
Laboratorio di
Programmazione

Prof. Marco Bertini
marco.bertini@unifi.it

http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/

Refactoring

“Any fool can write code that a computer can understand.
Good programmers write code that humans can

understand.” - Martin Fowler

The problem

• The overall goal of software engineering is to
create high quality software efficiently.

• But there are always many reasonable reasons
that make this goal hard to reach…

• Requirements change over time, making it
hard to update your code (leading to less
optimal designs)

• Time and money cause you to take shortcuts

• You learn a better way to do something

The solution

• “Refactoring is the process of changing a software
system in such a way that it does not alter the
external behavior of the code yet improves its internal
structure. It is a disciplined way to clean up code that
minimizes the chances of introducing bugs.” (Martin
Fowler, 1999)

• Refactoring modifies software to improve its
readability, maintainability, and extensibility without
changing what it actually does:

• External behavior does NOT change

• Internal structure is improved

The solution

• “Refactoring is the process of changing a software
system in such a way that it does not alter the
external behavior of the code yet improves its internal
structure. It is a disciplined way to clean up code that
minimizes the chances of introducing bugs.” (Martin
Fowler, 1999)

• Refactoring modifies software to improve its
readability, maintainability, and extensibility without
changing what it actually does:

• External behavior does NOT change

• Internal structure is improved

Refactoring is a technique which identifies bad code
(code that “smells”) and promotes the re-
structuring of that bad code into classes and
methods that are more readable, maintainable, and
generally sparse in code. Refactoring yields a
“better” design of both your classes and methods.

Typically this means restructuring (rearranging) code
in a series of small, semantics-preserving
transformations (i.e. the code keeps working)…

Refactoring: goals

• The goal of refactoring is NOT to add new
functionality

• The goal is refactoring is to make code easier
to maintain in the future

• During refactoring you need to keep the code
working

• You need to have unit tests to prove the
code works

Refactoring: risks

• Refactoring CAN introduce problems, because
anytime you modify software you may introduce
bugs!

• Management thus says:

• Refactoring adds risk!

• It’s expensive – we’re spending time in
development, but not “seeing” any external
differences? And we still have to retest?

• Why are we doing this?

Refactoring: benefits

• We refactor because we understand getting
the design right the first time is hard and you
get many benefits from refactoring:

• Code size is often reduced

• Confusing code is restructured into simpler
code

• Both of these greatly improve maintainability,
which is required because requirements
always change.

How to reduce risks

• ensure rollback (e.g. via versioning): be able to
roll back to a previous working version

• small steps, one at a time: if you make a
mistake, it is easy to find the bug.

• always test (unit tests, and more): before you
start refactoring, check that you have a solid
suite of tests.

When to refactor
• You should refactor:

• Any time that you see a better way to do things

• “Better” means making the code easier to understand
and to modify in the future

• If you can do so without breaking the code

• Unit tests are essential for this

• You should not refactor:

• Stable code (code that won’t ever need to change)

• Someone else’s code

• Unless you’ve inherited it (and now it’s yours)

When to refactor
• You should refactor:

• Any time that you see a better way to do things

• “Better” means making the code easier to understand
and to modify in the future

• If you can do so without breaking the code

• Unit tests are essential for this

• You should not refactor:

• Stable code (code that won’t ever need to change)

• Someone else’s code

• Unless you’ve inherited it (and now it’s yours)

Refactor when you add functionalities.
Before you add new features, make sure your design
and current code is “good”: this will help the new
code be easier to write

Refactor as you do a code review.

Refactor when you fix a bug.

What to refactor

• Martin Fowler uses “code smells” to identify
when to refactor.

• Code smells are bad things done in code,
somewhat like bad patterns in code

• Get a list here: http://wiki.c2.com/?CodeSmell

http://wiki.c2.com/?CodeSmell

Refactoring catalog

• Martin Fowler has written a book  
reporting a catalog of refactoring  
operations

• Each refactoring entry is described with a
name, summary of its operations, motivation,
mechanics (how to do the refactoring), and
examples (in Java)

Bad smells in code

• A “bad smell” in code is a structure of code
that suggests the possibility of refactoring.

• There’s no formal description

• A list of bad smells with short informal
descriptions and links to the refactoring that
are more suitable is given on the book by
Fowler mentioned in the previous slide.

Code smells

• Duplicated Code

• bad because if you modify one instance of
duplicated code but not the others, you (may)
have introduced a bug!

• Long Method

• long methods are more difficult to understand

• rewrite a method as calls to many smaller
well-named methods. They will become the
documentation of the method itself

Code smells

• Large Class

• classes try to do too much, which reduces cohesion. Does your class
have too many instance variables or too much code ? Does it
contains repetitions ?

• Long Parameter List

• hard to understand, can become inconsistent.

• Aren’t you programming in procedural style ? Can’t you pass an
object or have an instance variable ?

• Divergent Change

• Related to cohesion. Symptom: one type of change requires changing
one subset of methods; another type of change requires changing
another subset. Perhaps the class has too many responsibilities.

Code smells

• Lazy Class

• A class that no longer “pays its way”

• e.g. may be a class that was downsized by a previous
refactoring, or represented planned functionality that did not
pan out

• Speculative Generality

• “Oh I think we need the ability to do this kind of thing
someday”

• Temporary Field

• An attribute of an object is only set in certain circumstances;
but an object should need all of its attributes

Code smells
• Data Class

• These are classes that have fields, getting and setting methods for the
fields, and nothing else; they are data holders, but objects should be
about data AND behavior

• Refused Bequest

• A subclass ignores most of the functionality provided by its superclass

• Subclass may not pass the “IS-A” test

• Comments (!)

• Comments are sometimes used to hide bad code

• “…comments often are used as a deodorant” (!)

• a good comment should tell why code does something.

Code smells

• Inconsistent names

• Pick a set of standard terminology and stick to it throughout your
methods. For example, if you have Open(), you should probably have
Close().

• Combinatorial Explosion

• You have lots of code that does almost the same thing.. but with tiny
variations in data or behavior. This can be difficult to refactor -
perhaps using templates (generic programming)

• Dead code

• just eliminate code that is not used. If you use version control there’s
no risk.

Code smells

• Shotgun surgery

• Every time you make a kind of change in a class
you have to make a lot of little changes to a lot of
different classes

• … you’ll surely miss one of these changes sooner
or later. Bring them together to avoid this risk.

• Parallel Inheritance hierarchies

• Sort of a special case of the previous one: every
time you make a subclass of one class, you also
have to make a subclass of another one.

Code smells
• Inappropriate intimacy

• Classes may make too much use of each other’s fields and methods

• Move methods and fields to the class or create a class that satisfies the
needs of both classes

• Testing for null

• According to Fowler: “The essence of polymorphism is that instead of asking
an object what type it is and then invoking some behavior based on the
answer, you just invoke the behavior. The object, depending on its type, does
the right thing.”

• Unfortunately, if the object might be null, you have to test it first

• An occasional test for null isn’t so bad, but a lot of them will clutter up the
code. Solution: introduce a “null object”—a real object of the correct class
(or a subclass of the correct class) that has the appropriate behavior

Code smells
• Inappropriate intimacy

• Classes may make too much use of each other’s fields and methods

• Move methods and fields to the class or create a class that satisfies the
needs of both classes

• Testing for null

• According to Fowler: “The essence of polymorphism is that instead of asking
an object what type it is and then invoking some behavior based on the
answer, you just invoke the behavior. The object, depending on its type, does
the right thing.”

• Unfortunately, if the object might be null, you have to test it first

• An occasional test for null isn’t so bad, but a lot of them will clutter up the
code. Solution: introduce a “null object”—a real object of the correct class
(or a subclass of the correct class) that has the appropriate behavior

… and many other “bad smells”…

The book by Fowler reports them.

Refactoring methods

Refactoring categories

• Refactoring methods are grouped in
categories:

• Composing Methods 
– Creating methods out of inlined code

• Moving Features Between Objects 
– Changing of decisions regarding where to
put responsibilities

• Organizing Data  
– Make working with data easier

Refactoring categories

• Simplifying Conditional Expressions

• Making Method Calls Simpler  
– Creating more straightforward interfaces

• Dealing with Generalization  
– Moving methods around within hierarchies

• Big Refactorings  
– Refactoring for larger purposes

Extract method

• You have a code fragment that can be grouped
together. Turn the fragment in to a method
whose name explains the purpose of the
method.

• Extract Method is one of the most common
refactoring. Look at a method that is too long
or look at code that needs a comment to
understand its purpose. Then turn that
fragment of code into its own method.

Extract method

• You have a code fragment that can be grouped
together. Turn the fragment in to a method
whose name explains the purpose of the
method.

• Extract Method is one of the most common
refactoring. Look at a method that is too long
or look at code that needs a comment to
understand its purpose. Then turn that
fragment of code into its own method.

Category: Composing Methods

Extract method
• Create a new method, and name it after the intention of the method

(name it by what it does, not by how it does it)

• Copy the extracted code from the source method into the new target
method

• Scan the extracted code for references to any variables that are local in
scope to the source method

• See whether any temporary variables are used only within this extracted
code. If so, declare them in the target method as temporary variables  
Look to see whether any local-scope variable are modified by the
existing code

• Pass into the target method as parameters local scope variables that are
read from the extracted code

• Replace the extracted code in the source method with a call to the
target method

Extract method
• Create a new method, and name it after the intention of the method

(name it by what it does, not by how it does it)

• Copy the extracted code from the source method into the new target
method

• Scan the extracted code for references to any variables that are local in
scope to the source method

• See whether any temporary variables are used only within this extracted
code. If so, declare them in the target method as temporary variables  
Look to see whether any local-scope variable are modified by the
existing code

• Pass into the target method as parameters local scope variables that are
read from the extracted code

• Replace the extracted code in the source method with a call to the
target method

void printForm() {
 printBanner();

 //print details
 cout << "name: " << name << endl;
 cout << "amount: " << getOutstanding()  
 << endl;
}

Extract method
• Create a new method, and name it after the intention of the method

(name it by what it does, not by how it does it)

• Copy the extracted code from the source method into the new target
method

• Scan the extracted code for references to any variables that are local in
scope to the source method

• See whether any temporary variables are used only within this extracted
code. If so, declare them in the target method as temporary variables  
Look to see whether any local-scope variable are modified by the
existing code

• Pass into the target method as parameters local scope variables that are
read from the extracted code

• Replace the extracted code in the source method with a call to the
target method

void printForm() {
 printBanner();

 //print details
 cout << "name: " << name << endl;
 cout << "amount: " << getOutstanding()  
 << endl;
}

void printForm() {
 printBanner();
 printDetails(getOutstanding());
}

void printDetails(double outstanding) {
 cout << "name: " << name << endl;
 cout << "amount: " << outstanding  
 << endl;
}

Inline method

• It is the opposite of Extract Method: substitute a call to
a method with its own code

• When a method body is more obvious than the method
itself, replace calls to the method with the method's
content and delete the method itself.

• Make sure that the method is not redefined in
subclasses. If the method is redefined, refrain from
this technique.

• Find all calls to the method. Replace these calls with
the content of the method.

• Delete the method.

Inline method

• It is the opposite of Extract Method: substitute a call to
a method with its own code

• When a method body is more obvious than the method
itself, replace calls to the method with the method's
content and delete the method itself.

• Make sure that the method is not redefined in
subclasses. If the method is redefined, refrain from
this technique.

• Find all calls to the method. Replace these calls with
the content of the method.

• Delete the method.

Category: Composing Methods

Inline method

• It is the opposite of Extract Method: substitute a call to
a method with its own code

• When a method body is more obvious than the method
itself, replace calls to the method with the method's
content and delete the method itself.

• Make sure that the method is not redefined in
subclasses. If the method is redefined, refrain from
this technique.

• Find all calls to the method. Replace these calls with
the content of the method.

• Delete the method.

Category: Composing Methods

class PizzaDelivery {
 //...
 int getRating() {
 return moreThanFiveLateDeliveries() ? 2 : 1;
 }
 bool moreThanFiveLateDeliveries() {
 return numberOfLateDeliveries > 5;
 }
}

Inline method

• It is the opposite of Extract Method: substitute a call to
a method with its own code

• When a method body is more obvious than the method
itself, replace calls to the method with the method's
content and delete the method itself.

• Make sure that the method is not redefined in
subclasses. If the method is redefined, refrain from
this technique.

• Find all calls to the method. Replace these calls with
the content of the method.

• Delete the method.

Category: Composing Methods

class PizzaDelivery {
 //...
 int getRating() {
 return moreThanFiveLateDeliveries() ? 2 : 1;
 }
 bool moreThanFiveLateDeliveries() {
 return numberOfLateDeliveries > 5;
 }
}

class PizzaDelivery {
 //...
 int getRating() {
 return numberOfLateDeliveries > 5 ? 2 : 1;
 }
}

Split temporary variable
• You have a local variable that is used to store various intermediate values

inside a method (except for cycle variables).

• Use different variables for different values. Each variable should be
responsible for only one particular thing.

• If you are skimping on the number of variables inside a function and
reusing them for various unrelated purposes, you are sure to encounter
problems as soon as you need to make changes to the code containing
the variables.

• Find the first place in the code where the variable is given a value. Here
you should rename the variable with a name that corresponds to the
value being assigned.

• Use the new name instead of the old one in places where this value of
the variable is used.

• Repeat as needed for places where the variable is assigned a different
value.

Split temporary variable
• You have a local variable that is used to store various intermediate values

inside a method (except for cycle variables).

• Use different variables for different values. Each variable should be
responsible for only one particular thing.

• If you are skimping on the number of variables inside a function and
reusing them for various unrelated purposes, you are sure to encounter
problems as soon as you need to make changes to the code containing
the variables.

• Find the first place in the code where the variable is given a value. Here
you should rename the variable with a name that corresponds to the
value being assigned.

• Use the new name instead of the old one in places where this value of
the variable is used.

• Repeat as needed for places where the variable is assigned a different
value.

double temp = 2 * (height + width);
cout << temp << endl;
temp = height * width;
cout << temp << endl;

Split temporary variable
• You have a local variable that is used to store various intermediate values

inside a method (except for cycle variables).

• Use different variables for different values. Each variable should be
responsible for only one particular thing.

• If you are skimping on the number of variables inside a function and
reusing them for various unrelated purposes, you are sure to encounter
problems as soon as you need to make changes to the code containing
the variables.

• Find the first place in the code where the variable is given a value. Here
you should rename the variable with a name that corresponds to the
value being assigned.

• Use the new name instead of the old one in places where this value of
the variable is used.

• Repeat as needed for places where the variable is assigned a different
value.

double temp = 2 * (height + width);
cout << temp << endl;
temp = height * width;
cout << temp << endl;

double perimeter = 2 * (height + width);
cout << perimeter << endl;
double area = height * width;
cout << area << endl;

Move method

• A method is used more in another class than
in its own class.

• Create a new method in the class that uses
the method the most, then move code from
the old method to there. Turn the code of the
original method into a reference to the new
method in the other class or else remove it
entirely.

Move method

• A method is used more in another class than
in its own class.

• Create a new method in the class that uses
the method the most, then move code from
the old method to there. Turn the code of the
original method into a reference to the new
method in the other class or else remove it
entirely.

Category: Moving Features between Objects

Extract class

• When one class does the work of two,
awkwardness results.

• Instead, create a new class and place the fields
and methods responsible for the relevant
functionality in it.

• This refactoring method will help maintain
adherence to the Single Responsibility
Principle.

Extract class

• When one class does the work of two,
awkwardness results.

• Instead, create a new class and place the fields
and methods responsible for the relevant
functionality in it.

• This refactoring method will help maintain
adherence to the Single Responsibility
Principle.

Category: Moving Features between Objects

Replace Magic Number with
Symbolic Constant

• Your code uses a number that has a certain
meaning to it.

• Replace this number with a constant that has a
human-readable name explaining the meaning
of the number.

Category: Organizing Data

Replace Magic Number with
Symbolic Constant

• Your code uses a number that has a certain
meaning to it.

• Replace this number with a constant that has a
human-readable name explaining the meaning
of the number.

Category: Organizing Data

Replace Magic Number with
Symbolic Constant

• Your code uses a number that has a certain
meaning to it.

• Replace this number with a constant that has a
human-readable name explaining the meaning
of the number.

double potentialEnergy(double mass, double height) {
 return mass * height * 9.81;
}

Category: Organizing Data

Replace Magic Number with
Symbolic Constant

• Your code uses a number that has a certain
meaning to it.

• Replace this number with a constant that has a
human-readable name explaining the meaning
of the number.

double potentialEnergy(double mass, double height) {
 return mass * height * 9.81;
}

const double GRAVITATIONAL_CONSTANT = 9.81;

double potentialEnergy(double mass, double height) {
 return mass * height * GRAVITATIONAL_CONSTANT;
}

Introduce Null Object

• Since some methods return “null” instead of
real objects, you have many checks for “null” in
your code.

• Instead of “null”, return a null object that
exhibits the default behavior.

• The price of getting rid of conditionals is
creating yet another new class.

Category: Simplifying Conditional Expressions

Introduce Null Object

• Since some methods return “null” instead of
real objects, you have many checks for “null” in
your code.

• Instead of “null”, return a null object that
exhibits the default behavior.

• The price of getting rid of conditionals is
creating yet another new class.

Category: Simplifying Conditional Expressions

Introduce Null Object

• Since some methods return “null” instead of
real objects, you have many checks for “null” in
your code.

• Instead of “null”, return a null object that
exhibits the default behavior.

• The price of getting rid of conditionals is
creating yet another new class.

class Animal {
public:
 virtual void make_sound() = 0;
};
class Dog : public Animal {
 void make_sound() { cout << "woof!" << endl; }
};
void make_default_sound() {  
 cout << “...” << endl;  
}
 
Animal* a = getAnimal(...);  
if (a != nullptr)  
 a->make_sound();  
else  
 make_default_sound();

Category: Simplifying Conditional Expressions

Introduce Null Object

• Since some methods return “null” instead of
real objects, you have many checks for “null” in
your code.

• Instead of “null”, return a null object that
exhibits the default behavior.

• The price of getting rid of conditionals is
creating yet another new class.

class Animal {
public:
 virtual void make_sound() = 0;
};
class Dog : public Animal {
 void make_sound() { cout << "woof!" << endl; }
};
void make_default_sound() {  
 cout << “...” << endl;  
}
 
Animal* a = getAnimal(...);  
if (a != nullptr)  
 a->make_sound();  
else  
 make_default_sound();

class Animal {
public:
 virtual void make_sound() = 0;
};
class Dog : public Animal {
 void make_sound() { cout << "woof!" << endl; }
};
class NullAnimal : public Animal {
 void make_sound() { cout << “...” << endl;}
};

// may return null_animal  
Animal* a = getAnimal(...);  
a->make_sound();

Rename method

• The name of a method does not explain what
the method does.

• Rename the method.

• Perhaps a method was poorly named from the
very beginning – for example, the method was
created in a rush without giving proper care to
naming it well.

• Or perhaps the method was well named at
first but as its functionality changed and its
name stopped being a good descriptor.

Rename method

• The name of a method does not explain what
the method does.

• Rename the method.

• Perhaps a method was poorly named from the
very beginning – for example, the method was
created in a rush without giving proper care to
naming it well.

• Or perhaps the method was well named at
first but as its functionality changed and its
name stopped being a good descriptor.

Category: Simplifying Method Calls

Rename method

It is not a simple find/rename: we have to find all
references to the old method and replace them

with references to the new one.

Pull Up Field

• Two classes have the same field.

• Remove the field from subclasses and move it to
the superclass.

• Subclasses grew and developed separately,
causing identical (or nearly identical) fields and
methods to appear.

• Eliminates duplication of fields in subclasses.

• Eases subsequent relocation of duplicate
methods, if they exist, from subclasses to a
superclass.

Pull Up Field

• Two classes have the same field.

• Remove the field from subclasses and move it to
the superclass.

• Subclasses grew and developed separately,
causing identical (or nearly identical) fields and
methods to appear.

• Eliminates duplication of fields in subclasses.

• Eases subsequent relocation of duplicate
methods, if they exist, from subclasses to a
superclass.

Category: Dealing with Generalisation

Pull Up Field

Pull Up method

• Similar to pull up field… Your subclasses have
methods that perform similar work.

• Make the methods identical and then move
them to the relevant superclass.

• Gets rid of duplicate code. If you need to
make changes to a method, it's better to do
so in a single place than have to search for
all duplicates of the method in subclasses.

Pull Up method

• Similar to pull up field… Your subclasses have
methods that perform similar work.

• Make the methods identical and then move
them to the relevant superclass.

• Gets rid of duplicate code. If you need to
make changes to a method, it's better to do
so in a single place than have to search for
all duplicates of the method in subclasses.

Category: Dealing with Generalisation

Pull up method

Push down field/method

• It’s the opposite of the previous case: is a field used only
in a few subclasses? Is behavior implemented in a
superclass used by only one (or a few) subclasses?

• Then move the attribute or behavior to the subclass

• Perhaps at first a certain method was meant to be
universal for all classes but in reality is used in only
one subclass. This situation can occur when planned
features fail to materialize.

• Such situations can also occur after partial extraction
(or removal) of functionality from a class hierarchy,
leaving a method that is used in only one subclass

Push down field/method

• It’s the opposite of the previous case: is a field used only
in a few subclasses? Is behavior implemented in a
superclass used by only one (or a few) subclasses?

• Then move the attribute or behavior to the subclass

• Perhaps at first a certain method was meant to be
universal for all classes but in reality is used in only
one subclass. This situation can occur when planned
features fail to materialize.

• Such situations can also occur after partial extraction
(or removal) of functionality from a class hierarchy,
leaving a method that is used in only one subclass

Category: Dealing with Generalisation

Push down field/method

Extract Subclass

• A class has features that are used only in
certain cases.

• Create a subclass and use it in these cases.

• Your main class has methods and fields for
implementing a certain rare use case for the
class. While the case is rare, the class is
responsible for it and it would be wrong to
move all the associated fields and methods
to an entirely separate class. But they could
be moved to a subclass.

Extract Subclass

• A class has features that are used only in
certain cases.

• Create a subclass and use it in these cases.

• Your main class has methods and fields for
implementing a certain rare use case for the
class. While the case is rare, the class is
responsible for it and it would be wrong to
move all the associated fields and methods
to an entirely separate class. But they could
be moved to a subclass.

Category: Dealing with Generalisation

Extract subclass

Extract Superclass

• You have two classes with common fields and
methods.

• Create a shared superclass for them and move all the
identical fields and methods to it.

• One type of code duplication occurs when two
classes perform similar tasks in the same way, or
perform similar tasks in different ways. This should
be handled via inheritance. But oftentimes this
similarity remains unnoticed until classes are
created, necessitating that an inheritance structure
be created later.

Extract Superclass

• You have two classes with common fields and
methods.

• Create a shared superclass for them and move all the
identical fields and methods to it.

• One type of code duplication occurs when two
classes perform similar tasks in the same way, or
perform similar tasks in different ways. This should
be handled via inheritance. But oftentimes this
similarity remains unnoticed until classes are
created, necessitating that an inheritance structure
be created later.

Category: Dealing with Generalisation

Extract Superclass

Convert Procedural Design

• Take each record type and turn it into a “dumb”
data object with accessors

• Take all procedural code and put it into a single
class

• Take each long method and apply Extract Method
and the related factorings to break it down. As you
break down the procedures use Move Method to
move each one to the appropriate dumb data class

• Continue until all behavior is removed from the
original class

Convert Procedural Design

• Take each record type and turn it into a “dumb”
data object with accessors

• Take all procedural code and put it into a single
class

• Take each long method and apply Extract Method
and the related factorings to break it down. As you
break down the procedures use Move Method to
move each one to the appropriate dumb data class

• Continue until all behavior is removed from the
original class

Category: Big refactoring

CLion and refactoring

CLion and refactoring

• CLion offers you a set of  
code refactorings, which  
track down and correct  
the affected code  
references automatically.

• other modern IDEs provide similar services,
e.g. Eclipse.

• some of these refactoring apply also to files
and project structure, e.g. renaming/deleting
files

CLion and refactoring

• Rename: renames symbols, automatically
correcting all references in the code for you.

• Change Signature: helps you add/remove/
reorder function parameters, change the result
type or update the name of the function, all
usages will be fixed as well.

• Move: moves files or directories, as well as
methods, variables or constants.

• Copy: creates a copy of file or directory.

CLion and refactoring

• Safe Delete: safely removes files and symbols
from your code.

• Inline: replaces redundant variable usage/
method calls with its initializer/declaration.

• Extract refactoring – CLion analyses the block
of code where the refactoring was invoked,
detects input and output variables, together
with the usages of the selected expression to
replace them with the newly created

CLion and refactoring

• Safe Delete: safely removes files and symbols
from your code.

• Inline: replaces redundant variable usage/
method calls with its initializer/declaration.

• Extract refactoring – CLion analyses the block
of code where the refactoring was invoked,
detects input and output variables, together
with the usages of the selected expression to
replace them with the newly created

Extract can be applied to:

▪ Variable
▪ Constant
▪ Parameter
▪ Typedef
▪ Define
▪ Method
▪ Superclass
▪ Subclass

CLion and refactoring

• Pull Members Up safely moves class members
to a superclass.

• Push Members Down safely moves class
members to a subclass.

How to refactor

• Select (or hover caret on) a symbol or code
fragment to refactor. The set of available refactorings
depends on your selection.

• On the main Refactor menu or on the context menu
of the selection, choose the desired refactoring

• For certain refactorings, there is an option of
previewing the changes prior to actually
performing the refactoring.

• If conflicts are expected after the refactoring,
CLion displays a dialog with a brief description of
the encountered problems.

Change signature

• The Change Signature refactoring combines
several different modifications that can be
applied to a function signature. It allows:

• To change the function name.

• To change the function return type.

• To add new parameters and remove the
existing ones.

• To reorder parameters.

Extract constant/define

• Implements the “Replace Magic Number with
Symbolic Constant” refactoring substituting a
number with a constant or define.

• Select the expression to be changed, if more than
one expression is detected for the current
cursor position, the Expressions list appears. If
this is the case, select the required expression.

• If more than one occurrence of the expression is
found within the class, specify whether you wish
to replace only the selected occurrence, or all
the found occurrences with the new constant.

Extract function

• Creates a function from a fragment of code,
detecting variables that are the input for the
selected code fragment and the variables that
are output for it.

Extract Superclass/Subclass

• Perform the corresponding refactorings

• Select the desired class in one of the views,
or just open it in the editor, then select the
refactoring

• Specify names of new classes and which
methods are to be moved

Extract Superclass: example

Extract Subclass: example

Move

• Move methods and declarations as the
corresponding refactoring

• Moves also files, to reorganize a project

Pull / push members

• Perform the corresponding refactorings

Rename

• Perform the corresponding refactoring if
applied to a method, allows to rename
everything and to re-organize the project
applying it to files or directories.

Safe delete

• Allows to remove files, checking if there some
use for the code they contain.

• Partially updates the CMake instructions. In
some cases the resulting CMake may not be
correct and has to be adjusted manually.

Reading material

• M. Fowler, K. Beck, J. Brant, W. Opdyke, and D.
Roberts, “Refactoring: Improving the Design of
Existing Code”, Addison-Wesley.

• Tutorial: https://sourcemaking.com/refactoring

https://sourcemaking.com/refactoring

Credits

• These slides are based on the material of:

• David Matuszek, Univ. of Pennsylvania

• Dan Fleck, George Mason University

• Jonathan I. Maletic, Kent State University

