
Programmazione
Prof. Marco Bertini

marco.bertini@unifi.it
http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/

Design pattern

Factory

Some motivations

• Consider a user interface toolkit to support
multiple look-and-feel standards:

• for portability an application must not hard
code its widgets for one look and feel.

• Use of the factory pattern allows:

• generation of different instances of a class,
using same parameter types

• increase of system flexibility – code can use an
object of an interface (type) w/o knowing
which class (implementation) it belongs to

Factory pattern
• Problem

• You want a class to create a related class
polymorphically

• Context

• Each class knows which version of the related class
it should create

• Solution

• Declare abstract method that derived classes
override

• Consequences

• Type created matches type(s) it’s used with

Factory pattern

• Factory: a class whose sole job is to easily
create and return instances of other classes:

• it’s a creational pattern; makes it easier to
construct complex objects, create
individual objects in situations where the
constructor alone is inadequate.

• instead of calling a constructor, use a static
method in a "factory" class to set up the
object

Pattern intent

• Define an interface for creating an object,
but let subclasses decide which class to
instantiate.

• Lets a class defer instantiation to subclasses

• We’ll see some variations on the theme of
Factory

The problem with new
• In some cases there’s need to instantiate closely

related classes (e.g. derived from a common base)
depending on some criteria, e.g.:

• Duck duck;  
if (picnic) {  
 duck = new MallardDuck();  
} else if(decorating) {  
 duck = new DecoyDuck();  
} else if(inBathTub) {  
 duck = new RubberDuck();  
}

The problem with new
• In some cases there’s need to instantiate closely

related classes (e.g. derived from a common base)
depending on some criteria, e.g.:

• Duck duck;  
if (picnic) {  
 duck = new MallardDuck();  
} else if(decorating) {  
 duck = new DecoyDuck();  
} else if(inBathTub) {  
 duck = new RubberDuck();  
}

What happens if we
have to add another
duck ?

Simple Factory

Goal

• Encapsulate the creation of related classes
into one class: we’ll have to modify only that
class when the implementation changes

• The factory will handle the details of object
creation

• The Simple Factory is not a real Design
Pattern, it’s more a programming idiom

Design Patterns and
Programming Idioms

• According to Alexander, a pattern:

• Describes a recurring problem

• Describes the core of a solution

• Is capable of generating many distinct designs

• An Idiom is more restricted

• Still describes a recurring problem

• Provides a more specific solution, with fewer variations

• Applies only to a narrow context

• e.g., the C++ language

Simple Factory example

Pizza* orderPizza(string type) {  
 Pizza* pizza = 0;  
 
 if (type.compare(“4cheeses”) == 0)  
 pizza = new FourCheesesPizza();  
 else if (type.compare(“zucchini”) == 0)  
 pizza = new ZucchiniPizza();  
 else if (type.compare(“ham_mushrooms”) == 0)  
 pizza = new HamMushroomsPizza();  
 
 pizza->prepare();  
 pizza->bake();  
 pizza->box();  
 return pizza;  
}

Simple Factory example

Pizza* orderPizza(string type) {  
 Pizza* pizza = 0;  
 
 if (type.compare(“4cheeses”) == 0)  
 pizza = new FourCheesesPizza();  
 else if (type.compare(“zucchini”) == 0)  
 pizza = new ZucchiniPizza();  
 else if (type.compare(“ham_mushrooms”) == 0)  
 pizza = new HamMushroomsPizza();  
 
 pizza->prepare();  
 pizza->bake();  
 pizza->box();  
 return pizza;  
}

Adding new types of
pizzas will require
to change this code

Simple Factory example

Pizza* orderPizza(string type) {  
 Pizza* pizza = 0;  
 
 if (type.compare(“4cheeses”) == 0)  
 pizza = new FourCheesesPizza();  
 else if (type.compare(“zucchini”) == 0)  
 pizza = new ZucchiniPizza();  
 else if (type.compare(“ham_mushrooms”) == 0)  
 pizza = new HamMushroomsPizza();  
 
 pizza->prepare();  
 pizza->bake();  
 pizza->box();  
 return pizza;  
}

Adding new types of
pizzas will require
to change this code

This part of code will
remain the same

Encapsulating object creation

class SimplePizzaFactory {  
 public: Pizza* createPizza(string type) const {  
 
 Pizza* pizza = 0;  
 
 if (type.compare(“4cheeses”) == 0)  
 pizza = new FourCheesesPizza();  
 else if (type.compare(“zucchini”) == 0)  
 pizza = new ZucchiniPizza();  
 else if (type.compare(“ham_mushrooms”) == 0)  
 pizza = new HamMushroomsPizza();  
 
 return pizza;  
 }  
};

Using the Simple Factory

class PizzaStore {  
 private: SimplePizzaFactory* factory;  
 
 public: PizzaStore(SimplePizzaFactory* factory) :  
 this->factory(factory) { }  
 
 public: Pizza* orderPizza(string type) {  

 Pizza* pizza;  
 pizza = factory->createPizza(type);  
 pizza->prepare();  
 pizza->bake();  
 pizza->box();

 return pizza;  
 }  
};

Using the Simple Factory

class PizzaStore {  
 private: SimplePizzaFactory* factory;  
 
 public: PizzaStore(SimplePizzaFactory* factory) :  
 this->factory(factory) { }  
 
 public: Pizza* orderPizza(string type) {  

 Pizza* pizza;  
 pizza = factory->createPizza(type);  
 pizza->prepare();  
 pizza->bake();  
 pizza->box();

 return pizza;  
 }  
};

Hold a reference to a
Simple Factory

Using the Simple Factory

class PizzaStore {  
 private: SimplePizzaFactory* factory;  
 
 public: PizzaStore(SimplePizzaFactory* factory) :  
 this->factory(factory) { }  
 
 public: Pizza* orderPizza(string type) {  

 Pizza* pizza;  
 pizza = factory->createPizza(type);  
 pizza->prepare();  
 pizza->bake();  
 pizza->box();

 return pizza;  
 }  
};

Hold a reference to a
Simple Factory

Get the factory
passed in the
constructor

Using the Simple Factory

class PizzaStore {  
 private: SimplePizzaFactory* factory;  
 
 public: PizzaStore(SimplePizzaFactory* factory) :  
 this->factory(factory) { }  
 
 public: Pizza* orderPizza(string type) {  

 Pizza* pizza;  
 pizza = factory->createPizza(type);  
 pizza->prepare();  
 pizza->bake();  
 pizza->box();

 return pizza;  
 }  
};

Hold a reference to a
Simple Factory

Get the factory
passed in the
constructor

Use the factory
with the create()
method instead of
using a new

Simple Factory UML class
diagram

orderPizza()
PizzaStore

createPizza()
SimplePizzaFactory prepare()

bake()
box()

Pizza

HamMushroomsPizza

ZucchiniPizza

FourCheesePizza

The create method is
often static

This is the client of
the factory

This is the product
of the factory. It’s an
abstract class

Concrete products
of the factory.

Factory Method

Class creational

Some motivations

• Use the Factory Method pattern when

• a class can’t anticipate the class of
objects it must create

• a class wants its subclasses to specify
the object it creates

• classes delegate responsibility to one of
several helper subclasses, and you want
to localize the knowledge of which
helper subclass is the delegate

Factory Method
• Problem

• You want a class to create a related class
polymorphically

• Context

• Each class knows which version of the related
class it should create

• Solution

• Declare abstract method that derived classes
override

• Consequences

• Type created matches type(s) it’s used with

Factory method UML class
diagram

• Define an interface for creating an object, but let subclasses decide which class to instantiate.
Factory Method lets a class defer instantiation to subclasses.

Product

factoryMethod()
anOperation()

Creator

factoryMethod()

ConcreteCreator

ConcreteProduct

The abstract
factoryMethod() must
be implemented by all the
subclasses. The other
methods are there to
operate on products
produced by the factory
method.

The implementation of
factoryMethod()
actually produces
products

The concrete creator is the only responsible for creating one
or more concrete products, and is the only class that knows
how to create these products

All products must
implement the same
interface so that the
classes which use the
products can refer to the
interface and not to the
concrete class

Factory Method example
UML class diagram

createPizza()

orderPizza()

PizzaStore

createPizza()

orderPizza()

NaplesPizzaStore
createPizza()

orderPizza()

FlorencePizzaStore

Abstract creator class. The creator does not know
which concrete product is produced, but may have code
that depends on an abstract product

Concrete creator classes. They create
different styles of pizza implementing the
abstract factory method

Pizza

NaplesFourCheesePizza

FlorenceFourCheesePizza

FlorenceVeggiePizza

FlorenceHamMushroomsPizza

NaplesVeggiePizza

NaplesHamMushroomsPizza

Factories produce products,
like this abstract product

The concrete products
produced by the different
concrete factories

Creator
classes

Product
classes

Participants

• Product: defines the interface of objects the factory
method creates

• ConcreteProduct: implements the Product interface

• Creator: declares the factory method, which returns
an object of type Product. Creator may also define a
default implementation of the factory method that
returns a default ConcreteProduct object. May call
the factory method to create a Product object

• ConcreteCreator: overrides the factory method to
return an instance of a ConcreteProduct

Factory Method example
class PizzaStore {  
 protected: PizzaStore() { }  
 public: virtual ~PizzaStore() = 0 { }  
 
 public: Pizza* orderPizza(string type) const {  
 Pizza* pizza;  
 
 pizza = createPizza(type);  
 
 cout << "- Making a " << pizza->getName() << " -" << endl;  
 pizza->prepare();  
 pizza->bake();  
 pizza->cut();  
 pizza->box();  
 return pizza;  
}  
 
 public: virtual Pizza* createPizza(string type) const = 0;  
};

Factory Method example
class PizzaStore {  
 protected: PizzaStore() { }  
 public: virtual ~PizzaStore() = 0 { }  
 
 public: Pizza* orderPizza(string type) const {  
 Pizza* pizza;  
 
 pizza = createPizza(type);  
 
 cout << "- Making a " << pizza->getName() << " -" << endl;  
 pizza->prepare();  
 pizza->bake();  
 pizza->cut();  
 pizza->box();  
 return pizza;  
}  
 
 public: virtual Pizza* createPizza(string type) const = 0;  
};

The createPizza() is
back into the PizzaStore
object rather than in a
factory object

Factory Method example
class PizzaStore {  
 protected: PizzaStore() { }  
 public: virtual ~PizzaStore() = 0 { }  
 
 public: Pizza* orderPizza(string type) const {  
 Pizza* pizza;  
 
 pizza = createPizza(type);  
 
 cout << "- Making a " << pizza->getName() << " -" << endl;  
 pizza->prepare();  
 pizza->bake();  
 pizza->cut();  
 pizza->box();  
 return pizza;  
}  
 
 public: virtual Pizza* createPizza(string type) const = 0;  
};

The createPizza() is
back into the PizzaStore
object rather than in a
factory object

The factory object has
been moved to this
method

Factory Method example
class PizzaStore {  
 protected: PizzaStore() { }  
 public: virtual ~PizzaStore() = 0 { }  
 
 public: Pizza* orderPizza(string type) const {  
 Pizza* pizza;  
 
 pizza = createPizza(type);  
 
 cout << "- Making a " << pizza->getName() << " -" << endl;  
 pizza->prepare();  
 pizza->bake();  
 pizza->cut();  
 pizza->box();  
 return pizza;  
}  
 
 public: virtual Pizza* createPizza(string type) const = 0;  
};

The factory method is
abstract in the
PizzaStore

The createPizza() is
back into the PizzaStore
object rather than in a
factory object

The factory object has
been moved to this
method

Factory Method example - cont

class NaplesPizzaStore : public PizzaStore {  
 
 public: Pizza* createPizza(string type) const {  

if(type.compare("fourcheese") == 0) {  
return new NaplesStyleFourCheesePizza();  

} else if(type.compare("veggie") == 0) {  
return new NaplesStyleVeggiePizza();  

} else if(type.compare("clam") == 0) {  
return new NaplesStyleClamPizza();  

} else if(type.compare("hammushrooms") == 0) {  
return new NaplesStyleHamMushroomsPizza();  

} else return 0;  
}  
};

Factory Method example - cont

class NaplesPizzaStore : public PizzaStore {  
 
 public: Pizza* createPizza(string type) const {  

if(type.compare("fourcheese") == 0) {  
return new NaplesStyleFourCheesePizza();  

} else if(type.compare("veggie") == 0) {  
return new NaplesStyleVeggiePizza();  

} else if(type.compare("clam") == 0) {  
return new NaplesStyleClamPizza();  

} else if(type.compare("hammushrooms") == 0) {  
return new NaplesStyleHamMushroomsPizza();  

} else return 0;  
}  
};

The createPizza() of the
Naples pizza store ensures that
pizzas are created as in Naples:
thick, large crust and using only
buffalo mozzarella cheese

Factory Method example - cont

class NaplesPizzaStore : public PizzaStore {  
 
 public: Pizza* createPizza(string type) const {  

if(type.compare("fourcheese") == 0) {  
return new NaplesStyleFourCheesePizza();  

} else if(type.compare("veggie") == 0) {  
return new NaplesStyleVeggiePizza();  

} else if(type.compare("clam") == 0) {  
return new NaplesStyleClamPizza();  

} else if(type.compare("hammushrooms") == 0) {  
return new NaplesStyleHamMushroomsPizza();  

} else return 0;  
}  
};

The createPizza() of the
Naples pizza store ensures that
pizzas are created as in Naples:
thick, large crust and using only
buffalo mozzarella cheese

Each subclass of PizzaStore overrides the abstract
createPizza() method, while all subclasses use
the orderPizza() method defined in PizzaStore.

Decoupling

• The PizzaStore::orderPizza() is defined
in the abstract PizzaStore class, not in the
subclasses: the method does not know which
subclass is running the code and making the pizzas

• it’s decoupled from that code

• When orderPizza() calls createPizza()
one of the subclasses is called in action, depending
on the PizzaStore subclass

• it’s NOT a run-time decision by the subclass

The factory method
• The factory method handles the object creation and

encapsulates it in a subclass. This decouples the client
code in the superclass (e.g. code like orderPizza())
from the object creation in the subclass.

• the factory method has to be virtual and possibly
also pure virtual (but a default implementation may
be provided, to obtain flexibility: subclasses can
override how they are created)

• the factory method may be parameterized (or not)
to select among variations of the product (e.g.
useful for de-serialization)

How to get a pizza

• Get a pizza store:  
PizzaStore* mergellinaStore = new NaplesPizzaStore();

• Take an order:  
mergellinaStore->orderPizza(“veggie”);

• The orderPizza() method calls the createPizza() method
implemented in the subclass:  
Pizza* pizza = createPizza(“veggie”);

• The orderPizza() finished preparing it:  
pizza->prepare();  
pizza->bake();  
...

Implementing pizzas
class Pizza {  
 protected: string name;  
 protected: string dough;  
 protected: string sauce;  
 protected: list< string > toppings;  
 protected: Pizza() { }  
 public: virtual ~Pizza() = 0 { }  
 public: virtual void prepare() const {  
 cout << "Preparing " << _name.c_str() << endl;  
 cout << "Tossing dough..." << endl;  
 cout << "Adding sauce..." << endl;  
 cout << "Adding toppings: " << endl;  
 for(list< string >::iterator itr = toppings.begin();  
 toppings.end() != itr; ++itr) {  
 cout << " " << itr->c_str() << endl;  
 }  
 }  
 public: virtual void bake() const {  

cout << "Bake for 25 minutes at 350" << endl;  
 }  
 // void bake(); void cut(); void box(); string getName(); ...

Implementing pizzas
class Pizza {  
 protected: string name;  
 protected: string dough;  
 protected: string sauce;  
 protected: list< string > toppings;  
 protected: Pizza() { }  
 public: virtual ~Pizza() = 0 { }  
 public: virtual void prepare() const {  
 cout << "Preparing " << _name.c_str() << endl;  
 cout << "Tossing dough..." << endl;  
 cout << "Adding sauce..." << endl;  
 cout << "Adding toppings: " << endl;  
 for(list< string >::iterator itr = toppings.begin();  
 toppings.end() != itr; ++itr) {  
 cout << " " << itr->c_str() << endl;  
 }  
 }  
 public: virtual void bake() const {  

cout << "Bake for 25 minutes at 350" << endl;  
 }  
 // void bake(); void cut(); void box(); string getName(); ...

Abstract class (it has abstract methods)

Implementing pizzas
class Pizza {  
 protected: string name;  
 protected: string dough;  
 protected: string sauce;  
 protected: list< string > toppings;  
 protected: Pizza() { }  
 public: virtual ~Pizza() = 0 { }  
 public: virtual void prepare() const {  
 cout << "Preparing " << _name.c_str() << endl;  
 cout << "Tossing dough..." << endl;  
 cout << "Adding sauce..." << endl;  
 cout << "Adding toppings: " << endl;  
 for(list< string >::iterator itr = toppings.begin();  
 toppings.end() != itr; ++itr) {  
 cout << " " << itr->c_str() << endl;  
 }  
 }  
 public: virtual void bake() const {  

cout << "Bake for 25 minutes at 350" << endl;  
 }  
 // void bake(); void cut(); void box(); string getName(); ...

Abstract class (it has abstract methods)

The class provides some basic default
methods for preparing, baking, cutting,...
They are virtual and can be overridden by the
subclasses

Implementing pizzas - cont.

class NaplesStyleVeggiePizza : public Pizza {  
  
 public: NaplesStyleVeggiePizza() {  
 
 name = "Naples Style Veggie Pizza";  
 dough = "Thick Crust Dough";  
 sauce = "Marinara Sauce";  
  
 toppings.push_back("Buffalo Mozzarella Cheese");

 toppings.push_back("Garlic");  
 toppings.push_back("Onion");  
 toppings.push_back("Mushrooms");  
 toppings.push_back("Friarelli");

 }  
 
 public: virtual void bake() const {  

cout << "Bake for 20 minutes at 350" << endl;  
 }  
};

Implementing pizzas - cont.

class NaplesStyleVeggiePizza : public Pizza {  
  
 public: NaplesStyleVeggiePizza() {  
 
 name = "Naples Style Veggie Pizza";  
 dough = "Thick Crust Dough";  
 sauce = "Marinara Sauce";  
  
 toppings.push_back("Buffalo Mozzarella Cheese");

 toppings.push_back("Garlic");  
 toppings.push_back("Onion");  
 toppings.push_back("Mushrooms");  
 toppings.push_back("Friarelli");

 }  
 
 public: virtual void bake() const {  

cout << "Bake for 20 minutes at 350" << endl;  
 }  
};

The Naples style pizza has its thick crust,
marinara sauce, friarelli veggie and uses buffalo
mozzarella cheese

Implementing pizzas - cont.

class NaplesStyleVeggiePizza : public Pizza {  
  
 public: NaplesStyleVeggiePizza() {  
 
 name = "Naples Style Veggie Pizza";  
 dough = "Thick Crust Dough";  
 sauce = "Marinara Sauce";  
  
 toppings.push_back("Buffalo Mozzarella Cheese");

 toppings.push_back("Garlic");  
 toppings.push_back("Onion");  
 toppings.push_back("Mushrooms");  
 toppings.push_back("Friarelli");

 }  
 
 public: virtual void bake() const {  

cout << "Bake for 20 minutes at 350" << endl;  
 }  
};

The Naples style pizza has its thick crust,
marinara sauce, friarelli veggie and uses buffalo
mozzarella cheese

The Naples style pizza is baked less time, to
make a soft crust

Putting everything together

PizzaStore* mergellinaStore = new NaplesPizzaStore();

Pizza* pizza = mergellinaStore->orderPizza(“veggie”);

This approach is useful also if there’s only one concrete creator since the Factory
Method decouples product implementation from its use

The factory method and creator do not need to be abstract, they may provide some
basic implementation

The implementation of each concrete store looks like the Simple Factory, but in this
previous approach the factory is another object composed with the PizzaStore, here it is
a subclass extending an abstract class

• it’s not a one-shot solution, we are using a framework that let’s subclasses decide
which implementation will be used

• the factory method can also change the products created: it’s more flexible

Lazy initialization

• The constructor simply initializes the product
to 0, the creation is delegated to the accessor
method (check also the Singleton pattern!):  
 
class Creator {  
public: Creator() { product = 0; };  
public: Product* getProduct();  
protected: virtual Product* createProduct();  
private: Product* product;  
};  
Product* Creator::getProduct() {  
 if (product == 0) {  
 product = createProduct();  
 }  
 return product;  
}

Abstract Factory

Object creational

Motivation

• Consider a user interface toolkit to support
multiple look-and-feel standards.

• For portability an application must not hard
code its widgets for one look and feel.

• How to design the application so that
incorporating new look and feel
requirements will be easy?

Solution
• Define an abstract WidgetFactory class.

• This class declares an interface to create
different kinds of widgets.

• There is one abstract class for each kind of widget
and concrete subclasses implement widgets for
different standards.

• WidgetFactory offers an operation to return a
new widget object for each abstract widget class.
Clients call these operations to obtain instances of
widgets without being aware of the concrete
classes they use.

Intent and applicability
• Provide an interface for creating families of related or

dependent objects w/o specifying their concrete classes

• This pattern can be applied when:

• a system should be independent of how its products are
created, composed or represented

• a system should be configured with one or multiple
families of products

• a family of related product objects is designed to be used
together (and there’s need to enforce this constraint)

• there is need to provide a class library of products
revealing their interfaces and not their implementations

• The Abstract Factory pattern is one level of
abstraction higher than the factory pattern.

• This pattern returns one of several related
classes, each of which can return several
different objects on request.

• In other words, the Abstract Factory is a
factory object that returns one of several
factories.

Abstract Factory UML class
diagram

createProductA()

createProductB()

AbstractFactory

createProductA()

createProductB()

ConcreteFactory2
createProductA()

createProductB()

ConcreteFactory1

Client

AbstractProductA

AbstractProductB

ProductB2 ProductB1

ProductA2 ProductA1

The Client is written
against the abstract
factory and
composed at runtime
with an actual factory

These abstract
classes are the
product families

These abstract
classes are the
product families

The concrete factories
implement the different
product families. The client
use one of these factories to
create a product.
The ConcreteFactory1 may
create wxWidgets widgets,
while the ConcreteFactory2
may create QT widgets

The Abstract Factory
defines the interface that
all the factories must
implement. It provides
(abstract) methods to
produce the products

Participants
• AbstractFactory: declares an interface for

operations that create abstract product objects

• ConcreteFactory: implements the operations to
create concrete product objects

• AbstractProduct: declares an interface for a type of
product object

• ConcreteProduct: defines a product to be object
created by the corresponding concrete factory,
implementing the AbstractProduct interface

• Client: uses only the interfaces create by the
AbstractXXX classes

Collaborations

• Normally a single instance of a
ConcreteFactory class is created at run-time.
This factory creates objects having a particular
implementation, to create different objects
use a different factory. This promotes
consistency among products: products of a
whole family are created.

• AbstractFactory defers creation to the
ConcreteFactory classes. It insulates the client
from implementation classes.

Implementation

• An application typically needs only one instance
of a factory: these are implemented using the
Singleton pattern

• Often the concrete factories are built using the
Factory Method pattern for each product

• The AbstractFactory usually defines a different
operation for each kind of product; these
products are encoded in the operation
signatures, thus adding a new kind of product
requires changing the interface.

Abstract Factory: example

// Abstract Factory  
class PizzaIngredientFactory {  
public:  
 virtual Dough* createDough() const = 0;  
 virtual Sauce* createSauce() const = 0;  
 virtual Cheese* createCheese() const =
0;  
 virtual std::vector< Veggies* >  
 createVeggies() const = 0;  
 virtual Clams* createClam() const = 0;  
 virtual ~PizzaIngredientFactory() = 0 {}  
};

 
class NaplesPizzaIngredientFactory :  
public PizzaIngredientFactory {  
 public: Dough* createDough() const {  
 return new ThickCrustDough();  
 }  
 public: Sauce* createSauce() const {  
 return new MarinaraSauce();  
 }  
 public: Cheese* createCheese() const {  
 return new BuffaloMozzarellaCheese();  
 }  
 public: std::vector< Veggies* >  
 createVeggies() const {  
 std::vector< Veggies* > veggies;  
 veggies.push_back(new Friarelli());  
 veggies.push_back(new Onion());  
 veggies.push_back(new Mushroom());  
 veggies.push_back(new RedPepper());  
 return veggies;  
 }  
 public: Clams* createClam() const {  
 return new FreshClams();  
 }  
};

Abstract Factory: example

// Abstract Factory  
class PizzaIngredientFactory {  
public:  
 virtual Dough* createDough() const = 0;  
 virtual Sauce* createSauce() const = 0;  
 virtual Cheese* createCheese() const =
0;  
 virtual std::vector< Veggies* >  
 createVeggies() const = 0;  
 virtual Clams* createClam() const = 0;  
 virtual ~PizzaIngredientFactory() = 0 {}  
};

 
class NaplesPizzaIngredientFactory :  
public PizzaIngredientFactory {  
 public: Dough* createDough() const {  
 return new ThickCrustDough();  
 }  
 public: Sauce* createSauce() const {  
 return new MarinaraSauce();  
 }  
 public: Cheese* createCheese() const {  
 return new BuffaloMozzarellaCheese();  
 }  
 public: std::vector< Veggies* >  
 createVeggies() const {  
 std::vector< Veggies* > veggies;  
 veggies.push_back(new Friarelli());  
 veggies.push_back(new Onion());  
 veggies.push_back(new Mushroom());  
 veggies.push_back(new RedPepper());  
 return veggies;  
 }  
 public: Clams* createClam() const {  
 return new FreshClams();  
 }  
};

We have many classes:
one for each ingredient.
If there’s need for a
common functionality in
all the factories
implement a method
here.

Abstract Factory: example

// Abstract Factory  
class PizzaIngredientFactory {  
public:  
 virtual Dough* createDough() const = 0;  
 virtual Sauce* createSauce() const = 0;  
 virtual Cheese* createCheese() const =
0;  
 virtual std::vector< Veggies* >  
 createVeggies() const = 0;  
 virtual Clams* createClam() const = 0;  
 virtual ~PizzaIngredientFactory() = 0 {}  
};

 
class NaplesPizzaIngredientFactory :  
public PizzaIngredientFactory {  
 public: Dough* createDough() const {  
 return new ThickCrustDough();  
 }  
 public: Sauce* createSauce() const {  
 return new MarinaraSauce();  
 }  
 public: Cheese* createCheese() const {  
 return new BuffaloMozzarellaCheese();  
 }  
 public: std::vector< Veggies* >  
 createVeggies() const {  
 std::vector< Veggies* > veggies;  
 veggies.push_back(new Friarelli());  
 veggies.push_back(new Onion());  
 veggies.push_back(new Mushroom());  
 veggies.push_back(new RedPepper());  
 return veggies;  
 }  
 public: Clams* createClam() const {  
 return new FreshClams();  
 }  
};

Abstract Factory: example

// Abstract Factory  
class PizzaIngredientFactory {  
public:  
 virtual Dough* createDough() const = 0;  
 virtual Sauce* createSauce() const = 0;  
 virtual Cheese* createCheese() const =
0;  
 virtual std::vector< Veggies* >  
 createVeggies() const = 0;  
 virtual Clams* createClam() const = 0;  
 virtual ~PizzaIngredientFactory() = 0 {}  
};

 
class NaplesPizzaIngredientFactory :  
public PizzaIngredientFactory {  
 public: Dough* createDough() const {  
 return new ThickCrustDough();  
 }  
 public: Sauce* createSauce() const {  
 return new MarinaraSauce();  
 }  
 public: Cheese* createCheese() const {  
 return new BuffaloMozzarellaCheese();  
 }  
 public: std::vector< Veggies* >  
 createVeggies() const {  
 std::vector< Veggies* > veggies;  
 veggies.push_back(new Friarelli());  
 veggies.push_back(new Onion());  
 veggies.push_back(new Mushroom());  
 veggies.push_back(new RedPepper());  
 return veggies;  
 }  
 public: Clams* createClam() const {  
 return new FreshClams();  
 }  
};

We are creating a
specific version of
ingredient for each
factory.
Some ingredients may be
shared by different
factories, though.

Abstract Factory: example
class Pizza {  
private: std::string name;  
protected:  
 Dough* dough;  
 Sauce* sauce;  
 std::vector< Veggies* > veggies;  
 Cheese* cheese;  
 Clams* clam;  
 Pizza() { }  
public: virtual void prepare() const = 0;  
 virtual ~Pizza() {  
 for(auto itr = begin(veggies); its != end(veggies); ++itr) {  
 delete *itr;  
 }  
 veggies.clear();  
 }  
 virtual void bake() const {  
 std::cout << "Bake for 25 minutes at 350"  
 << std::endl;  
 }  
 virtual void box() const {  
 std::cout << "Place pizza in official  
 PizzaStore box" << std::endl;  
 } //...all the other methods...

Abstract Factory: example
class Pizza {  
private: std::string name;  
protected:  
 Dough* dough;  
 Sauce* sauce;  
 std::vector< Veggies* > veggies;  
 Cheese* cheese;  
 Clams* clam;  
 Pizza() { }  
public: virtual void prepare() const = 0;  
 virtual ~Pizza() {  
 for(auto itr = begin(veggies); its != end(veggies); ++itr) {  
 delete *itr;  
 }  
 veggies.clear();  
 }  
 virtual void bake() const {  
 std::cout << "Bake for 25 minutes at 350"  
 << std::endl;  
 }  
 virtual void box() const {  
 std::cout << "Place pizza in official  
 PizzaStore box" << std::endl;  
 } //...all the other methods...

The pure virtual
prepare method will
collect all the ingredients
from the ingredient
factory

Abstract Factory: example
• The concrete product classes get their ingredients

from the ingredient factories: there’s no more need for
specific classes for the regional versions
class ClamPizza : public Pizza {  
 private: PizzaIngredientFactory* ingredientFactory;  
 public: ClamPizza(PizzaIngredientFactory* ingredientFactory) :  
 ingredientFactory(ingredientFactory) {  
 }  
 void prepare() const {  
 std::cout << "Preparing " << getName().c_str() << std::endl;  
 dough = ingredientFactory->createDough();  
 sauce = ingredientFactory->createSauce();  
 cheese = ingredientFactory->createCheese();  
 clam = ingredientFactory->createClam();  
 }  
};

Abstract Factory: example
class NaplesPizzaStore : public PizzaStore {  
 
 public: Pizza* createPizza(std::string item) const {  
 Pizza* pizza = 0;  
 
 PizzaIngredientFactory* ingredientFactory =  
 new NaplesPizzaIngredientFactory();  
 
 if(item.compare("cheese") == 0) {  
 pizza = new CheesePizza(ingredientFactory);  
 pizza->setName("Naples Style Cheese Pizza");  
 } else if(item.compare("veggie") == 0) {  
 pizza = new VeggiePizza(ingredientFactory);  
 pizza->setName("Naples Style Veggie Pizza");  
 } else if(item.compare("clam") == 0) {  
 pizza = new ClamPizza(ingredientFactory);  
 pizza->setName("Naples Style Clam Pizza");  
 } else if(item.compare("pepperoni") == 0) {  
 pizza = new PepperoniPizza(ingredientFactory);  
 pizza->setName("Naples Style Pepperoni Pizza");  
 }  
 return pizza;  
 }  
};

Abstract Factory: example
class NaplesPizzaStore : public PizzaStore {  
 
 public: Pizza* createPizza(std::string item) const {  
 Pizza* pizza = 0;  
 
 PizzaIngredientFactory* ingredientFactory =  
 new NaplesPizzaIngredientFactory();  
 
 if(item.compare("cheese") == 0) {  
 pizza = new CheesePizza(ingredientFactory);  
 pizza->setName("Naples Style Cheese Pizza");  
 } else if(item.compare("veggie") == 0) {  
 pizza = new VeggiePizza(ingredientFactory);  
 pizza->setName("Naples Style Veggie Pizza");  
 } else if(item.compare("clam") == 0) {  
 pizza = new ClamPizza(ingredientFactory);  
 pizza->setName("Naples Style Clam Pizza");  
 } else if(item.compare("pepperoni") == 0) {  
 pizza = new PepperoniPizza(ingredientFactory);  
 pizza->setName("Naples Style Pepperoni Pizza");  
 }  
 return pizza;  
 }  
};

The store is composed
with the regional
ingredient factory.

Abstract Factory: example
class NaplesPizzaStore : public PizzaStore {  
 
 public: Pizza* createPizza(std::string item) const {  
 Pizza* pizza = 0;  
 
 PizzaIngredientFactory* ingredientFactory =  
 new NaplesPizzaIngredientFactory();  
 
 if(item.compare("cheese") == 0) {  
 pizza = new CheesePizza(ingredientFactory);  
 pizza->setName("Naples Style Cheese Pizza");  
 } else if(item.compare("veggie") == 0) {  
 pizza = new VeggiePizza(ingredientFactory);  
 pizza->setName("Naples Style Veggie Pizza");  
 } else if(item.compare("clam") == 0) {  
 pizza = new ClamPizza(ingredientFactory);  
 pizza->setName("Naples Style Clam Pizza");  
 } else if(item.compare("pepperoni") == 0) {  
 pizza = new PepperoniPizza(ingredientFactory);  
 pizza->setName("Naples Style Pepperoni Pizza");  
 }  
 return pizza;  
 }  
};

The store is composed
with the regional
ingredient factory.

For each type of product
we pass the factory it
needs, to get the
ingredients from it.
The factory (built
according to Abstract
Factory pattern) creates
a family of products

Putting everything together

PizzaStore* nStore = new NaplesPizzaStore();

 
Pizza* pizza = nStore->orderPizza("cheese");

 
std::cout << "Just ordered a " << pizza->toString() << std::endl;

 
pizza = nStore->orderPizza("clam");

 
std::cout << "Just ordered a " << pizza->toString() << std::endl;  

Putting everything together

PizzaStore* nStore = new NaplesPizzaStore();

 
Pizza* pizza = nStore->orderPizza("cheese");

 
std::cout << "Just ordered a " << pizza->toString() << std::endl;

 
pizza = nStore->orderPizza("clam");

 
std::cout << "Just ordered a " << pizza->toString() << std::endl;  

The orderPizza()
method calls the
createPizza()
method

Putting everything together

PizzaStore* nStore = new NaplesPizzaStore();

 
Pizza* pizza = nStore->orderPizza("cheese");

 
std::cout << "Just ordered a " << pizza->toString() << std::endl;

 
pizza = nStore->orderPizza("clam");

 
std::cout << "Just ordered a " << pizza->toString() << std::endl;  

The orderPizza()
method calls the
createPizza()
method

When the createPizza() method is
called the factory gets involved

Putting everything together

PizzaStore* nStore = new NaplesPizzaStore();

 
Pizza* pizza = nStore->orderPizza("cheese");

 
std::cout << "Just ordered a " << pizza->toString() << std::endl;

 
pizza = nStore->orderPizza("clam");

 
std::cout << "Just ordered a " << pizza->toString() << std::endl;  

The orderPizza()
method calls the
createPizza()
method

When the createPizza() method is
called the factory gets involved

When prepare() method is called the
factory creates the ingredients

Factories and smart pointers
Instead of returning raw pointers we can use  
C++11 smart pointers, like unique_ptr or
shared_ptr

#include <iostream>  
#include <string>  
#include <memory>Remind: using
namespace std;  
 
class Song {  
public:  
Song(string name, string t) :  
 artist(name), title(t) {}  
  
 string artist, title;  
};

 
 
unique_ptr<Song> SongFactory(string
artist, string title) {

 return unique_ptr<Song>( 
 new Song(artist, title));  
}

int main() {  
// Obtain unique_ptr from function  
// that returns rvalue reference.  
 auto pSong = SongFactory("Michael  
 Jackson", "Beat It");  
}

Factories and smart pointers
Instead of returning raw pointers we can use  
C++11 smart pointers, like unique_ptr or
shared_ptr

#include <iostream>  
#include <string>  
#include <memory>Remind: using
namespace std;  
 
class Song {  
public:  
Song(string name, string t) :  
 artist(name), title(t) {}  
  
 string artist, title;  
};

 
 
unique_ptr<Song> SongFactory(string
artist, string title) {

 return unique_ptr<Song>( 
 new Song(artist, title));  
}

int main() {  
// Obtain unique_ptr from function  
// that returns rvalue reference.  
 auto pSong = SongFactory("Michael  
 Jackson", "Beat It");  
}

Remind: unique_ptr<T> does not allow copy
construction, instead it supports move semantics.  
Yet, you can return a unique_ptr<T> from a
function and assign the returned value to a variable.  
since the return value is a temporary object that will
be destroyed as soon as the function exits, thus
guaranteeing the uniqueness of the returned pointer.

Factories and smart pointers
Let’s see an example with polymorphism and unique_ptr:

class Document {  
public:  

virtual void draw() {  
std::cout << "Document::draw()" << std::endl;  

}  
};

class MultimediaDocument : public Document {  
virtual void draw() override {  

std::cout << "Document::draw()" << std::endl;  
}  

};

std::unique_ptr<Document> documentFactory(bool multimediaType) {  
 std::unique_ptr<Document> result;  

if (multimediaType)  
result = std::unique_ptr<MultimediaDocument>(new MultimediaDocument);  

else {  
 result = std::unique_ptr<Document>(new Document); 

}  
return result;  

}

Factories and smart pointers

• unique_ptr is the best choice for a factory: if you need a shared_ptr
you can construct one from the unique_ptr (there’s a specific
constructor in shared_ptr):  
 
unique_ptr<Widget> createWidget(int id);  
 
auto sp = shared_ptr<Widget>(createWidget(i)); 

• The only reason to return a shared_ptr if the ownership of the
object must be shared with the factory

Singleton

Motivations
• Sometimes it is appropriate to have exactly one instance of

a class: e.g., window managers, print spoolers, filesystems,
program configurations.

• Typically, those types of objects known as singletons, are
accessed by disparate objects throughout a software
system, and therefore require a global point of access.

• The Singleton pattern addresses all the concerns above.
With the Singleton design pattern you can:

• Ensure that only one instance of a class is created.

• Provide a global point of access to the object.

• Allow multiple instances in the future without affecting a
singleton class' clients.

Intent and applicability

• The Singleton pattern ensures a class has only one
instance, and provides a global point of access to it.

• The class itself is responsible for keeping track of its
sole instance. The class can ensure that no other
instance can be created (by intercepting requests to
create new objects), and it can provide a way to
access the instance.

• Singletons maintain a static reference to the sole
singleton instance and return a reference to that
instance from a static method.

Implementation

• The Singleton class employs a technique known as lazy
instantiation to create the singleton; as a result, the
singleton instance is not created until the static method
used to get it is called for the first time. This technique
ensures that singleton instances are created only when
needed.

• The Singleton class implements a protected constructor
so clients cannot instantiate Singleton instances.

• To avoid that the subclasses call the protected
constructors, we can make the Singleton constructor
private, so that only Singleton’s methods call it.

Singleton: an example

class Singleton {  
public:  
 static Singleton*  
 getInstance();  
protected:  
 Singleton();  
private:  
 static Singleton* instance;  
};

Singleton*  
Singleton::instance = 0;  
 
Singleton*  
Singleton::getInstance() {  
 if (instance == 0)  
 instance =  
 new Singleton();  
 return instance;  
}

Singleton: another example
class	OtherSingleton	{	

private:	
static	OtherSingleton*	pInstance;	

				OtherSingleton	();	
		
				OtherSingleton(const	OtherSingleton&	rs)	{	
														pInstance	=	rs.pInstance;	
				}	
		
				OtherSingleton&	operator	=	(const	 
							OtherSingleton&	rs)	{	
											if	(this	!=	&rs)	{	
														pInstance	=	rs.pInstance;	
											}	
												
											return	*this;	
				}					
		
				~OtherSingleton	();	
		

		public:	
					
				static	OtherSingleton&	getInstance()	{		
								static	OtherSingleton	theInstance;			 
								pInstance	=	&theInstance;	
								return	*pInstance;	
		
				}	
		
					
};	

OtherSingleton*	OtherSingleton::pInstance	=	
nullptr;

Singleton: another example
class	OtherSingleton	{	

private:	
static	OtherSingleton*	pInstance;	

				OtherSingleton	();	
		
				OtherSingleton(const	OtherSingleton&	rs)	{	
														pInstance	=	rs.pInstance;	
				}	
		
				OtherSingleton&	operator	=	(const	 
							OtherSingleton&	rs)	{	
											if	(this	!=	&rs)	{	
														pInstance	=	rs.pInstance;	
											}	
												
											return	*this;	
				}					
		
				~OtherSingleton	();	
		

		public:	
					
				static	OtherSingleton&	getInstance()	{		
								static	OtherSingleton	theInstance;			 
								pInstance	=	&theInstance;	
								return	*pInstance;	
		
				}	
		
					
};	

OtherSingleton*	OtherSingleton::pInstance	=	
nullptr;

Private copy constructor and assignment avoid that
they can be called by users
Private destructor means that users can not
erroneously destroy the object

getInstance returns a reference.  
This approach is founded on C++'s guarantee that
local static objects are initialized when the object's
definition is first encountered during a call to that
function.

Consequences

• It can be difficult to subclass a Singleton, since this can only
work if the base Singleton class has not yet been
instantiated.

• We can easily change a Singleton to allow a small number
of instances where this is allowable and meaningful.

• We can use the same approach to control the number of
instances that the application uses. Only the operation that
grants access to the Singleton instance needs to change.

• What happens in a multi-threaded program when the
method to get instances is called concurrently ? There may
be need to synchronize/protect it in this case.

Reading material

• M. Bertini, “Programmazione Object-Oriented in C++”,
parte II, cap. 4

Credits

• These slides are based on the material of:

• Glenn Puchtel

• Fred Kuhns, Washington University

• Aditya P. Matur, Purdue University

• Aaron Bloomfield, University of Virginia

• Joey Paquet, Concordia University

http://www.wustl.edu/

