MMedia Integration and Communication Center - University of Florence, Italy

Programmazione

Prof. Marco Bertini
marco.bertini@unifi.it
http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/

MMedia Integration and Communication Center - University of Florence, Italy , é,f\

S—t—
4

Error handling

® Error handling involves:
® Detecting an error

® Transmitting information about an error to some
handler code

® Preserve the state of a program in a valid state
® Avoid resource leaks

® [t is not possible to recover from all errors.We
need a strategy to handle errors, especially if it is
not possible to recover from them.

NMedia Integration and Communication Center - University of Florence, Italy fL_ @f\

Exceptions

KMedia Integration and Communication Center - University of Florence, Italy f’ é,f\

What are exceptions !

® Exceptions are a mechanism for handling an
error during execution.

® A function can indicate that an error has
occurred by throwing an exception.

® The code that deals with the exception is
said to handle it.

MMedia Integration and Communication Center - University of Florence, Italy f’ é,f\

Why use exceptions !

® Code where the error occurs and code to
deal with the error can be separated

® Exceptions can be used with constructors
and other functions/operators which can not
return an error code

® Properly implemented exceptions lead to
better code

KMedia Integration and Communication Center - University of Florence, ltaly E’ é\

EN——
4

;’-

How to use exceptions !

e try
® Try executing some block of code

® See if an error occurs

e throw

® An error condition occurred

® Throw an exception to report the failure

e catch

® Handle an exception thrown in a try block

NMedia Integration and Communication Center - University of Florence, Italy f’ é,f\

S—t—
4

N——

How to use exceptions !

e try
® Try executing some block of code

® See if an An exception is an object that

e throw contains info about the problem

® An error condition dccurred

® Throw an exception to report the failure

e catch

® Handle an exception thrown in a try block

KMedia Integration and Communication Center - University of Florence, Italy f’

When to use exceptions !

AN

N——

® Exceptions are meant to signal “exceptional” events and
failures. Examples:

® A precondition that cannot be met

® A constructor that cannot construct an object (failure to
establish its class's invariant)

® An out-of-range error (e.g.,v[v.s1ze()] = 7)
® [nability to acquire a resource (e.g., the network is down)

® |n contrast, termination of an ordinary loop is hot exceptional.
® Do not use throw to return a method/function value !

® Exceptions are for error handling only.

NMedia Integration and Communication Center - University of Florence, Italy

S—t—
4

How exceptions work ?

® Normal program control flow is halted

® At the point where an exception is thrown
® The program call stack “unwinds”

® Stack frame of each function in call chain “pops”

® Variables in each popped frame are destroyed

® Goes until an enclosing try/catch scope is reached
® Control passes to first matching catch block

® Can handle the exception and continue from there

® Can free some resources and re-throw exception

lé/f\

KMedia Integration and Communication Center - University of Florence, ltaly p ﬂff\
o !_....

What's right about exceptions

® Can’t be silently ignored: if there is no
applicable catch block for an exception the
program terminates

® Automatically propagate across scopes (due
to stack unwinding)

® Handling is out of main control flow, the
code that implements the algorithm is not
polluted

MMedia Integration and Communication Center - University of Florence, Italy [L_. é,f\

Exceptions syntax

KMedia Integration and Communication Center - University of Florence, Italy E’

C++ exceptions syntax

® Use try-catch blocks to catch an
exception

Appropriate code
to handle the
exception.

try
{

}

catch

-

}

/

statement (s);

statement (s);

Place a statement(s) (function or
method) that might throw an
exception within a try block.

(ExceptionClass identifier)

\

AN\

A try block must be followed

by one or more catch blocks.

KMedia Integration and Communication Center - University of Florence, Italy E’ é\

C++ exception flow

® When a statement (function or try Throw an exception
method) in a try block causes an { /
exception: e
statement;
® Rest of try block is ignored.
by
corresponding to the exception. {
statement(s);
® After a catch block executes, ¥
control passes to statement after statement(s);

last catch block associated with the
try block.

KMedia Integration and Communication Center - University of Florence, Italy E’ p,/f\

C++ exception flow - cont

;’-

® A more complex example of exception
flow:

vold encodeChar (int i, string& str)

{

str.replace(i, 1, 1, newChar); \\\\\\\
} \

—~| Can throw the out_of_%gg exception. |
\

vold encodeString (int numChar, stringé& str)
{

for (int i=numChar-1;

encodeChar (i, str) ;

) \

N\

1>=0;

int main ()

{
string strl = “NTU IM”;
encodeString (99, strl);
return O;

Abnormal program termination

NMedia Integration and Communication Center - University of Florence, Italy E’ é\

EN——
4

—

Catching the exception

® [wo examples on how to catch the
exception:

.;.-

vold encodeChar (int 1, stringé& str)

{
try
{

str.replace(i, 1, 1, newChar);
} catch (out of range e) {
cout << “No character at ” << i << endl;

} \
}
P Sostring (i N) No character at 98
void encodeString(int numChar, stringé& str
{ No character at 97

for (int i=numChar-1; 1i>=0; 1i--)
encodeChar (i, str) ;

}

int main ()

{
string strl = “NTU IM”;
encodeString (99, strl);
return 0;

KMedia Integration and Communication Center - University of Florence, ltaly

I

N——

s

Catching the exception

® [wo examples on how to catch the
exception:

vold encodeChar (int 1, stringé& str)

{

str.replace(i, 1, 1, newChar);
} \

)

vold encodeString (int numChar, stringé& str)

{
try
{

for (int i1=numChar-1,; 1>30%
encodeChar (i, str) ; ":7
} catch (out _of range e) {
cout << "“Something wrong” << endl;
} *
}

int main ()

{
string strl = “NTU IM”;
encodeString (99, strl);

return 0;

Something wrong

MMedia Integration and Communication Center - University of Florence, ltaly

J I

Handlers

® A handler may re-throw the exception
that was passed:

® it forwards the exception

® Use:throw; // no operand

® after the local handler cleanup it will
exit the current handler

® A handler may throw an exception of a
different type

® it translates the exception

NMedia Integration and Communication Center - University of Florence, ltaly f’ @4\
-’._- ’ !\

Catching multiple exceptions

® The order of catch clauses is important:

® Especially with inheritance-related exception
classes

® Put more specific catch blocks before more
general ones

® Put catch blocks for more derived exception
classes before catch blocks for their
respective base classes

e catch(...) catches any type

NMedia Integration and Communication Center - University of Florence, Italy E’ p,/f\
-*-‘-- ’ !\

Catching multiple exceptions
example

try {
// can throw exceptions

} catch (DerivedExc &d) {
// Do something

} catch (BaseExc &d) {
// Do something else

} catch (...) {
// Catch everything else

¥

KMedia Integration and Communication Center - University of Florence, ltaly

A

What to catch ?

® Catch by reference not by value:

® t’s faster (no copying)

® t’s safer: no slicing in case of exception inheritance

® Most handlers do not modify their exception so catch const

references

Exception

Exception

You shall not pass!

Exception copy constructor

KMedia Integration and Communication Center - University of Florence, Italy

Throwing exceptions

I

® When you detect an error within a method, you
can throw an exception by using a throw
statement.

® The remaining code within the function does not
execute.

® Syntax: throw ExceptionClass(stringArgument);

type of the exception more detailed information

vold myMethod (int x)

{
it (...)

throw MyException (“"MyException: ..”);

NMedia Integration and Communication Center - University of Florence, Italy

-EL-'K;\'_...

Throwing exceptions - cont

® The exception is propagated back to the

point where the function was called.

try
{

myMethod (int x);

{

statement(s);

¥

back to here!!

/

, 7

catch (ExceptionClass identifier)

MMedia Integration and Communication Center - University of Florence, ltaly f’ @4\

What to throw

® Always throw by value, not by pointer:

® throw Exception(); // OK
® throw new Exception(); // Bad

|. You want to throw an exception, not a pointer.

2. There is no point in allocating on the heap if
you don’t have to.

3. You force to clean up memory for you when
catching.

NMedia Integration and Communication Center - University of Florence, Italy

S—t—
4

Specifying exceptions

® Functions that throw an exception have a throw clause, to
restrict the exceptions that a function can throw.

® Allow stronger type checking enforced by the compiler
® By default, a function can throw anything it wants
® A throw clause in a function’s signature
® |imits what can be thrown
® A promise to calling function
® A throw clause with no types
® Says nothing will be thrown

® Can list multiple types, comma separated

lé/f\

MMedia Integration and Communication Center - University of Florence, ltaly f’ @4\
-'._- ’ !\

Specifying exceptions examples

These are four
alternative
declarations

// can throw anything
volid Foo: :bar();

// promises not to throw
vold Foo::bar() noexcept; //C++11

// promises to only throw int
vold Foo::bar() throw(int);

// throws only char or 1int
volid Foo::bar() throw(char,int);

MMedia Integration and Communication Center - University of Florence, ltaly f’ @4\
-'._- . !\

Specifying exceptions examples

These are four
alternative
declarations

// can throw anything
volid Foo: :bar();

// promises not to throw
Old (deprecated): void Foo::bar() throw();

// promises to only throw int
vold Foo::bar() throw(int);

// throws only char or 1int
volid Foo::bar() throw(char,int);

MMedia Integration and Communication Center - University of Florence, Italy f’ /ﬁ{\

Specifying exceptions examples

// can throw anything
void Foo::bar();

Also throw specifications have been deprecated in
C++11. In general simply use hoexcept or nothing
at all.

The rationale for this change is that if a function
throws an exception different from the specified ones
then the program is terminated.

So just throw whatever must be thrown and catch it
at the appropriate level.

MMedia Integration and Communication Center - University of Florence, ltaly {, @4\

noexcept

® Use noexcept if a function surely won’t

throw (e.g. all its operations do not throw)
or...

® if it's unacceptable to throw an exception, e.g.
we are not willing or able to handle the
situation, so crashing the program is
acceptable

® Many standard-library functions are
noexcept including all the standard-library
functions from the C Standard Library.

MMedia Integration and Communication Center - University of Florence, Italy

o

Destructors and
exceptions

MMedia Integration and Communication Center - University of Florence, ltaly f’ @4\
-'._- ’ !\

Destructors and exceptions

® Prevent exceptions from leaving destructors:
premature program termination or
undefined behaviour can result from
destructors emitting exceptions

® during the stack unwinding resulting from
the processing of the exception are called
the destructors of local objects, and one
may trigger another exception

NMedia Integration and Communication Center - University of Florence, Italy E’ p,/f\

EN——

How to behave: example

class DBConnection { // class to manage DBConnection
public: class DBConnMgr {
//. .. public:
//. ..
// return a DBConnection object DBConnMgr(DBConnection dbc);
static DBConnection create(); ~DBConnMgr() {
db.close(); // we’re sure it
void close(); // close connection and // gets closed
// throws exception if }
// closing fails
}; private:
DBConnection db;
s

// client code

{
DBConnMgr dbc(DBConnection::create());

// ... use DBConnection through DBConnMgr interface
} // DBConnMgr obj 1s automatically destroyed, calling the close

NMedia Integration and Communication Center - University of Florence, Italy i é,f\
-’.‘-- ' !\

How to behave: example

class DBConnection { // class to manage DBConnection
public: class DBConnMgr {
/7. .. public:
//. ..
// return a DBConnection object DBConnMgr(DBConnection dbc);
static DBConnection create(); ~DBConnMgr() {
db.close(); // we’re sure it
void close(); // close connection and // gets closed
// throws exception if }

// closing fails
1 private:
\ NDRConnection dh:
If close() throws the

destructor propagates the
// client code

; exception
DBConnMgr dbc(DBConnection: :create());
// ... use DBConnection through DBConnMgr interface

} // DBConnMgr obj 1s automatically destroyed, calling the close

KMedia Integration and Communication Center - University of Florence, ltaly

A

— ~ | W——

(Not so good) solutions

® Jerminate the program:

DBConnMgr: : ~DBConnMgr () {
try{ db.close(); }
catch (...) {

// log failure and...
std: :abort();

¥
¥

® Swallow the exception:

DBConnMgr: : ~DBConnMgr() {
try{ db.close() }
catch (...) {
// just log the error

¥
}

léff\

EN——
4

KMedia Integration and Communication Center - University of Florence, ltaly E»

(Not so good) solutions

® Jerminate the program:

DBConnMgr: : ~DBConnMgr () {
try{ db.close(); }
catch (...) {

// log failure and...
std: :abort();

¥
¥

® Swallow the exception:

DBConnMgr: : ~DBConnMgr() {

try{ db.closeQ } With this solution we’re
catch (...) {

17 3 10 e arr just hiding the problem

}

KMedia Integration and Communication Center - University of Florence, ltaly

E’-&-—— .
"4

A better strategy

// class to manage DBConnection
class DBConnMgr {
public:
/7. ..
DBConnMgr(DBConnection dbc);
void close() {
db.close();
closed = true;
by
~DBConnMgr() { // we’re sure it gets closed
1f(!closed) {
try {
db.close();

} catch (...) {
// log and... terminate or swallow
hy
ks
ks

private:
DBConnection db;
bool closed;

+s

AN\

KMedia Integration and Communication Center - University of Florence, Italy E’
// class to manage DBConnection
class DBConnMgr {
public:
/7. ..
DBConnMgr(DBConnection dbc); Cllent COde ShOUId use
void close() { <
db. close; this method...
closed = true;
by

~DBConnMgr() { // we’re sure it gets closed
1f(!'closed) {
try {
db.close();

} catch (...) {
// log and... terminate or swallow
hy
ks
ks

private:
DBConnection db;
bool closed;

+s

AN\

AN\

KMedia Integration and Communication Center - University of Florence, Italy f’

A better strategy

// class to manage DBConnection
class DBConnMgr {

public:
/7. ..
DBConnMgr(DBConnection dbc); C||ent COde ShOUId Uuse
void close() { <
db. close(); this method...
closed = true;
by

~DBConnMgr() { // we’re sure it gets closed

if(!'closed) {
e \ v . 9
db. close); ...but if it doesn’t

} catch (...) {
// log and... terminate or swallow there’s the deStI"LICtOI"
hy
ky
by

private:
DBConnection db;
bool closed;

+s

MMedia Integration and Communication Center - University of Florence, Italy

o

Defining exceptions
classes

Syntax and example

MMedia Integration and Communication Center - University of Florence, ltaly f’ @4\
-'._- ’ !\

Defining exceptions classes

® (C++ Standard Library supplies a number of
exception classes.

e Eg, exception,out_of_range,... etc.

® You may also want to define your own exception
class.

® Should inherit from those pre-defined
exception classes for a standardized exception
working interface.
® Syntax:
#include <exception>
using namespace std;

MMedia Integration and Communication Center - University of Florence, ltaly f’ @4\

N——

Purpose-designed user-defined exceptions

® |t is a good practice to use purpose-designed
user-defined types as exceptions:

® They do not clash with other people’s
exceptions

® (Clear intent of the code

® Standard-library exceptions should be used as
base classes or for exceptions requiring
“generic handling”

NMedia Integration and Communication Center - University of Florence, Italy L._f”é\x
BAD GOOD
void my_code() { void my_code() {
// ... /...
throw runtime_error{"moon 1n throw Moonphase_error{};
the 4th quarter"}; /]
// ... }
Iy
vold your_code() {
void your_code() { try {
try { /] ...
/... my_code();
my_code(); // ...
/... }
1 catch(const
catch(const runtime_error&) { Bufferpool_exhausted&) {
// runtime_error means // ...
// "input buffer too small" }
// ... }
ks

¥

KMedia Integration and Communication Center - University of Florence, ltaly

[

Defining exceptions classes

example

#include <exception>
#include <string>
using namespace std;

class MyException : public exception

{
public:
MyException (const string & Message = %)
exception (Message.c gtr()) {!}

try
{

}

catch (MyExceptoin e)

{
}

cout << e.what();

/

L —

7 ———

/ —

throw MyException (“more detailed information”);

I

KMedia Integration and Communication Center - University of Florence, Italy

A full example

® An ADT List implementation using
exceptions:

® out-of-bound list index.

® attempt to insert into a full list.

NMedia Integration and Communication Center - University of Florence, Italy E’ é\

Define two exception classes

#1include <exception>
#1nclude <string>
using namespace std;

class ListIndexOutOfRangeException : public out_of_range {
public:
ListIndexOutOfRangeException(const string& message = “”)
: out_of_range(message.c_str()) {}
}; // end ListException

class ListException : public logic_error {
public:
ListException(const string & message = “”)
: logic_error(message.c_str()) {}
Y // end ListException

NMedia Integration and Communication Center - University of Florence, Italy

Declare the throw

#1include “MylListExceptions.h”

class List
{
public:

vold insert(int index, const ListItemType& newltem)

throw(L1istIndexOutOfRangeException,
ListException);

1 // end List

E’h—
g

AN\

KMedia Integration and Communication Center - University of Florence, Italy f’ p,/f\

Method implementation

vold List::insert(int index, const ListItemType& newItem)
throw(ListIndexOutOfRangeException, ListException) {
1f (size >= MAX_LIST)
throw ListException("ListException: List full on 1insert");
1f (index >= 1 && 1ndex <= size+l) {
for (int pos = size; pos >= 1ndex; --pos)
1tems[translate(pos+1)] = items[translate(pos)];
// 1nsert new 1item
1tems[translate(index)] = newltem;
++s1ze; // 1increase the size of the list by one
} else // index out of range
throw ListIndexOutOfRangeException(
"ListIndexOutOfRangeException: Bad index on insert");
1 // end insert

KMedia Integration and Communication Center - University of Florence, Italy E‘, p,/f\
-’-~ ’ !\

Good Programming Style
with C++ Exceptions

® Don’t use exceptions for normal program flow

® Only use where normal flow isn’t possible
® Don’t let exceptions leave destructors

® |[f during stack unwinding one more exception is
thrown then the program is terminated.

® Always throw some type
® So the exception can be caught

o Use-exceptionspecifications-widely (deprecated)

® Helps caller know possible exceptions to catch

NMedia Integration and Communication Center - University of Florence, ltaly f’ @4\
-’._- ’ !\

Constructors and exceptions

® Constructors can throw exceptions, but:

® if a constructor throws an exception, the object’s
destructor is not run.

® |[f your object has already done something that
needs to be undone (such as allocating some
memory, etc.), this must be undone:

® using smart pointers is a solution, since their
destruction will free the resource.

® handling the resource in the constructor
before leaving it

MMedia Integration and Communication Center - University of Florence, Italy ﬂ (}\.

Constructors and exceptions

class Foo {

public:
Foo() {
try{
D = new p;
throw /* something */;
¥

catch (.. .) {

KMedia Integration and Communication Center - University of Florence, Italy f’ é,f\

N——

Where to catch an exception !

® Don't try to catch every exception in every
function

® Catching an exception in a function that
cannot take a meaningful recovery action
leads to complexity and waste.

® | et an exception propagate until it reaches a
function that can handle it.

MMedia Integration and Communication Center - University of Florence, ltaly f’ @4\
-'._- . !\

Exception-safe functions

® Exception-safe functions offer one of three
guarantees:

¢ basic guarantee:if an exception is thrown,
everything in the program remains in a valid state

e strong guarantee:if an exception is thrown,
the state of the program is unchanged. The call to
the function is atomic

¢ nothrow guarantee: promise to never throw
exception: they always do what they promise. Al
operations on built-in types are nothrow.

NMedia Integration and Communication Center - University of Florence, Italy {’ @4\

Exception-safe code

® VWhen an exception is thrown, exception
safe functions:

® |eak no resource (e.g. new-ed objects,
handles, etc.)

® don’t allow data structures to become
corrupted (e.g.a pointer that had to point
to a new object was left pointing to
nowhere)

MMedia Integration and Communication Center - University of Florence, ltaly f’ é,f\

Reading material

® M. Bertini, "Programmazione Object-Oriented in C++”,
parte |, cap. 5

® B.Stroustrup, C++, Linguaggio, libreria
standard, principi di programmazione”, cap. | 3

® B.Stroustrup,“C++, guida essenziale per
programmatori’ - pp.27-28

® L J. Aguilar,"Fondamenti di programmazione in

C++. Algoritmi, strutture dati e oggetti’ - cap.
| 4

MMedla Integration and Communication Center - University of Florence, ltaly

J I

® [hese slides are based on the material of:

Credits

Dr.Walter E. Brown, Fermi Lab

Dr. Chien Chin Chen, National Taiwan
University

Dr. Jochen Lang, University of Ottawa
Fred Kuhns,Washington University

Scott Meyers, “Effective C++”, 3rd ed.

http://www.wustl.edu/

