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Error handling

® Error handling involves:
® Detecting an error

® Transmitting information about an error to some
handler code

® Preserve the state of a program in a valid state
® Avoid resource leaks

® [t is not possible to recover from all errors.We
need a strategy to handle errors, especially if it is
not possible to recover from them.
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Exceptions
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What are exceptions !

® Exceptions are a mechanism for handling an
error during execution.

® A function can indicate that an error has
occurred by throwing an exception.

® The code that deals with the exception is
said to handle it.
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Why use exceptions !

® Code where the error occurs and code to
deal with the error can be separated

® Exceptions can be used with constructors
and other functions/operators which can not
return an error code

® Properly implemented exceptions lead to
better code
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How to use exceptions !

e try
® Try executing some block of code

® See if an error occurs

e throw

® An error condition occurred

® Throw an exception to report the failure

e catch

® Handle an exception thrown in a try block
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How to use exceptions !

e try
® Try executing some block of code

® See if an An exception is an object that

e throw contains info about the problem

® An error condition dccurred

® Throw an exception to report the failure

e catch

® Handle an exception thrown in a try block
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When to use exceptions !

AN
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® Exceptions are meant to signal “exceptional” events and
failures. Examples:

® A precondition that cannot be met

® A constructor that cannot construct an object (failure to
establish its class's invariant)

® An out-of-range error (e.g.,v[v.s1ze()] = 7)
® [nability to acquire a resource (e.g., the network is down)

® |n contrast, termination of an ordinary loop is hot exceptional.
® Do not use throw to return a method/function value !

® Exceptions are for error handling only.
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How exceptions work ?

® Normal program control flow is halted

® At the point where an exception is thrown
® The program call stack “unwinds”

® Stack frame of each function in call chain “pops”

® Variables in each popped frame are destroyed

® Goes until an enclosing try/catch scope is reached
® Control passes to first matching catch block

® Can handle the exception and continue from there

® Can free some resources and re-throw exception

lé/f\
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What's right about exceptions

® Can’t be silently ignored: if there is no
applicable catch block for an exception the
program terminates

® Automatically propagate across scopes (due
to stack unwinding)

® Handling is out of main control flow, the
code that implements the algorithm is not
polluted
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Exceptions syntax
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C++ exceptions syntax

® Use try-catch blocks to catch an
exception

Appropriate code
to handle the
exception.

try
{

}

catch

-

}

/

statement (s);

statement (s);

Place a statement(s) (function or
method) that might throw an
exception within a try block.

(ExceptionClass identifier)

\

AN\

A try block must be followed

by one or more catch blocks.
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C++ exception flow

® When a statement (function or try Throw an exception
method) in a try block causes an { /
exception: e
statement;
® Rest of try block is ignored.
by
corresponding to the exception. {
statement(s);
® After a catch block executes, ¥
control passes to statement after statement(s);

last catch block associated with the
try block.
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C++ exception flow - cont
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® A more complex example of exception
flow:

vold encodeChar (int i, string& str)

{

str.replace(i, 1, 1, newChar); \\\\\\\
} \

—~| Can throw the out_of_%gg exception. |
\

vold encodeString (int numChar, stringé& str)
{

for (int i=numChar-1;

encodeChar (i, str) ;

) \

N\

1>=0;

int main ()

{
string strl = “NTU IM”;
encodeString (99, strl);
return O;

Abnormal program termination
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Catching the exception

® [wo examples on how to catch the
exception:

.;.-

vold encodeChar (int 1, stringé& str)

{
try
{

str.replace(i, 1, 1, newChar);
} catch (out of range e) {
cout << “No character at ” << i << endl;

} \
}
P Sostring (i N ) No character at 98
void encodeString(int numChar, stringé& str
{ No character at 97

for (int i=numChar-1; 1i>=0; 1i--)
encodeChar (i, str) ;

}

int main ()

{
string strl = “NTU IM”;
encodeString (99, strl);
return 0;
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Catching the exception

® [wo examples on how to catch the
exception:

vold encodeChar (int 1, stringé& str)

{

str.replace(i, 1, 1, newChar);
} \

)

vold encodeString (int numChar, stringé& str)

{
try
{

for (int i1=numChar-1,; 1>30%
encodeChar (i, str) ; ":7
} catch (out _of range e) {
cout << "“Something wrong” << endl;
} \\\\\\\\\*
}

int main ()

{
string strl = “NTU IM”;
encodeString (99, strl);

return 0;

Something wrong
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Handlers

® A handler may re-throw the exception
that was passed:

® it forwards the exception

® Use:throw; // no operand

® after the local handler cleanup it will
exit the current handler

® A handler may throw an exception of a
different type

® it translates the exception
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Catching multiple exceptions

® The order of catch clauses is important:

® Especially with inheritance-related exception
classes

® Put more specific catch blocks before more
general ones

® Put catch blocks for more derived exception
classes before catch blocks for their
respective base classes

e catch(...) catches any type
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Catching multiple exceptions
example

try {
// can throw exceptions

} catch (DerivedExc &d) {
// Do something

} catch (BaseExc &d) {
// Do something else

} catch (...) {
// Catch everything else

¥
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What to catch ?

® Catch by reference not by value:

® t’s faster (no copying)

® t’s safer: no slicing in case of exception inheritance

® Most handlers do not modify their exception so catch const

references

Exception

Exception

You shall not pass!

Exception copy constructor
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Throwing exceptions

I

® When you detect an error within a method, you
can throw an exception by using a throw
statement.

® The remaining code within the function does not
execute.

® Syntax: throw ExceptionClass(stringArgument);

type of the exception more detailed information

vold myMethod (int x)

{
it (...)

throw MyException (“"MyException: ..”);




NMedia Integration and Communication Center - University of Florence, Italy

-EL-'K;\'\_...

Throwing exceptions - cont

® The exception is propagated back to the

point where the function was called.

try
{

myMethod (int x);

{

statement(s);

¥

back to here!!

/

, 7

catch (ExceptionClass identifier)
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What to throw

® Always throw by value, not by pointer:

® throw Exception(); // OK
® throw new Exception(); // Bad

|. You want to throw an exception, not a pointer.

2. There is no point in allocating on the heap if
you don’t have to.

3. You force to clean up memory for you when
catching.
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Specifying exceptions

® Functions that throw an exception have a throw clause, to
restrict the exceptions that a function can throw.

® Allow stronger type checking enforced by the compiler
® By default, a function can throw anything it wants
® A throw clause in a function’s signature
® |imits what can be thrown
® A promise to calling function
® A throw clause with no types
® Says nothing will be thrown

® Can list multiple types, comma separated

lé/f\
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Specifying exceptions examples

These are four
alternative
declarations

// can throw anything
volid Foo: :bar();

// promises not to throw
vold Foo::bar() noexcept; //C++11

// promises to only throw int
vold Foo::bar() throw(int);

// throws only char or 1int
volid Foo::bar() throw(char,int);
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Specifying exceptions examples

These are four
alternative
declarations

// can throw anything
volid Foo: :bar();

// promises not to throw
Old (deprecated): void Foo::bar() throw();

// promises to only throw int
vold Foo::bar() throw(int);

// throws only char or 1int
volid Foo::bar() throw(char,int);
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Specifying exceptions examples

// can throw anything
void Foo::bar();

Also throw specifications have been deprecated in
C++11. In general simply use hoexcept or nothing
at all.

The rationale for this change is that if a function
throws an exception different from the specified ones
then the program is terminated.

So just throw whatever must be thrown and catch it
at the appropriate level.
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noexcept

® Use noexcept if a function surely won’t

throw (e.g. all its operations do not throw)
or...

® if it's unacceptable to throw an exception, e.g.
we are not willing or able to handle the
situation, so crashing the program is
acceptable

® Many standard-library functions are
noexcept including all the standard-library
functions from the C Standard Library.
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Destructors and
exceptions
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Destructors and exceptions

® Prevent exceptions from leaving destructors:
premature program termination or
undefined behaviour can result from
destructors emitting exceptions

® during the stack unwinding resulting from
the processing of the exception are called
the destructors of local objects, and one
may trigger another exception
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How to behave: example

class DBConnection { // class to manage DBConnection
public: class DBConnMgr {
//. .. public:
//. ..
// return a DBConnection object DBConnMgr(DBConnection dbc);
static DBConnection create(); ~DBConnMgr() {
db.close(); // we’re sure it
void close(); // close connection and // gets closed
// throws exception if }
// closing fails
}; private:
DBConnection db;
s

// client code

{
DBConnMgr dbc( DBConnection::create() );

// ... use DBConnection through DBConnMgr interface
} // DBConnMgr obj 1s automatically destroyed, calling the close
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How to behave: example

class DBConnection { // class to manage DBConnection
public: class DBConnMgr {
/7. .. public:
//. ..
// return a DBConnection object DBConnMgr(DBConnection dbc);
static DBConnection create(); ~DBConnMgr() {
db.close(); // we’re sure it
void close(); // close connection and // gets closed
// throws exception if }

// closing fails
1 private:
\ NDRConnection dh:
If close() throws the

destructor propagates the
// client code

; exception
DBConnMgr dbc( DBConnection: :create() );
// ... use DBConnection through DBConnMgr interface

} // DBConnMgr obj 1s automatically destroyed, calling the close
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(Not so good) solutions

® Jerminate the program:

DBConnMgr: : ~DBConnMgr () {
try{ db.close(); }
catch (...) {

// log failure and...
std: :abort();

¥
¥

® Swallow the exception:

DBConnMgr: : ~DBConnMgr() {
try{ db.close() }
catch (...) {
// just log the error

¥
}
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(Not so good) solutions

® Jerminate the program:

DBConnMgr: : ~DBConnMgr () {
try{ db.close(); }
catch (...) {

// log failure and...
std: :abort();

¥
¥

® Swallow the exception:

DBConnMgr: : ~DBConnMgr() {

try{ db.closeQ } With this solution we’re
catch (...) {

17 3 10 e arr just hiding the problem

}
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A better strategy

// class to manage DBConnection
class DBConnMgr {
public:
/7. ..
DBConnMgr(DBConnection dbc);
void close() {
db.close();
closed = true;
by
~DBConnMgr() { // we’re sure it gets closed
1f( !closed ) {
try {
db.close();

} catch (...) {
// log and... terminate or swallow
hy
ks
ks

private:
DBConnection db;
bool closed;

+s

AN\
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// class to manage DBConnection
class DBConnMgr {
public:
/7. ..
DBConnMgr(DBConnection dbc); Cllent COde ShOUId use
void close() { <
db. close; this method...
closed = true;
by

~DBConnMgr() { // we’re sure it gets closed
1f( !'closed ) {
try {
db.close();

} catch (...) {
// log and... terminate or swallow
hy
ks
ks

private:
DBConnection db;
bool closed;

+s

AN\
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A better strategy

// class to manage DBConnection
class DBConnMgr {

public:
/7. ..
DBConnMgr(DBConnection dbc); C||ent COde ShOUId Uuse
void close() { <
db. close(); this method...
closed = true;
by

~DBConnMgr() { // we’re sure it gets closed

if( !'closed ) {
e \ v . 9
db. close); ...but if it doesn’t

} catch (...) {
// log and... terminate or swallow there’s the deStI"LICtOI"
hy
ky
by

private:
DBConnection db;
bool closed;

+s
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Defining exceptions
classes

Syntax and example
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Defining exceptions classes

® (C++ Standard Library supplies a number of
exception classes.

e Eg, exception,out_of_range,... etc.

® You may also want to define your own exception
class.

® Should inherit from those pre-defined
exception classes for a standardized exception
working interface.
® Syntax:
#include <exception>
using namespace std;
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Purpose-designed user-defined exceptions

® |t is a good practice to use purpose-designed
user-defined types as exceptions:

® They do not clash with other people’s
exceptions

® (Clear intent of the code

® Standard-library exceptions should be used as
base classes or for exceptions requiring
“generic handling”
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BAD GOOD
void my_code() { void my_code() {
// ... /...
throw runtime_error{"moon 1n throw Moonphase_error{};
the 4th quarter"}; /]
// ... }
Iy
vold your_code() {
void your_code() { try {
try { /] ...
/... my_code();
my_code(); // ...
/... }
1 catch(const
catch(const runtime_error&) { Bufferpool_exhausted&) {
// runtime_error means // ...
// "input buffer too small" }
// ... }
ks

¥
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Defining exceptions classes

example

#include <exception>
#include <string>
using namespace std;

class MyException : public exception

{
public:
MyException (const string & Message = %)
exception (Message.c gtr()) {!}

try
{

}

catch (MyExceptoin e)

{
}

cout << e.what();

/

L —

7 ———

/ —

throw MyException (“more detailed information”);




I
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A full example

® An ADT List implementation using
exceptions:

® out-of-bound list index.

® attempt to insert into a full list.
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Define two exception classes

#1include <exception>
#1nclude <string>
using namespace std;

class ListIndexOutOfRangeException : public out_of_range {
public:
ListIndexOutOfRangeException(const string& message = “”)
: out_of_range(message.c_str()) {}
}; // end ListException

class ListException : public logic_error {
public:
ListException(const string & message = “”)
: logic_error(message.c_str()) {}
Y // end ListException
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Declare the throw

#1include “MylListExceptions.h”

class List
{
public:

vold insert(int index, const ListItemType& newltem)

throw(L1istIndexOutOfRangeException,
ListException);

1 // end List

E’h—
g

AN\
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Method implementation

vold List::insert(int index, const ListItemType& newItem)
throw(ListIndexOutOfRangeException, ListException) {
1f (size >= MAX_LIST)
throw ListException("ListException: List full on 1insert");
1f (index >= 1 && 1ndex <= size+l) {
for (int pos = size; pos >= 1ndex; --pos)
1tems[translate(pos+1)] = items[translate(pos)];
// 1nsert new 1item
1tems[translate(index)] = newltem;
++s1ze; // 1increase the size of the list by one
} else // index out of range
throw ListIndexOutOfRangeException(
"ListIndexOutOfRangeException: Bad index on insert");
1 // end insert
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Good Programming Style
with C++ Exceptions

® Don’t use exceptions for normal program flow

® Only use where normal flow isn’t possible
® Don’t let exceptions leave destructors

® |[f during stack unwinding one more exception is
thrown then the program is terminated.

® Always throw some type
® So the exception can be caught

o Use-exceptionspecifications-widely (deprecated)

® Helps caller know possible exceptions to catch
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Constructors and exceptions

® Constructors can throw exceptions, but:

® if a constructor throws an exception, the object’s
destructor is not run.

® |[f your object has already done something that
needs to be undone (such as allocating some
memory, etc.), this must be undone:

® using smart pointers is a solution, since their
destruction will free the resource.

® handling the resource in the constructor
before leaving it
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Constructors and exceptions

class Foo {

public:
Foo() {
try{
D = new p;
throw /* something */;
¥

catch (.. .) {




KMedia Integration and Communication Center - University of Florence, Italy f’ é,f\

N——

Where to catch an exception !

® Don't try to catch every exception in every
function

® Catching an exception in a function that
cannot take a meaningful recovery action
leads to complexity and waste.

® | et an exception propagate until it reaches a
function that can handle it.
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Exception-safe functions

® Exception-safe functions offer one of three
guarantees:

¢ basic guarantee:if an exception is thrown,
everything in the program remains in a valid state

e strong guarantee:if an exception is thrown,
the state of the program is unchanged. The call to
the function is atomic

¢ nothrow guarantee: promise to never throw
exception: they always do what they promise. Al
operations on built-in types are nothrow.
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Exception-safe code

® VWhen an exception is thrown, exception
safe functions:

® |eak no resource (e.g. new-ed objects,
handles, etc.)

® don’t allow data structures to become
corrupted (e.g.a pointer that had to point
to a new object was left pointing to
nowhere)
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Reading material

® M. Bertini, "Programmazione Object-Oriented in C++”,
parte |, cap. 5

® B.Stroustrup, C++, Linguaggio, libreria
standard, principi di programmazione”, cap. | 3

® B.Stroustrup,“C++, guida essenziale per
programmatori’ - pp.27-28

® L J. Aguilar,"Fondamenti di programmazione in

C++. Algoritmi, strutture dati e oggetti’ - cap.
| 4
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® [hese slides are based on the material of:

Credits

Dr.Walter E. Brown, Fermi Lab

Dr. Chien Chin Chen, National Taiwan
University

Dr. Jochen Lang, University of Ottawa
Fred Kuhns,Washington University

Scott Meyers, “Effective C++”, 3rd ed.
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