin Chen, National Taiwan
University

• Dr. Jochen Lang, University of Ottawa

• Fred Kuhns, Washington University

• Scott Meyers, “Effective C++”, 3rd ed.

http://www.wustl.edu/

