
Programmazione
Prof. Marco Bertini

marco.bertini@unifi.it
http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/

C++11 language
extensions

General features

auto type specifier

• To store the result of an expression in a variable
we need to know the type of the expression…

• …sometimes it’s very verbose or hard to
guess !

• just let the compiler deduce the type with the
auto keyword:  
 auto x = expression;  
e.g.:  
 auto y = val1 + val2;  
 auto z = doSomething();

auto type specifier

• To store the result of an expression in a variable
we need to know the type of the expression…

• …sometimes it’s very verbose or hard to
guess !

• just let the compiler deduce the type with the
auto keyword:  
 auto x = expression;  
e.g.:  
 auto y = val1 + val2;  
 auto z = doSomething();

E.g. when dealing with templates, like STL classes

auto type specifier

• To store the result of an expression in a variable
we need to know the type of the expression…

• …sometimes it’s very verbose or hard to
guess !

• just let the compiler deduce the type with the
auto keyword:  
 auto x = expression;  
e.g.:  
 auto y = val1 + val2;  
 auto z = doSomething();

E.g. when dealing with templates, like STL classes

Auto forces the initialization of a variable (otherwise it wouldn’t be
able to guess the type…):  

 
auto x1; // does not compile

int x1; // OK for the compiler

auto type - cont.

• auto ignores const-ness of types (but not
the const-ness of pointed types, i.e. a pointer
to const):  
 
const int ci = i  
auto b = ci; // b is an int  
// (top-level const in ci is dropped)

• If we want to keep the const-ness ask for it:  
 
const auto f = ci;  
// deduced type of ci is int;  
// f has type const int

auto type - cont.
• We can also ask for a auto reference:  
 
 auto& g=ci; // g is a const int&  
 // that is bound to ci  

• As with any other type specifier, we can define
multiple variables using auto. Because a
declaration can involve only a single base type,
the initializers for all the variables in the
declaration must have types that are consistent
with each other

auto and complex declarations

• auto simplifies complex declarations such as
iterators, STL containers, smart pointers:  
 
std::shared_ptr<some_type_t> mySmartPtr =  
 std::make_shared<some_type_t>(); 
auto mySmartPtr = std::make_shared<some_type_t>(); 
 
for (std::map<std::string, std::map<std::string,
int>>::iterator mapIter = myContainer.begin();
mapIter != myContainer.end(); mapIter++)  
for (auto mapIter = myContainer.begin(); mapIter !=
myContainer.end(); mapIter++)  
for (auto const &iter : myContainer)

auto and return types

• Function declarations may be hard to read:  
int (*func(int i))[10];

• Under the new standard, another way to
simplify the declaration of func is by using a
trailing return type:  
 
// func takes an int argument  
// and returns a pointer to an  
// array of ten ints  
auto func(int i) -> int(*)[10];

auto and return types

• Function declarations may be hard to read:  
int (*func(int i))[10];

• Under the new standard, another way to
simplify the declaration of func is by using a
trailing return type:  
 
// func takes an int argument  
// and returns a pointer to an  
// array of ten ints  
auto func(int i) -> int(*)[10];

Lambda functions use this syntax

Auto and Lambda

• C++ 11 lets you store lambda expressions in named variables
in the same manner you name ordinary variables and functions.
This enables you to use the lambda expression multiple times
in different places without having to copy the code all the time.  
 
auto func_mult = [](int a, int b) ->  
 int { return a * b; };  
std::cout << func_mult(2, 3) << std::endl;  
for_each(container.begin(),  
 container.end(), func_mult);

• It’s an alternative to using a function object…

Lambda

• A lambda is just an object and, like other objects it may
be copied, passed as a parameter, stored in a container,
or an auto variable.

• The lambda object has its own scope and lifetime which
may, in some circumstances, be different to those
objects it has “captured” (the parameters within []).  
Be very careful when capturing local objects by
reference because a lambda’s lifetime may exceed the
lifetime of its capture list.  
I.e. the lambda may have a reference to an object no
longer in scope; in this case capture by value ([=]
captures everything by value, [i] captures i by value)

Lambda

• A lambda is just an object and, like other objects it may
be copied, passed as a parameter, stored in a container,
or an auto variable.

• The lambda object has its own scope and lifetime which
may, in some circumstances, be different to those
objects it has “captured” (the parameters within []).  
Be very careful when capturing local objects by
reference because a lambda’s lifetime may exceed the
lifetime of its capture list.  
I.e. the lambda may have a reference to an object no
longer in scope; in this case capture by value ([=]
captures everything by value, [i] captures i by value)

In practice the compiler creates a functor

Lambda - cont.

• Captures (that basically provide the context of the Lambda, like
data members in a class) can be by value or reference, with defaults:

• [&](){ i = 0; j = 0; } is a lambda that captures i and
j by reference. [&] means ‘capture by-reference all variables
that are in use in the function’

• [=](){ cout << k; } is a lambda that captures k by value.
Similarly, [=] means ‘capture by-value all variables that are in use
in the function’

• You can also mix and match: [&, i, j](){} captures all
variables by reference except for i and j which are captures by
value. And of-course the opposite is also possible: [=, &i,
&j](){}.

Lambda - cont.

• lambda’s operator() (i.e. the code of the Lambda) is const
by-default, meaning it can’t modify the variables it captured by-
value (which are analogous to class members). To change this
default add mutable:

int i = 1;

[&i](){ i = 1; }; // ok, 'i' is captured  
 // by-reference.

[i](){ i = 1; }; // ERROR: assignment of  
 // read-only variable 'i'.

[i]() mutable { i = 1; }; // ok.

Lambda - cont.

• A Lambda defined within a class method can
access all the class data members if it captures
the pointer to the class (this)

• Otherwise it is simply another (separate)
class and does not have any access to the
embers of the including class

decltype type specifier

• Sometimes we want to define a variable with a
type that the compiler deduces from an
expression but do not want to use that
expression to initialize the variable.

• For such cases use decltype, which returns
the type of its operand.

• The compiler analyzes the expression to
determine its type but does not evaluate the
expression.

decltype type - cont.

• decltype(f()) sum = x;  
// sum has whatever type f returns

• Differently from auto, when the expression
to which we apply decltype is a variable,
decltype returns the type of that variable,
including top-level const and references:  
 
const int ci = 0, &cj = ci;  
decltype(ci) x = 0; // x has type const int  
decltype(cj) y = x; // y has type const int&  
 // and is bound to x

decltype type - cont.

• When we apply decltype to an expression that
is not a variable, we get the type that that
expression yields.

• some expressions will cause decltype to yield
a reference type.

• Practically, decltype returns a reference type
for expressions that yield objects that can
stand on the left-hand side of the assignment

decltype type - cont.

• The dereference operator * is an example of
an expression for which decltype returns a
reference:

• when we dereference a pointer, we get the
object to which the pointer points.
Moreover, we can assign to that object.

• int* p;  
decltype(*p) j; // j is int&  
 // not plain int

decltype and return types

• int odd[] = {1,3,5,7,9};  
// returns a pointer to an  
// array of five int elements
decltype(odd) *arrPtr(int i)

• The type returned by decltype is an array
type, to which we must add a * to indicate
that arrPtr returns a pointer.

decltype and return types

• The trailing return type syntax is really about
scope:  
 
auto mul(int x, int y) -> decltype(x*y)
{  
return x*y;  

}

decltype and return types

• The trailing return type syntax is really about
scope:  
 
auto mul(int x, int y) -> decltype(x*y)
{  
return x*y;  

}

We use the notation auto to mean “return type to be
deduced or specified later.”

decltype and return types

• The trailing return type syntax is really about
scope:  
 
auto mul(int x, int y) -> decltype(x*y)
{  
return x*y;  

}
x and y are in scope only after their declaration

We use the notation auto to mean “return type to be
deduced or specified later.”

decltype and return types

• The trailing return type syntax is really about
scope:  
 
auto mul(int x, int y) -> decltype(x*y)
{  
return x*y;  

}
x and y are in scope only after their declaration

We use the notation auto to mean “return type to be
deduced or specified later.”

Also for templates:  
 
template<typename T, typename U>  
auto add(T x, U y) -> decltype(x+y) {  
 return x+y;
}

Uniform initialization
• Before C++11 there were different ways to initialize objects,

and some syntaxes that looked like initializations were
declarations…

• … easy to misuse, resulting in error messages:  
string a[] = { "foo", " bar" };  
// ok: initialize array variable  
void f(string a[]);  
f({ "foo", " bar" });  
// syntax error: block as argument  
int a(1); // variable definition  
int b(); // function declaration  
int b(foo); // variable definition or  
 // function declaration

Uniform initialization

• The C++11 solution is to allow {}-initializer
lists for all initialization:  
 
X x1 = X{1,2};  
X x2 = {1,2}; // the = is optional  
X x3{1,2};  
X* p = new X{1,2};

class D : public X {  
 D(int x, int y):X{x,y} { /*...*/ };  
};

Uniform initialization

• The C++11 solution is to allow {}-initializer
lists for all initialization:  
 
X x1 = X{1,2};  
X x2 = {1,2}; // the = is optional  
X x3{1,2};  
X* p = new X{1,2};

class D : public X {  
 D(int x, int y):X{x,y} { /*...*/ };  
};

Moreover:

{} does not allow narrowing conversions:  
long double ld = 3.1415926536;  
int c(ld), d = ld;  
// ok: but value will be truncated  
int a{ld}, b = {ld};  
// error: narrowing conversion required

Prefer initializing using {}, including especially everywhere that you would
have used () parentheses when constructing an object, prefer using { }
braces instead.

In-class member initializers

• Java programmers have always used it, at last it
is possible to initialize data members within a
class declaration in C++11:  
 
class A {  
public:  
 A() {}  
 A(int value) : a(value) {}  
private:  
 int a = 4; // alternatively: int a {4};  
 float b = 3.14;  
 std::string s = “hello”;  
};

Strongly-typed enums
• “Traditional” enums in C++ have some drawbacks:

• they export their enumerators in the surrounding scope (which can lead to name
collisions, if two different enums in the same have scope define enumerators with the
same name),  
enum Alert {green, yellow, red};  
enum Color {red, green, blue}; // error: redefinitions

• they are implicitly converted to integral types (e.g., int a = red;) and

• cannot have a user-specified underlying type.

• C++11 strongly-typed enums are specified with the enum class keywords.

• They no longer export their enumerators in the surrounding scope,

• They are no longer implicitly converted to integral types and

• can have a user-specified underlying type (a feature also added for traditional enums).

enum class Options {None, One, All};  
Options o = Options::All;

std::function
• Callable object is a generic name for any object that

can be called like a function:

• A member function (pointer)

• A free function (pointer) - also in C language, e.g.
pointer-to-function used in qsort

• A functor

• A lambda

• All these objects have different signatures. A way to
have a uniform syntax to use them, is to wrap them
within the std::function template function

std::function
• Callable object is a generic name for any object that

can be called like a function:

• A member function (pointer)

• A free function (pointer) - also in C language, e.g.
pointer-to-function used in qsort

• A functor

• A lambda

• All these objects have different signatures. A way to
have a uniform syntax to use them, is to wrap them
within the std::function template function

std::function< ReturnType(ParameterList) >

The callable object must have the signatures that says that it returns a
ReturnType and gets as parameters the types of the

ParameterList

std::function
#include <functional>  
 
class SimpleCallback {  
public:  
 SimpleCallback( 
 std::function<void(void)> f  
) : callback(f) {}  
 void execute();  
 
private:  
 std::function<void(void)>  
 callback;  
};  
 
void SimpleCallback::execute() {  
 if (callback != nullptr)  
 callback(); // like a function  
}

void func() {  
 // free function  
}  
 
SimpleCallback cb1(func);  
cb1.execute();  
 
SimpleCallback cb2( 
 []() { /* lambda */ }  
);  
cb2.execute();

std::function
#include <functional>  
 
class SimpleCallback {  
public:  
 SimpleCallback( 
 std::function<void(void)> f  
) : callback(f) {}  
 void execute();  
 
private:  
 std::function<void(void)>  
 callback;  
};  
 
void SimpleCallback::execute() {  
 if (callback != nullptr)  
 callback(); // like a function  
}

void func() {  
 // free function  
}  
 
SimpleCallback cb1(func);  
cb1.execute();  
 
SimpleCallback cb2( 
 []() { /* lambda */ }  
);  
cb2.execute();

This is a way to reuse a Lambda,
instead of using a auto variable we

wrap the lambda in
std::function

std::function
#include <functional>  
 
class SimpleCallback {  
public:  
 SimpleCallback( 
 std::function<void(void)> f  
) : callback(f) {}  
 void execute();  
 
private:  
 std::function<void(void)>  
 callback;  
};  
 
void SimpleCallback::execute() {  
 if (callback != nullptr)  
 callback(); // like a function  
}

void func() {  
 // free function  
}  
 
SimpleCallback cb1(func);  
cb1.execute();  
 
SimpleCallback cb2( 
 []() { /* lambda */ }  
);  
cb2.execute();

This is a way to reuse a Lambda,
instead of using a auto variable we

wrap the lambda in
std::function

std::function can be used to wrap also Functors

std::function
#include <functional>  
 
class SimpleCallback {  
public:  
 SimpleCallback( 
 std::function<void(void)> f  
) : callback(f) {}  
 void execute();  
 
private:  
 std::function<void(void)>  
 callback;  
};  
 
void SimpleCallback::execute() {  
 if (callback != nullptr)  
 callback(); // like a function  
}

void func() {  
 // free function  
}  
 
SimpleCallback cb1(func);  
cb1.execute();  
 
SimpleCallback cb2( 
 []() { /* lambda */ }  
);  
cb2.execute();

This is a way to reuse a Lambda,
instead of using a auto variable we

wrap the lambda in
std::function

std::function can be used to wrap also Functors

Simpler example:  
 
std::function<void(void)> f;
f = [](){ /* lambda */ }; // could be free  
 // function or functor
f();

Move semantics / &&

lvalue

• An lvalue is an expression that yields an
object or function.

• The name is an old C mnemonic that means
that lvalues could stand on the left-hand side
of an assignment

• In C++ not all lvalues can stay on the left-
hand side though: a const object can not…

rvalue

• An rvalue is an expression that yields a value
but not the associated location of the value.

• We can say that an rvalue is an unnamed
value that exists only during the evaluation of
an expression. E.g.:  
 
x+(y*z);

• C++ creates a temporary (an rvalue) to store
y*z, then adds it to x. The rvalue disappears
when ; is reached.

rvalue

• An rvalue is an expression that yields a value
but not the associated location of the value.

• We can say that an rvalue is an unnamed
value that exists only during the evaluation of
an expression. E.g.:  
 
x+(y*z);

• C++ creates a temporary (an rvalue) to store
y*z, then adds it to x. The rvalue disappears
when ; is reached.

rvalues are objects that are about
to be destroyed

lvalue and rvalue

• lvalues are locations, rvalues are actual values.  
An lvalue is an expression that refers to a memory
location and allows us to take the address of that
memory location via the & operator. An rvalue is
an expression that is not an lvalue.  
 
int a = 42;

• a is lvalue, there’s a location called a, we can get &a

• 42 is a rvalue, there’s no location for it

lvalue and rvalue

• lvalues are locations, rvalues are actual values.  
An lvalue is an expression that refers to a memory
location and allows us to take the address of that
memory location via the & operator. An rvalue is
an expression that is not an lvalue.  
 
int a = 42;

• a is lvalue, there’s a location called a, we can get &a

• 42 is a rvalue, there’s no location for it

Because rvalues are short-lived, you have to capture them in lvalues if
you wish to access them outside the context of their expression

any expression that evaluates to an lvalue reference (e.g., a function call,
an overloaded assignment operator, etc.) is an lvalue.  

Any expression that returns an object by value is an rvalue.

lvalue references

• C++ references are lvalue references…

• … a reference is an alias of an object, i.e. an
alternative name of an object.  
 
int i = 42;  
int& ri = i;

rvalue references

• C++11 has introduce rvalue references

• An rvalue reference is bound to an rvalue

• rvalue references may be bound only to an
object that is about to be destroyed

• We use && instead of &  
 
int&& rr = i * 42;

rvalues are ephemeral

• Because rvalue references can only be bound
to temporaries, we know that

• The referred-to object is about to be
destroyed

• There can be no other users of that object

• These facts together mean that code that uses
an rvalue reference is free to take over
resources from the object to which the
reference refers.

rvalues are ephemeral

• Because rvalue references can only be bound
to temporaries, we know that

• The referred-to object is about to be
destroyed

• There can be no other users of that object

• These facts together mean that code that uses
an rvalue reference is free to take over
resources from the object to which the
reference refers.

A variable is an lvalue; we cannot directly bind an rvalue reference to a
variable even if that variable was defined as an rvalue reference type.

int &&rr1 = 42; // ok: literals are rvalues  

int &&rr2 = rr1; // error: the expression rr1  
 // is an lvalue!

rvalues are ephemeral

• Because rvalue references can only be bound
to temporaries, we know that

• The referred-to object is about to be
destroyed

• There can be no other users of that object

• These facts together mean that code that uses
an rvalue reference is free to take over
resources from the object to which the
reference refers.

A variable is an lvalue; we cannot directly bind an rvalue reference to a
variable even if that variable was defined as an rvalue reference type.

int &&rr1 = 42; // ok: literals are rvalues  

int &&rr2 = rr1; // error: the expression rr1  
 // is an lvalue!

C++11 lets you bind rvalue references to rvalues, effectively prolonging
their lifetime as if they were lvalues

lvalue/rvalue overload

• When a function has both rvalue reference and lvalue
reference overloads, the rvalue reference overload binds to
rvalues, while the lvalue reference overload binds to
lvalues:  
 
#include <iostream>  
#include <utility>  
void f(int& x) {  
 std::cout << "lvalue reference overload f(" << x << ")\n";  
}  
void f(const int& x) {  
 std::cout << "lvalue reference to const overload f(" << x << ")\n";  
}  
void f(int&& x) {  
 std::cout << "rvalue reference overload f(" << x << ")\n";  
}

lvalue/rvalue overload

• When a function has both rvalue reference and lvalue
reference overloads, the rvalue reference overload binds to
rvalues, while the lvalue reference overload binds to
lvalues:  
 
#include <iostream>  
#include <utility>  
void f(int& x) {  
 std::cout << "lvalue reference overload f(" << x << ")\n";  
}  
void f(const int& x) {  
 std::cout << "lvalue reference to const overload f(" << x << ")\n";  
}  
void f(int&& x) {  
 std::cout << "rvalue reference overload f(" << x << ")\n";  
}

int main() {
 int i = 1;
 const int ci = 2;
 f(i); // calls f(int&)
 f(ci); // calls f(const int&)
 f(3); // calls f(int&&)
 // would call f(const int&) if  
 // f(int&&) overload wasn't provided
 f(std::move(i)); // calls f(int&&)
}

rvalue reference and move

• We can obtain an rvalue reference bound to
an lvalue by calling a new library function
named std::move, which is defined in the
utility header.

• The move function returns an rvalue
reference to its given object.  
 
int&& rr1 = 42; // ok: literals are rvalues  
int&& rr3 = std::move(rr1); // ok, even if  
 // rr1 is an lvalue

std::move - effects

• Calling std::move tells the compiler that we
have an lvalue that we want to treat as if it were
an rvalue. A call to move promises that we do
not intend to use the lvalue again except to
assign to it or to destroy it.  
After a call to move, we cannot make any
assumptions about the value of the moved-from
object.

• We can destroy a moved-from object and can
assign a new value to it, but we cannot use the
value of a moved-from object.

std::move - effects

• Calling std::move tells the compiler that we
have an lvalue that we want to treat as if it were
an rvalue. A call to move promises that we do
not intend to use the lvalue again except to
assign to it or to destroy it.  
After a call to move, we cannot make any
assumptions about the value of the moved-from
object.

• We can destroy a moved-from object and can
assign a new value to it, but we cannot use the
value of a moved-from object.

std::move(x) is just a cast that means “you can treat x as an rvalue”.

move vs. copy - why ?

• In many real-world scenarios, you don’t copy
objects but move them.

• When paying (cash or electronic), we move
money from our account into the seller’s
account. Similarly, removing the SIM card from
your mobile phone and installing it in another
mobile is a move operation, and so are cutting-
and-pasting icons on your desktop, or
borrowing a book from a library.

move vs. copy - why ?

• In many real-world scenarios, you don’t copy
objects but move them.

• When paying (cash or electronic), we move
money from our account into the seller’s
account. Similarly, removing the SIM card from
your mobile phone and installing it in another
mobile is a move operation, and so are cutting-
and-pasting icons on your desktop, or
borrowing a book from a library.

unique_ptr can be moved with std::move, they can not be copied
(or they would not be the unique owners of a resource…

rvalue reference - why ?

• Copying has been the only means for
transferring a state from one object to
another (an object’s state is the collective set
of its non-static data members’ values).
Formally, copying causes a target object t to
end up with the same state as the source s,
without modifying s.

Useless copy - example

template <class T>  
swap(T& a, T& b) {  
 T tmp(a); // now we have  
 // two copies of a  
 a = b; // now we have  
 //two copies of b  
 b = tmp; // now we have  
 // two copies of tmp (aka a)  
}

rvalue reference - why ?

• Move operations tend to be faster than
copying because they transfer an existing
resource to a new destination, whereas
copying requires the creation of a new
resource from scratch.

rvalue reference - why ?

• Move operations tend to be faster than
copying because they transfer an existing
resource to a new destination, whereas
copying requires the creation of a new
resource from scratch.

string func() {  
 string s;  
 //do something with s  
 return s;  
}  
string mystr=func();

When func() returns, C++ constructs a temporary copy of s on the
caller’s stack memory. Next, s is destroyed and the temporary is used for
copy-constructing mystr. After that, the temporary itself is destroyed.
Moving achieves the same effect without so many copies and destructor
calls along the way.

move constructors and assignment

• In C++11, we can define “move constructors” and
“move assignments” to move rather than copy
their argument.

• The idea behind a move assignment is that instead
of making a copy, it simply takes the
representation from its source and replaces it
with a cheap default.

• The compiler provides default implementations in
addition to the standard default implementations
of copy and assignment.

move constructors and assignment

• In C++11, we can define “move constructors” and
“move assignments” to move rather than copy
their argument.

• The idea behind a move assignment is that instead
of making a copy, it simply takes the
representation from its source and replaces it
with a cheap default.

• The compiler provides default implementations in
addition to the standard default implementations
of copy and assignment.

What happens to a moved-from object?  
The state of a moved-from object is unspecified.

Therefore, always assume that a moved-from object no
longer owns any resources, and that its state is similar to

that of an empty (as if default-constructed) object.

Implicit move constructor/assignment

• If no user-defined move constructors are provided for a class
type (struct, class, or union), and all of the following is true:

• there are no user-declared copy constructors;

• there are no user-declared copy assignment operators;

• there are no user-declared move assignment operators;

• there are no user-declared destructors;

• then the compiler will declare a move constructor as inline
public member of its class with the signature T::T(T&&).

• then the compiler will declare a move assignment operator as
an inline public member of its class with the signature  
T& T::operator=(T&&).

Implicit move constructor/assignment

• If no user-defined move constructors are provided for a class
type (struct, class, or union), and all of the following is true:

• there are no user-declared copy constructors;

• there are no user-declared copy assignment operators;

• there are no user-declared move assignment operators;

• there are no user-declared destructors;

• then the compiler will declare a move constructor as inline
public member of its class with the signature T::T(T&&).

• then the compiler will declare a move assignment operator as
an inline public member of its class with the signature  
T& T::operator=(T&&).

Rule of five:  
because the presence of a user-defined destructor, copy-constructor, or

copy-assignment operator prevents implicit definition of move
constructor+assignment operators, any class for which move semantics

are desirable, has to declare all five special member functions

Implicit move constructor/assignment

• If no user-defined move constructors are provided for a class
type (struct, class, or union), and all of the following is true:

• there are no user-declared copy constructors;

• there are no user-declared copy assignment operators;

• there are no user-declared move assignment operators;

• there are no user-declared destructors;

• then the compiler will declare a move constructor as inline
public member of its class with the signature T::T(T&&).

• then the compiler will declare a move assignment operator as
an inline public member of its class with the signature  
T& T::operator=(T&&).

Rule of five:  
because the presence of a user-defined destructor, copy-constructor, or

copy-assignment operator prevents implicit definition of move
constructor+assignment operators, any class for which move semantics

are desirable, has to declare all five special member functions

Note: a class designed for polymorphic use (i.e. with virtual methods, typically requires a
public and virtual destructor. This blocks implicit moves.

However, we can use a new C++11 method declaration that asks the compiler to create a
default method, adding = default at the end of the declaration:  

class Widget {
public:
 Widget(const Widget&) = default;
 Widget(Widget&&) = default;

 Widget& operator=(const Widget&) = default;
 Widget& operator=(Widget&&) = default;

 ...
};  

In general, we can have the default versions of the six special member functions of C++11:  
Default constructors, Destructors, Copy constructors, Copy assignment operators, Move
constructors, Move assignment operators

move constructors - example

template <class T>  
swap(T& a, T& b) {

 T tmp(std::move(a));

 a = std::move(b);

 b = std::move(tmp);

}

move constructors - example

template <class T>  
swap(T& a, T& b) {

 T tmp(std::move(a));

 a = std::move(b);

 b = std::move(tmp);

}
No more useless copies, thanks to move and move constructors

C++11 libraries

• STL and standard C++11 library use move
constructors and assignment to speedup
operations.

• E.g. std::string has move constructor, thus in
C++11 the following code is optimized:  
 
std::string func() {  
 string s;  
 //do something with s  
 return s;  
}  
std::string mystr=func();

C++11 libraries

• STL and standard C++11 library use move
constructors and assignment to speedup
operations.

• E.g. std::string has move constructor, thus in
C++11 the following code is optimized:  
 
std::string func() {  
 string s;  
 //do something with s  
 return s;  
}  
std::string mystr=func();

In most modern compilers, the compiler will see that s is about to be
destroyed and it will first move it into the return value.  

Then this temporary return value will be moved into mystr.
If std::string did not have a move constructor (e.g. prior to C++11),

it would have been copied for both transfers instead.

C++11 STL

• We can add rvalues to STL containers, e.g.
vector has push_back(T&&) method

• Move constructors allow us to write:  
 
vector<int> makeBigVector() {  
 vector<int> result;  
 for(int i=0; i<1024; i++) {  
 result[i] = rand();  
 }  
 return result;  
}  
auto result = make_big_vector();  
// guaranteed not to copy the vector

C++11 STL

• We can add rvalues to STL containers, e.g.
vector has push_back(T&&) method

• Move constructors allow us to write:  
 
vector<int> makeBigVector() {  
 vector<int> result;  
 for(int i=0; i<1024; i++) {  
 result[i] = rand();  
 }  
 return result;  
}  
auto result = make_big_vector();  
// guaranteed not to copy the vector

In the C++11 standard library, all containers are provided with
move constructors and move assignments, and operations that
insert new elements, such as insert() and push_back(),

have versions that take rvalue references.
The net result is that the standard containers and algorithms
quietly – without user intervention – improve in performance

because they copy less.

C++11 STL

• We can add rvalues to STL containers, e.g.
vector has push_back(T&&) method

• Move constructors allow us to write:  
 
vector<int> makeBigVector() {  
 vector<int> result;  
 for(int i=0; i<1024; i++) {  
 result[i] = rand();  
 }  
 return result;  
}  
auto result = make_big_vector();  
// guaranteed not to copy the vector

In the C++11 standard library, all containers are provided with
move constructors and move assignments, and operations that
insert new elements, such as insert() and push_back(),

have versions that take rvalue references.
The net result is that the standard containers and algorithms
quietly – without user intervention – improve in performance

because they copy less.

The C++11 STL move
constructor avoids to make

a full copy

Move parameters

• Move semantics is useful in methods that receive
temporaries (i.e. rvalues):  
 
class MyBuffer {  
public:  
 MyBuffer(const MyBuffer& orig);  
 MyBuffer operator+(const MyBuffer& right);  
}  
 
MyBuffer x, y;  
MyBuffer a(x);  
MyBuffer b(x+y);  
MyBuffer c(function_returning_MyBuffer());

Move parameters

• Move semantics is useful in methods that receive
temporaries (i.e. rvalues):  
 
class MyBuffer {  
public:  
 MyBuffer(const MyBuffer& orig);  
 MyBuffer operator+(const MyBuffer& right);  
}  
 
MyBuffer x, y;  
MyBuffer a(x);  
MyBuffer b(x+y);  
MyBuffer c(function_returning_MyBuffer());

MyBuffer(MyBuffer&& temp);
would be useful here…

Create a move constructor

• A move constructor looks like this:  
 
C::C(C&& other);

• It doesn’t allocate new resources. Instead, it
pilfers other‘s resources and then sets other
to its default-constructed state.

Create a move assignment

• A move assignment operator has the following signature:  
 
C& C::operator=(C&& other);

• A move assignment operator is similar to a copy constructor
except that before pilfering the source object, it releases any
resources that its object may own. The move assignment
operator performs four logical steps:

• Release any resources that *this currently owns.

• Pilfer other‘s resource.

• Set other to a default state.

• Return *this.

Full example

• Let us consider a class representing a buffer:  
 
class MemoryPage {  
private:  
 size_t size;  
 char * buf;  
public:  
 explicit MemoryPage(int sz=512): size(sz),  
 buf(new char [size]) {}  
 ~MemoryPage(delete[] buf;}  
 //typical C++03 copy ctor and assignment operator  
 MemoryPage(const MemoryPage&);  
 MemoryPage& operator=(const MemoryPage&);  
};

A move constructor

• A typical move constructor definition would look
like this:  
 
MemoryPage(MemoryPage&& other): size(0),  
 buf(nullptr) {  
 // pilfer other’s resource  
 size=other.size;  
 buf=other.buf;  
 // reset other  
 other.size=0;  
 other.buf=nullptr;  
}

A move constructor

• A typical move constructor definition would look
like this:  
 
MemoryPage(MemoryPage&& other): size(0),  
 buf(nullptr) {  
 // pilfer other’s resource  
 size=other.size;  
 buf=other.buf;  
 // reset other  
 other.size=0;  
 other.buf=nullptr;  
}

The move constructor is much faster than a copy constructor because it
doesn’t allocate memory nor does it copy memory buffers.

A move constructor

• A typical move constructor definition would look
like this:  
 
MemoryPage(MemoryPage&& other): size(0),  
 buf(nullptr) {  
 // pilfer other’s resource  
 size=other.size;  
 buf=other.buf;  
 // reset other  
 other.size=0;  
 other.buf=nullptr;  
}

The move constructor is much faster than a copy constructor because it
doesn’t allocate memory nor does it copy memory buffers.

Basically a move constructor is a shallow copy followed by a nullification
of the source… this latter step is needed, since the shallow copy has

stolen the pointer/resources and we do not want that the destructor of
the source destroys them

A move assignment

MemoryPage& MemoryPage::operator=(MemoryPage&& other) {  
 if (this!=&other) {  
 // release the current object’s resources  
 delete[] buf;  
 size=0;  
 // pilfer other’s resource  
 size=other.size;  
 buf=other.buf;  
 // reset other  
 other.size=0;  
 other.buf=nullptr;  
 }  
 return *this;  
}

Rvalues and returns
• Rvalue (and move semantics) greatly simplifies returning objects in  

C++11:  
 
std::vector<int> return_vector(void) {  
 std::vector<int> tmp {1,2,3,4,5};  
 return tmp;  
}  
 
std::vector<int> &&rval_ref = return_vector();  
// or more simply:  
std::vector<int> rval_ref = return_vector();

• The temporary object is caught by the rvalue reference, that extends
its life beyond the rval_ref definition.

• It works because, as said before, C++11 STL implements move
semantics (constructor and assignment)

Rvalues and returns

• In C++98/C++03, programmers would often
resort to returning a large object by pointer
just to avoid the penalty of copying its state.

• In C++11, normally we should just return by
value, because we will incur only a cheap move
operation, not a deep copy, to hand the result
to the caller, if the object is movable.

• Guideline: most of the time, return movable
objects by value.

Dangling references

Pitfall: dangling reference

• Although references, once initialized, always refer to
valid objects or functions, it is possible to create a
program where the lifetime of the referred-to object
ends, but the reference remains accessible (dangling).
Accessing such a reference is undefined behavior:

std::string& wrong_lvalue_ref() {  
 std::string s = "Example";  
 return s; // exits the scope of s:  
 // its destructor is called and its storage deallocated  
}  
 
std::string& r = wrong_lvalue_ref(); // dangling reference  
std::cout << r; // undefined behavior: reads from a dangling reference  
std::string s = wrong_lvalue_ref(); // undefined behavior:  
 // copy-initializes from a dangling reference

Pitfall: dangling reference

• Although references, once initialized, always refer to
valid objects or functions, it is possible to create a
program where the lifetime of the referred-to object
ends, but the reference remains accessible (dangling).
Accessing such a reference is undefined behavior:

std::string& wrong_lvalue_ref() {  
 std::string s = "Example";  
 return s; // exits the scope of s:  
 // its destructor is called and its storage deallocated  
}  
 
std::string& r = wrong_lvalue_ref(); // dangling reference  
std::cout << r; // undefined behavior: reads from a dangling reference  
std::string s = wrong_lvalue_ref(); // undefined behavior:  
 // copy-initializes from a dangling reference

Simply avoid to return references to function-local objects

Pitfall: dangling reference

• The same issue may happen with rvalue
references:  
 
std::string&& wrong_rvalue_ref() {

 std::string r = "foo";

 r += "bar";

 return std::move(r);

 }

Pitfall: dangling reference

• The same issue may happen with rvalue
references:  
 
std::string&& wrong_rvalue_ref() {

 std::string r = "foo";

 r += "bar";

 return std::move(r);

 }

Simply avoid to return references to function-local objects

Reading material

• M. Bertini, “Programmazione Object-Oriented in C++”,
parte I, cap. 8

• https://isocpp.org/wiki/faq/cpp11-language

https://isocpp.org/wiki/faq/cpp11-language

Credits

• These slides are (heavily) based on the
material of:

• C++ FAQ

• Stanley B. Lippman, Josée Lajoie, Barbara E.
Moo, “C++ primer”, Addison Wesley

