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C++11 language 
extensions



General features



auto type specifier

• To store the result of an expression in a variable 
we need to know the type of the expression…

• …sometimes it’s very verbose or hard to 
guess !

• just let the compiler deduce the type with the 
auto keyword:  
    auto x = expression;  
e.g.:  
  auto y = val1 + val2;  
  auto z = doSomething();
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auto type specifier

• To store the result of an expression in a variable 
we need to know the type of the expression…

• …sometimes it’s very verbose or hard to 
guess !

• just let the compiler deduce the type with the 
auto keyword:  
    auto x = expression;  
e.g.:  
  auto y = val1 + val2;  
  auto z = doSomething();

E.g. when dealing with templates, like STL classes

Auto forces the initialization of a variable (otherwise it wouldn’t be 
able to guess the type…):  

 
auto x1; // does not compile

int x1; // OK for the compiler



auto type - cont.

• auto ignores const-ness of types (but not 
the const-ness of pointed types, i.e. a pointer 
to const):  
 
const int ci = i  
auto b = ci; // b is an int  
// (top-level const in ci is dropped)

• If we want to keep the const-ness ask for it:  
 
const auto f = ci;  
// deduced type of ci is int;  
// f has type const int 



auto type - cont.
• We can also ask for a auto reference:  
 
 auto& g=ci; // g is a const int&  
           // that is bound to ci  

• As with any other type specifier, we can define 
multiple variables using auto. Because a 
declaration can involve only a single base type, 
the initializers for all the variables in the 
declaration must have types that are consistent 
with each other



auto and complex declarations

• auto simplifies complex declarations such as 
iterators, STL containers, smart pointers:  
 
std::shared_ptr<some_type_t> mySmartPtr =  
                  std::make_shared<some_type_t>(); 
auto mySmartPtr = std::make_shared<some_type_t>(); 
 
for (std::map<std::string, std::map<std::string, 
int>>::iterator mapIter = myContainer.begin(); 
mapIter != myContainer.end(); mapIter++)  
for (auto mapIter = myContainer.begin(); mapIter != 
myContainer.end(); mapIter++)  
for (auto const &iter : myContainer)



auto and return types

• Function declarations may be hard to read:  
int (*func(int i))[10]; 

• Under the new standard, another way to 
simplify the declaration of func is by using a 
trailing return type:  
 
// func takes an int argument  
// and returns a pointer to an  
// array of ten ints  
auto func(int i) -> int(*)[10];



auto and return types

• Function declarations may be hard to read:  
int (*func(int i))[10]; 

• Under the new standard, another way to 
simplify the declaration of func is by using a 
trailing return type:  
 
// func takes an int argument  
// and returns a pointer to an  
// array of ten ints  
auto func(int i) -> int(*)[10];

Lambda functions use this syntax 



Auto and Lambda

• C++ 11 lets you store lambda expressions in named variables 
in the same manner you name ordinary variables and functions. 
This enables you to use the lambda expression multiple times 
in different places without having to copy the code all the time.  
 
auto func_mult = [](int a, int b) ->  
                    int { return a * b; };  
std::cout << func_mult(2, 3) << std::endl;  
for_each( container.begin(),  
          container.end(), func_mult);

• It’s an alternative to using a function object…



Lambda

• A lambda is just an object and, like other objects it may 
be copied, passed as a parameter, stored in a container, 
or an auto variable. 

• The lambda object has its own scope and lifetime which 
may, in some circumstances, be different to those 
objects it has “captured” (the parameters within [] ).   
Be very careful when capturing local objects by 
reference because a lambda’s lifetime may exceed the 
lifetime of its capture list.  
I.e. the lambda may have a reference to an object no 
longer in scope; in this case capture by value ([=] 
captures everything by value, [i] captures i by value)



Lambda

• A lambda is just an object and, like other objects it may 
be copied, passed as a parameter, stored in a container, 
or an auto variable. 

• The lambda object has its own scope and lifetime which 
may, in some circumstances, be different to those 
objects it has “captured” (the parameters within [] ).   
Be very careful when capturing local objects by 
reference because a lambda’s lifetime may exceed the 
lifetime of its capture list.  
I.e. the lambda may have a reference to an object no 
longer in scope; in this case capture by value ([=] 
captures everything by value, [i] captures i by value)

In practice the compiler creates a functor



Lambda - cont.

• Captures (that basically provide the context of the Lambda, like 
data members in a class) can be by value or reference, with defaults:

• [&](){ i = 0; j = 0; } is a lambda that captures i and 
j by reference. [&] means ‘capture by-reference all variables 
that are in use in the function’

• [=](){ cout << k; } is a lambda that captures k by value. 
Similarly, [=] means ‘capture by-value all variables that are in use 
in the function’

• You can also mix and match: [&, i, j](){} captures all 
variables by reference except for i and j which are captures by 
value. And of-course the opposite is also possible: [=, &i, 
&j](){}.



Lambda - cont.

• lambda’s operator() (i.e. the code of the Lambda) is const 
by-default, meaning it can’t modify the variables it captured by-
value (which are analogous to class members). To change this 
default add mutable:

int i = 1;

[&i](){ i = 1; }; // ok, 'i' is captured  
                  // by-reference.

[i](){ i = 1; }; // ERROR: assignment of  
                 // read-only variable 'i'.

[i]() mutable { i = 1; }; // ok.



Lambda - cont.

• A Lambda defined within a class method can 
access all the class data members if it captures 
the pointer to the class (this)

• Otherwise it is simply another (separate) 
class and does not have any access to the 
embers of the including class



decltype type specifier

• Sometimes we want to define a variable with a 
type that the compiler deduces from an 
expression but do not want to use that 
expression to initialize the variable. 

• For such cases use decltype, which returns 
the type of its operand. 

• The compiler analyzes the expression to 
determine its type but does not evaluate the 
expression.



decltype type - cont.

• decltype(f()) sum = x;  
// sum has whatever type f returns 

• Differently from auto, when the expression 
to which we apply decltype is a variable, 
decltype returns the type of that variable, 
including top-level const and references:  
 
const int ci = 0, &cj = ci;  
decltype(ci) x = 0; // x has type const int  
decltype(cj) y = x; // y has type const int&  
                    // and is bound to x



decltype type - cont.

• When we apply decltype to an expression that 
is not a variable, we get the type that that 
expression yields. 

• some expressions will cause decltype to yield 
a reference type. 

• Practically, decltype returns a reference type 
for expressions that yield objects that can 
stand on the left-hand side of the assignment 



decltype type - cont.

• The dereference operator * is an example of 
an expression for which decltype returns a 
reference:

• when we dereference a pointer, we get the 
object to which the pointer points. 
Moreover, we can assign to that object. 

• int* p;  
decltype(*p) j; // j is int&  
               // not plain int 



decltype and return types

• int odd[] = {1,3,5,7,9};  
// returns a pointer to an  
// array of five int elements 
decltype(odd) *arrPtr(int i) 

• The type returned by decltype is an array 
type, to which we must add a * to indicate 
that arrPtr returns a pointer. 



decltype and return types

• The trailing return type syntax is really about 
scope:  
 
auto mul(int x, int y) -> decltype(x*y) 
{  
return x*y;  

}
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decltype and return types

• The trailing return type syntax is really about 
scope:  
 
auto mul(int x, int y) -> decltype(x*y) 
{  
return x*y;  

}
x and y are in scope only after their declaration

We use the notation auto to mean “return type to be 
deduced or specified later.”

Also for templates:  
 
template<typename T, typename U>  
auto add(T x, U y) -> decltype(x+y) {  
  return x+y;
}



Uniform initialization
• Before C++11 there were different ways to initialize objects, 

and some syntaxes that looked like initializations were 
declarations…

• … easy to misuse, resulting in error messages:  
string a[] = { "foo", " bar" };  
// ok: initialize array variable  
void f(string a[]);  
f( { "foo", " bar" } );  
// syntax error: block as argument  
int a(1); // variable definition  
int b();    // function declaration  
int b(foo); // variable definition or  
            // function declaration



Uniform initialization

• The C++11 solution is to allow {}-initializer 
lists for all initialization:  
 
X x1 = X{1,2};  
X x2 = {1,2};  // the = is optional  
X x3{1,2};  
X* p = new X{1,2}; 

class D : public X {  
  D(int x, int y):X{x,y} { /*...*/ };  
};



Uniform initialization

• The C++11 solution is to allow {}-initializer 
lists for all initialization:  
 
X x1 = X{1,2};  
X x2 = {1,2};  // the = is optional  
X x3{1,2};  
X* p = new X{1,2}; 

class D : public X {  
  D(int x, int y):X{x,y} { /*...*/ };  
};

Moreover:

{} does not allow narrowing conversions:  
long double ld = 3.1415926536;  
int c(ld), d = ld;  
// ok: but value will be truncated  
int a{ld}, b = {ld};  
// error: narrowing conversion required 
 
Prefer initializing using {}, including especially everywhere that you would 
have used ( ) parentheses when constructing an object, prefer using { } 
braces instead.



In-class member initializers

• Java programmers have always used it, at last it 
is possible to initialize data members within a 
class declaration in C++11:  
 
class A {  
public:  
  A() {}  
  A(int value) : a(value) {}  
private:  
  int a = 4; // alternatively: int a {4};  
  float b = 3.14;  
  std::string s = “hello”;  
};



Strongly-typed enums
• “Traditional” enums in C++ have some drawbacks: 

• they export their enumerators in the surrounding scope (which can lead to name 
collisions, if two different enums in the same have scope define enumerators with the 
same name),  
enum Alert {green, yellow, red};  
enum Color {red, green, blue}; // error: redefinitions

• they are implicitly converted to integral types (e.g., int a = red;) and 

• cannot have a user-specified underlying type.

• C++11 strongly-typed enums are specified with the enum class keywords. 

• They no longer export their enumerators in the surrounding scope, 

• They are no longer implicitly converted to integral types and 

• can have a user-specified underlying type (a feature also added for traditional enums).

enum class Options {None, One, All};  
Options o = Options::All;



std::function
• Callable object is a generic name for any object that 

can be called like a function:

• A member function (pointer)

• A free function (pointer) - also in C language, e.g. 
pointer-to-function used in qsort

• A functor

• A lambda

• All these objects have different signatures. A way to 
have a uniform syntax to use them, is to wrap them 
within the std::function template function



std::function
• Callable object is a generic name for any object that 

can be called like a function:

• A member function (pointer)

• A free function (pointer) - also in C language, e.g. 
pointer-to-function used in qsort

• A functor

• A lambda

• All these objects have different signatures. A way to 
have a uniform syntax to use them, is to wrap them 
within the std::function template function

std::function< ReturnType(ParameterList) >

The callable object must have the signatures that says that it returns a 
ReturnType and gets as parameters the types of the 

ParameterList



std::function
#include <functional>  
 
class SimpleCallback {  
public:  
  SimpleCallback(  
    std::function<void(void)> f  
    ) : callback(f) {}  
  void execute();  
 
private:  
  std::function<void(void)>  
    callback;  
};  
 
void SimpleCallback::execute() {  
  if (callback != nullptr)  
    callback(); // like a function  
}

void func() {  
  // free function  
}  
 
SimpleCallback cb1(func);  
cb1.execute();  
 
SimpleCallback cb2(  
        []() { /* lambda */ }  
   );  
cb2.execute();
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std::function
#include <functional>  
 
class SimpleCallback {  
public:  
  SimpleCallback(  
    std::function<void(void)> f  
    ) : callback(f) {}  
  void execute();  
 
private:  
  std::function<void(void)>  
    callback;  
};  
 
void SimpleCallback::execute() {  
  if (callback != nullptr)  
    callback(); // like a function  
}

void func() {  
  // free function  
}  
 
SimpleCallback cb1(func);  
cb1.execute();  
 
SimpleCallback cb2(  
        []() { /* lambda */ }  
   );  
cb2.execute();

This is a way to reuse a Lambda, 
instead of using a auto variable we 

wrap the lambda in 
std::function

std::function can be used to wrap also Functors

Simpler example:  
 
std::function<void(void)> f;
f = [](){ /* lambda */ }; // could be free  
                          // function or functor
f();



Move semantics / &&



lvalue

• An lvalue is an expression that yields an 
object or function.

• The name is an old C mnemonic that means 
that lvalues could stand on the left-hand side 
of an assignment

• In C++ not all lvalues can stay on the left-
hand side though: a const object can not…



rvalue

• An rvalue is an expression that yields a value 
but not the associated location of the value.

• We can say that an rvalue is an unnamed 
value that exists only during the evaluation of 
an expression. E.g.:  
 
x+(y*z);   

• C++ creates a temporary (an rvalue) to store 
y*z, then adds it to x. The rvalue disappears 
when ; is reached.



rvalue

• An rvalue is an expression that yields a value 
but not the associated location of the value.

• We can say that an rvalue is an unnamed 
value that exists only during the evaluation of 
an expression. E.g.:  
 
x+(y*z);   

• C++ creates a temporary (an rvalue) to store 
y*z, then adds it to x. The rvalue disappears 
when ; is reached.

rvalues are objects that are about 
to be destroyed



lvalue and rvalue

• lvalues are locations, rvalues are actual values.  
An lvalue is an expression that refers to a memory 
location and allows us to take the address of that 
memory location via the & operator. An rvalue is 
an expression that is not an lvalue.  
 
int a = 42;

• a is lvalue, there’s a location called a, we can get &a

• 42 is a rvalue, there’s no location for it



lvalue and rvalue

• lvalues are locations, rvalues are actual values.  
An lvalue is an expression that refers to a memory 
location and allows us to take the address of that 
memory location via the & operator. An rvalue is 
an expression that is not an lvalue.  
 
int a = 42;

• a is lvalue, there’s a location called a, we can get &a

• 42 is a rvalue, there’s no location for it

Because rvalues are short-lived, you have to capture them in lvalues if 
you wish to access them outside the context of their expression

any expression that evaluates to an lvalue reference (e.g., a function call, 
an overloaded assignment operator, etc.) is an lvalue.  

Any expression that returns an object by value is an rvalue.



lvalue references

• C++ references are lvalue references…

• … a reference is an alias of an object, i.e. an 
alternative name of an object.  
 
int i = 42;  
int& ri = i;



rvalue references

• C++11 has introduce rvalue references

• An rvalue reference is bound to an rvalue

• rvalue references may be bound only to an 
object that is about to be destroyed

• We use && instead of &  
 
int&& rr = i * 42;



rvalues are ephemeral

• Because rvalue references can only be bound 
to temporaries, we know that 

• The referred-to object is about to be 
destroyed

•  There can be no other users of that object 

• These facts together mean that code that uses 
an rvalue reference is free to take over 
resources from the object to which the 
reference refers. 
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destroyed

•  There can be no other users of that object 

• These facts together mean that code that uses 
an rvalue reference is free to take over 
resources from the object to which the 
reference refers. 

A variable is an lvalue; we cannot directly bind an rvalue reference to a 
variable even if that variable was defined as an rvalue reference type. 

int &&rr1 = 42; // ok: literals are rvalues  

int &&rr2 = rr1; // error: the expression rr1  
     // is an lvalue! 



rvalues are ephemeral

• Because rvalue references can only be bound 
to temporaries, we know that 

• The referred-to object is about to be 
destroyed

•  There can be no other users of that object 

• These facts together mean that code that uses 
an rvalue reference is free to take over 
resources from the object to which the 
reference refers. 

A variable is an lvalue; we cannot directly bind an rvalue reference to a 
variable even if that variable was defined as an rvalue reference type. 

int &&rr1 = 42; // ok: literals are rvalues  

int &&rr2 = rr1; // error: the expression rr1  
     // is an lvalue! 

C++11 lets you bind rvalue references to rvalues, effectively prolonging 
their lifetime as if they were lvalues



lvalue/rvalue overload

• When a function has both rvalue reference and lvalue 
reference overloads, the rvalue reference overload binds to 
rvalues, while the lvalue reference overload binds to 
lvalues:  
 
#include <iostream>  
#include <utility>  
void f(int& x) {  
    std::cout << "lvalue reference overload f(" << x << ")\n";  
}  
void f(const int& x) {  
    std::cout << "lvalue reference to const overload f(" << x << ")\n";  
}  
void f(int&& x) {  
    std::cout << "rvalue reference overload f(" << x << ")\n";  
}



lvalue/rvalue overload

• When a function has both rvalue reference and lvalue 
reference overloads, the rvalue reference overload binds to 
rvalues, while the lvalue reference overload binds to 
lvalues:  
 
#include <iostream>  
#include <utility>  
void f(int& x) {  
    std::cout << "lvalue reference overload f(" << x << ")\n";  
}  
void f(const int& x) {  
    std::cout << "lvalue reference to const overload f(" << x << ")\n";  
}  
void f(int&& x) {  
    std::cout << "rvalue reference overload f(" << x << ")\n";  
}

int main() {
    int i = 1;
    const int ci = 2;
    f(i);  // calls f(int&)
    f(ci); // calls f(const int&)
    f(3);  // calls f(int&&)
           // would call f(const int&) if  
           // f(int&&) overload wasn't provided
    f(std::move(i)); // calls f(int&&)
}



rvalue reference and move

• We can obtain an rvalue reference bound to 
an lvalue by calling a new library function 
named std::move, which is defined in the 
utility header. 

• The move function returns an rvalue 
reference to its given object.  
 
int&& rr1 = 42; // ok: literals are rvalues  
int&& rr3 = std::move(rr1); // ok, even if  
                            // rr1 is an lvalue 



std::move - effects

• Calling std::move tells the compiler that we 
have an lvalue that we want to treat as if it were 
an rvalue. A call to move promises that we do 
not intend to use the lvalue again except to 
assign to it or to destroy it.  
After a call to move, we cannot make any 
assumptions about the value of the moved-from 
object. 

• We can destroy a moved-from object and can 
assign a new value to it, but we cannot use the 
value of a moved-from object.



std::move - effects

• Calling std::move tells the compiler that we 
have an lvalue that we want to treat as if it were 
an rvalue. A call to move promises that we do 
not intend to use the lvalue again except to 
assign to it or to destroy it.  
After a call to move, we cannot make any 
assumptions about the value of the moved-from 
object. 

• We can destroy a moved-from object and can 
assign a new value to it, but we cannot use the 
value of a moved-from object.

std::move(x) is just a cast that means “you can treat x as an rvalue”.



move vs. copy - why ?

• In many real-world scenarios, you don’t copy 
objects but move them. 

• When paying (cash or electronic), we move 
money from our account into the seller’s 
account. Similarly, removing the SIM card from 
your mobile phone and installing it in another 
mobile is a move operation, and so are cutting-
and-pasting icons on your desktop, or 
borrowing a book from a library.



move vs. copy - why ?

• In many real-world scenarios, you don’t copy 
objects but move them. 

• When paying (cash or electronic), we move 
money from our account into the seller’s 
account. Similarly, removing the SIM card from 
your mobile phone and installing it in another 
mobile is a move operation, and so are cutting-
and-pasting icons on your desktop, or 
borrowing a book from a library.

unique_ptr can be moved with std::move, they can not be copied 
(or they would not be the unique owners of a resource…



rvalue reference - why ?

• Copying has been the only means for 
transferring a state from one object to 
another (an object’s state is the collective set 
of its non-static data members’ values). 
Formally, copying causes a target object t to 
end up with the same state as the source s, 
without modifying s. 



Useless copy - example

template <class T>  
swap(T& a, T& b) {  
    T tmp(a); // now we have  
              // two copies of a  
    a = b;    // now we have  
              //two copies of b  
    b = tmp;  // now we have  
           // two copies of tmp (aka a)  
}



rvalue reference - why ?

• Move operations tend to be faster than 
copying because they transfer an existing 
resource to a new destination, whereas 
copying requires the creation of a new 
resource from scratch.



rvalue reference - why ?

• Move operations tend to be faster than 
copying because they transfer an existing 
resource to a new destination, whereas 
copying requires the creation of a new 
resource from scratch.

string func() {  
  string s;  
  //do something with s  
  return s;  
}  
string mystr=func();

When func() returns, C++ constructs a temporary copy of s on the 
caller’s stack memory. Next, s is destroyed and the temporary is used for 
copy-constructing mystr.  After that, the temporary itself is destroyed. 
Moving achieves the same effect without so many copies and destructor 
calls along the way.



move constructors and assignment

• In C++11, we can define “move constructors” and 
“move assignments” to move rather than copy 
their argument.

• The idea behind a move assignment is that instead 
of making a copy, it simply takes the 
representation from its source and replaces it 
with a cheap default.

• The compiler provides default implementations in 
addition to the standard default implementations 
of copy and assignment.



move constructors and assignment

• In C++11, we can define “move constructors” and 
“move assignments” to move rather than copy 
their argument.

• The idea behind a move assignment is that instead 
of making a copy, it simply takes the 
representation from its source and replaces it 
with a cheap default.

• The compiler provides default implementations in 
addition to the standard default implementations 
of copy and assignment.

What happens to a moved-from object?  
The state of a moved-from object is unspecified. 

Therefore, always assume that a moved-from object no 
longer owns any resources, and that its state is similar to 

that of an empty (as if default-constructed) object. 



Implicit move constructor/assignment

• If no user-defined move constructors are provided for a class 
type (struct, class, or union), and all of the following is true:

• there are no user-declared copy constructors;

• there are no user-declared copy assignment operators;

• there are no user-declared move assignment operators;

• there are no user-declared destructors;

• then the compiler will declare a move constructor as inline 
public member of its class with the signature T::T(T&&).

• then the compiler will declare a move assignment operator as 
an inline public member of its class with the signature  
T& T::operator=(T&&).
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• If no user-defined move constructors are provided for a class 
type (struct, class, or union), and all of the following is true:
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• then the compiler will declare a move assignment operator as 
an inline public member of its class with the signature  
T& T::operator=(T&&).

Rule of five:  
because the presence of a user-defined destructor, copy-constructor, or 

copy-assignment operator prevents implicit definition of move 
constructor+assignment operators, any class for which move semantics 

are desirable, has to declare all five special member functions 

Note: a class designed for polymorphic use (i.e. with virtual methods, typically requires a 
public and virtual destructor. This blocks implicit moves.

However, we can use a new C++11 method declaration that asks the compiler to create a 
default method, adding = default at the end of the declaration:  

class Widget {
public:
  Widget(const Widget&) = default;
  Widget(Widget&&) = default;
 
  Widget& operator=(const Widget&) = default;
  Widget& operator=(Widget&&) = default;
 
  ...
};  

In general, we can have the default versions of the six special member functions of C++11:  
Default constructors, Destructors, Copy constructors, Copy assignment operators, Move 
constructors, Move assignment operators



move constructors - example

template <class T>  
swap(T& a, T& b) {

    T tmp(std::move(a));

    a = std::move(b);   

    b = std::move(tmp);

}



move constructors - example

template <class T>  
swap(T& a, T& b) {

    T tmp(std::move(a));

    a = std::move(b);   

    b = std::move(tmp);

}
No more useless copies, thanks to move and move constructors



C++11 libraries

• STL and standard C++11 library use move 
constructors and assignment to speedup 
operations.

• E.g. std::string has move constructor, thus in 
C++11 the following code is optimized:  
 
std::string func() {  
  string s;  
  //do something with s  
  return s;  
}  
std::string mystr=func();
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• STL and standard C++11 library use move 
constructors and assignment to speedup 
operations.

• E.g. std::string has move constructor, thus in 
C++11 the following code is optimized:  
 
std::string func() {  
  string s;  
  //do something with s  
  return s;  
}  
std::string mystr=func();

In most modern compilers, the compiler will see that s is about to be 
destroyed and it will first move it into the return value.  

Then this temporary return value will be moved into mystr. 
If std::string did not have a move constructor (e.g. prior to C++11), 

it would have been copied for both transfers instead.



C++11 STL

• We can add rvalues to STL containers, e.g. 
vector has push_back(T&&) method

• Move constructors allow us to write:  
 
vector<int> makeBigVector() {  
   vector<int> result;  
   for(int i=0; i<1024; i++) {  
      result[i] = rand();  
   }  
   return result;  
}  
auto result = make_big_vector();  
// guaranteed not to copy the vector
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The net result is that the standard containers and algorithms 
quietly – without user intervention – improve in performance 

because they copy less.
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• We can add rvalues to STL containers, e.g. 
vector has push_back(T&&) method

• Move constructors allow us to write:  
 
vector<int> makeBigVector() {  
   vector<int> result;  
   for(int i=0; i<1024; i++) {  
      result[i] = rand();  
   }  
   return result;  
}  
auto result = make_big_vector();  
// guaranteed not to copy the vector

In the C++11 standard library, all containers are provided with 
move constructors and move assignments, and operations that 
insert new elements, such as insert() and push_back(), 

have versions that take rvalue references. 
The net result is that the standard containers and algorithms 
quietly – without user intervention – improve in performance 

because they copy less.

The C++11 STL move 
constructor avoids to make 

a full copy



Move parameters

• Move semantics is useful in methods that receive 
temporaries (i.e. rvalues):  
 
class MyBuffer {  
public:  
  MyBuffer(const MyBuffer& orig);  
  MyBuffer operator+(const MyBuffer& right);  
}  
 
MyBuffer x, y;  
MyBuffer a(x);  
MyBuffer b(x+y);  
MyBuffer c(function_returning_MyBuffer());



Move parameters

• Move semantics is useful in methods that receive 
temporaries (i.e. rvalues):  
 
class MyBuffer {  
public:  
  MyBuffer(const MyBuffer& orig);  
  MyBuffer operator+(const MyBuffer& right);  
}  
 
MyBuffer x, y;  
MyBuffer a(x);  
MyBuffer b(x+y);  
MyBuffer c(function_returning_MyBuffer());

MyBuffer(MyBuffer&& temp);
would be useful here…



Create a move constructor

• A move constructor looks like this:  
 
C::C(C&& other);

• It doesn’t allocate new resources. Instead, it 
pilfers other‘s resources and then sets other 
to its default-constructed state.



Create a move assignment

• A move assignment operator has the following signature:  
 
C& C::operator=(C&& other);

• A move assignment operator is similar to a copy constructor 
except that before pilfering the source object, it releases any 
resources that its object may own. The move assignment 
operator performs four logical steps:

• Release any resources that *this currently owns.

• Pilfer other‘s resource.

• Set other to a default state.

• Return *this.



Full example

• Let us consider a class representing a buffer:  
 
class MemoryPage {  
private:  
  size_t size;  
  char * buf;  
public:  
  explicit MemoryPage(int sz=512): size(sz),  
                          buf(new char [size]) {}  
  ~MemoryPage( delete[] buf;}  
  //typical C++03 copy ctor and assignment operator  
  MemoryPage(const MemoryPage&);  
  MemoryPage& operator=(const MemoryPage&);  
};



A move constructor

• A typical move constructor definition would look 
like this:  
 
MemoryPage(MemoryPage&& other): size(0),  
              buf(nullptr) {  
  // pilfer other’s resource  
  size=other.size;  
  buf=other.buf;  
  // reset other  
  other.size=0;  
  other.buf=nullptr;  
}
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doesn’t allocate memory nor does it copy memory buffers.



A move constructor

• A typical move constructor definition would look 
like this:  
 
MemoryPage(MemoryPage&& other): size(0),  
              buf(nullptr) {  
  // pilfer other’s resource  
  size=other.size;  
  buf=other.buf;  
  // reset other  
  other.size=0;  
  other.buf=nullptr;  
}

The move constructor is much faster than a copy constructor because it 
doesn’t allocate memory nor does it copy memory buffers.

Basically a move constructor is a shallow copy followed by a nullification 
of the source… this latter step is needed, since the shallow copy has 

stolen the pointer/resources and we do not want that the destructor of 
the source destroys them



A move assignment

MemoryPage& MemoryPage::operator=(MemoryPage&& other) {  
  if (this!=&other) {  
    // release the current object’s resources  
    delete[] buf;  
    size=0;  
    // pilfer other’s resource  
    size=other.size;  
    buf=other.buf;  
    // reset other  
    other.size=0;  
    other.buf=nullptr;  
  }  
  return *this;  
}



Rvalues and returns
• Rvalue (and move semantics) greatly simplifies returning objects in  

C++11:  
 
std::vector<int> return_vector(void) {  
    std::vector<int> tmp {1,2,3,4,5};  
    return tmp;  
}  
 
std::vector<int> &&rval_ref = return_vector();  
// or more simply:  
std::vector<int> rval_ref = return_vector();

• The temporary object is caught by the rvalue reference, that extends 
its life beyond the rval_ref definition.

• It works because, as said before, C++11 STL implements move 
semantics (constructor and assignment)



Rvalues and returns

• In C++98/C++03, programmers would often 
resort to returning a large object by pointer 
just to avoid the penalty of copying its state.

• In C++11, normally we should just return by 
value, because we will incur only a cheap move 
operation, not a deep copy, to hand the result 
to the caller, if the object is movable.

• Guideline: most of the time, return movable 
objects by value.



Dangling references



Pitfall: dangling reference

• Although references, once initialized, always refer to 
valid objects or functions, it is possible to create a 
program where the lifetime of the referred-to object 
ends, but the reference remains accessible (dangling). 
Accessing such a reference is undefined behavior:

std::string& wrong_lvalue_ref() {  
    std::string s = "Example";  
    return s; // exits the scope of s:  
              // its destructor is called and its storage deallocated  
}  
 
std::string& r = wrong_lvalue_ref(); // dangling reference  
std::cout << r;             // undefined behavior: reads from a dangling reference  
std::string s = wrong_lvalue_ref();  // undefined behavior:  
                                     // copy-initializes from a dangling reference
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Pitfall: dangling reference

• The same issue may happen with rvalue 
references:  
 
std::string&& wrong_rvalue_ref() {

     std::string r = "foo";

     r += "bar";

     return std::move(r);

  }
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Reading material

• M. Bertini, “Programmazione Object-Oriented in C++”, 
parte I, cap. 8

• https://isocpp.org/wiki/faq/cpp11-language

https://isocpp.org/wiki/faq/cpp11-language
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