
Programmazione
Prof. Marco Bertini

marco.bertini@unifi.it
http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/

Design pattern

Observer

Some motivations

• In many programs, when a object changes
state, other objects may have to be notified

• This pattern answers the question: How best
to notify those objects when the subject
changes?

• And what if the list of those objects changes
during run-time?

Some examples

• Example: when an car in a game is moved

• The graphics engine needs to know so it can re-render
the item

• The traffic computation routines need to re-compute the
traffic pattern

• The objects the car contains need to know they are
moving as well

• Another example: data in a spreadsheet changes

• The display must be updated

• Possibly multiple graphs that use that data need to re-
draw themselves

Another example

A=10%

B=40%

C=30%

D=20%

Application data

A

B

C

D

A D C B

Relative Percentages

Y 10 40 30 20

X 15 35 35 15

Z 10 40 30 20

A B C D

Change notification

Requests, modifications

Observer Pattern

• Problem

• Need to update multiple objects when the state of one object changes (one-
to-many dependency)

• Context

• Multiple objects depend on the state of one object

• Set of dependent objects may change at run-time

• Solution

• Allow dependent objects to register with object of interest, notify them of
updates when state changes

• Consequences

• When observed object changes others are notified

• Useful for user interface programming, other applications

Participants

• The key participants in this pattern are:

• The Subject, which provides an (virtual) interface for attaching
and detaching observers

• The Observer, which defines the (virtual) updating interface

• The ConcreteSubject, which is the class that inherits/extends/
implements the Subject

• The ConcreteObserver, which is the class that inherits/extends/
implements the Observer

• This pattern is also known as dependents or publish-subscribe

Observer UML class diagram

update()

<<interface>>
ObserverregisterObserver()

removeObserver()
notifyObservers()

<<interface>>
Subject

registerObserver()
removeObserver()
notifyObservers()

getState()
setState()

ConcreteSubject

update()
// other Observer
// specific methods

ConcreteObserver
1 1

1 n

The Subject interface is used
by objects to (un)register as
Observers.
Each Subject my have several
Observers.

Each potential Observer has
to implement this interface.
The update() method gets
called when the Subject
changes its state.

Concrete observers have to
implement the Observer
interface.
Each concrete observer
registers with a concrete
subject to receive updates.

A concrete subject has to
implement the Subject
interface.
The notifyObservers()
method is used to update all
the current observers
whenever state changes.

The concrete subject may
have methods for setting and
getting its state.

Some interesting points

• In the Observer pattern when the state
of one object changes, all of its
dependents are notified:

• the subject is the sole owner of that
data, the observers are dependent on
the subject to update them when the
data changes

• it’s a cleaner design than allowing many
objects to control the same data

Loose coupling

• The Observer pattern provides a pattern where subjects and
observers are loosely coupled (minimizing the interdependency
between objects):

• the only thing the subject knows about an observer is that it
implements an interface

• observers can be added/removed at any time (also runtime)

• there is no need to modify the subject to add new types of
observers (they just need to implement the interface)

• changes to subject or observers will not affect the other (as
long as they implement the required interface)

Observer example
class Subject {  
protected:  
 virtual ~Subject() {};

public:

 virtual void
registerObserver(Observer* o) = 0;

 virtual void
removeObserver(Observer* o) = 0;

 virtual void notifyObservers() const
= 0;

};

class Observer {

protected:  
virtual ~Observer() {};

public:  
virtual void update(float temp,  
 float humidity, float pressure) = 0;

};

Observer example
class Subject {  
protected:  
 virtual ~Subject() {};

public:

 virtual void
registerObserver(Observer* o) = 0;

 virtual void
removeObserver(Observer* o) = 0;

 virtual void notifyObservers() const
= 0;

};

class Observer {

protected:  
virtual ~Observer() {};

public:  
virtual void update(float temp,  
 float humidity, float pressure) = 0;

};

The update method gets the state values from the subject:
they’ll change depending on the subject, in this example is a
weather station

Observer example

Interface for all the
display elements

Different types of
observers

update()

<<interface>>
ObserverregisterObserver()

removeObserver()
notifyObservers()

<<interface>>
Subject

registerObserver()
removeObserver()
notifyObservers()

getTemperature()
getHumidity()
getPressure()
measurementsChanged()

WeatherData

update()
display() { // display current
measurements }

CurrentConditionDisplay

1

1

1 n

display()

<<interface>>
DisplayElement

update()
display() { // display avg., min
and max measurements }

StatisticsDisplay

update()
display() { // display forecast }

ForecastDisplay

1

1

Observer example

Interface for all the
display elements

Different types of
observers

update()

<<interface>>
ObserverregisterObserver()

removeObserver()
notifyObservers()

<<interface>>
Subject

registerObserver()
removeObserver()
notifyObservers()

getTemperature()
getHumidity()
getPressure()
measurementsChanged()

WeatherData

update()
display() { // display current
measurements }

CurrentConditionDisplay

1

1

1 n

display()

<<interface>>
DisplayElement

update()
display() { // display avg., min
and max measurements }

StatisticsDisplay

update()
display() { // display forecast }

ForecastDisplay

1

1

class DisplayElement {
public: virtual void display() const = 0;
protected: virtual ~DisplayElement() = 0 {
};

};

Implementing the Subject
interface

class WeatherData : public Subject {  
 private: list< Observer* > observers;  
 private: float temperature;  
 private: float humidity;  
 private: float pressure;  
 public: WeatherData() : temperature(0.0),
humidity(0.0), pressure(0.0) { }  
 public: void  
 registerObserver(Observer* o) {  
 observers.push_back(o);  
 }  
 public: void  
 removeObserver(Observer* o) {  
 observers.remove(o);  
 }  
 public: void notifyObservers() const {  
 for(list< Observer* >::iterator itr =
observers.begin(); observers.end() != itr; ++itr) {  
 (*itr)->update(temperature, humidity, pressure);  
 }  
 }

 public: void measurementsChanged() {  
 notifyObservers();  
 }  
 public: void setMeasurements(float temperature,  
 float humidity, float pressure) {  
 temperature = temperature;  
 humidity = humidity;  
 pressure = pressure;  
 measurementsChanged();  
 }  
 // other WeatherData methods here  
 public: float getTemperature() const {  
 return temperature;  
 }  
 public: float getHumidity() const {  
 return humidity;  
 }  
 public: float getPressure() const {  
 return pressure;  
 }  
};  

Implementing the Subject
interface

class WeatherData : public Subject {  
 private: list< Observer* > observers;  
 private: float temperature;  
 private: float humidity;  
 private: float pressure;  
 public: WeatherData() : temperature(0.0),
humidity(0.0), pressure(0.0) { }  
 public: void  
 registerObserver(Observer* o) {  
 observers.push_back(o);  
 }  
 public: void  
 removeObserver(Observer* o) {  
 observers.remove(o);  
 }  
 public: void notifyObservers() const {  
 for(list< Observer* >::iterator itr =
observers.begin(); observers.end() != itr; ++itr) {  
 (*itr)->update(temperature, humidity, pressure);  
 }  
 }

 public: void measurementsChanged() {  
 notifyObservers();  
 }  
 public: void setMeasurements(float temperature,  
 float humidity, float pressure) {  
 temperature = temperature;  
 humidity = humidity;  
 pressure = pressure;  
 measurementsChanged();  
 }  
 // other WeatherData methods here  
 public: float getTemperature() const {  
 return temperature;  
 }  
 public: float getHumidity() const {  
 return humidity;  
 }  
 public: float getPressure() const {  
 return pressure;  
 }  
};  

The weather station device would call this
method, providing the measurements

Implementing the Subject
interface

class WeatherData : public Subject {  
 private: list< Observer* > observers;  
 private: float temperature;  
 private: float humidity;  
 private: float pressure;  
 public: WeatherData() : temperature(0.0),
humidity(0.0), pressure(0.0) { }  
 public: void  
 registerObserver(Observer* o) {  
 observers.push_back(o);  
 }  
 public: void  
 removeObserver(Observer* o) {  
 observers.remove(o);  
 }  
 public: void notifyObservers() const {  
 for(list< Observer* >::iterator itr =
observers.begin(); observers.end() != itr; ++itr) {  
 (*itr)->update(temperature, humidity, pressure);  
 }  
 }

 public: void measurementsChanged() {  
 notifyObservers();  
 }  
 public: void setMeasurements(float temperature,  
 float humidity, float pressure) {  
 temperature = temperature;  
 humidity = humidity;  
 pressure = pressure;  
 measurementsChanged();  
 }  
 // other WeatherData methods here  
 public: float getTemperature() const {  
 return temperature;  
 }  
 public: float getHumidity() const {  
 return humidity;  
 }  
 public: float getPressure() const {  
 return pressure;  
 }  
};  

When measurements are updated
then the Observers are notified

The weather station device would call this
method, providing the measurements

Implementing a concrete
observer

class CurrentConditionsDisplay : public Observer,  
private DisplayElement {  
 private: Subject* weatherData;  
 private: float temperature;  
 private: float humidity;  

 public: CurrentConditionsDisplay(Subject*
weatherData) : weatherData(weatherData),
temperature(0.0), humidity(0.0) {  
 weatherData->registerObserver(this);  
 }  
 public: ~CurrentConditionsDisplay() {  
 weatherData->removeObserver(this);  
 }

 
 public: void update(float temp, float hum, float
pres) {  
 temperature = temp;  
 humidity = hum;  
 display();  
 }  
 public: void display() const {  
 cout.setf(std::ios::showpoint);  
 cout.precision(3);  
 cout << "Current conditions: " << temperature;  
 cout << " C° degrees and " << humidity;  
 cout << "% humidity" << std::endl;  
 }  
};

Implementing a concrete
observer

class CurrentConditionsDisplay : public Observer,  
private DisplayElement {  
 private: Subject* weatherData;  
 private: float temperature;  
 private: float humidity;  

 public: CurrentConditionsDisplay(Subject*
weatherData) : weatherData(weatherData),
temperature(0.0), humidity(0.0) {  
 weatherData->registerObserver(this);  
 }  
 public: ~CurrentConditionsDisplay() {  
 weatherData->removeObserver(this);  
 }

 
 public: void update(float temp, float hum, float
pres) {  
 temperature = temp;  
 humidity = hum;  
 display();  
 }  
 public: void display() const {  
 cout.setf(std::ios::showpoint);  
 cout.precision(3);  
 cout << "Current conditions: " << temperature;  
 cout << " C° degrees and " << humidity;  
 cout << "% humidity" << std::endl;  
 }  
};

The constructor gets the Subject and use it
to register to it as an observer.

Implementing a concrete
observer

class CurrentConditionsDisplay : public Observer,  
private DisplayElement {  
 private: Subject* weatherData;  
 private: float temperature;  
 private: float humidity;  

 public: CurrentConditionsDisplay(Subject*
weatherData) : weatherData(weatherData),
temperature(0.0), humidity(0.0) {  
 weatherData->registerObserver(this);  
 }  
 public: ~CurrentConditionsDisplay() {  
 weatherData->removeObserver(this);  
 }

 
 public: void update(float temp, float hum, float
pres) {  
 temperature = temp;  
 humidity = hum;  
 display();  
 }  
 public: void display() const {  
 cout.setf(std::ios::showpoint);  
 cout.precision(3);  
 cout << "Current conditions: " << temperature;  
 cout << " C° degrees and " << humidity;  
 cout << "% humidity" << std::endl;  
 }  
};

The constructor gets the Subject and use it
to register to it as an observer.

The reference to the subject is stored so that it
is possible to use it to un-register

Implementing a concrete
observer

class CurrentConditionsDisplay : public Observer,  
private DisplayElement {  
 private: Subject* weatherData;  
 private: float temperature;  
 private: float humidity;  

 public: CurrentConditionsDisplay(Subject*
weatherData) : weatherData(weatherData),
temperature(0.0), humidity(0.0) {  
 weatherData->registerObserver(this);  
 }  
 public: ~CurrentConditionsDisplay() {  
 weatherData->removeObserver(this);  
 }

 
 public: void update(float temp, float hum, float
pres) {  
 temperature = temp;  
 humidity = hum;  
 display();  
 }  
 public: void display() const {  
 cout.setf(std::ios::showpoint);  
 cout.precision(3);  
 cout << "Current conditions: " << temperature;  
 cout << " C° degrees and " << humidity;  
 cout << "% humidity" << std::endl;  
 }  
};

The constructor gets the Subject and use it
to register to it as an observer.

The reference to the subject is stored so that it
is possible to use it to un-register

When update is called it stores the data, then
display() is called to show them

Implementing a concrete
observer

class CurrentConditionsDisplay : public Observer,  
private DisplayElement {  
 private: Subject* weatherData;  
 private: float temperature;  
 private: float humidity;  

 public: CurrentConditionsDisplay(Subject*
weatherData) : weatherData(weatherData),
temperature(0.0), humidity(0.0) {  
 weatherData->registerObserver(this);  
 }  
 public: ~CurrentConditionsDisplay() {  
 weatherData->removeObserver(this);  
 }

 
 public: void update(float temp, float hum, float
pres) {  
 temperature = temp;  
 humidity = hum;  
 display();  
 }  
 public: void display() const {  
 cout.setf(std::ios::showpoint);  
 cout.precision(3);  
 cout << "Current conditions: " << temperature;  
 cout << " C° degrees and " << humidity;  
 cout << "% humidity" << std::endl;  
 }  
};

The constructor gets the Subject and use it
to register to it as an observer.

The reference to the subject is stored so that it
is possible to use it to un-register

When update is called it stores the data, then
display() is called to show them

Remind to unregister the observer when it is
destroyed.

Test the pattern

int main() {

 
 WeatherData weatherData;

 
 CurrentConditionsDisplay currentDisplay(&weatherData);  
 StatisticsDisplay statisticsDisplay(&weatherData);  
 ForecastDisplay forecastDisplay(&weatherData);

 
 weatherData.setMeasurements(80, 65, 30.4f);  
 weatherData.setMeasurements(82, 70, 29.2f);  
 weatherData.setMeasurements(78, 90, 29.2f);

 
 return 0;  
}

Test the pattern

int main() {

 
 WeatherData weatherData;

 
 CurrentConditionsDisplay currentDisplay(&weatherData);  
 StatisticsDisplay statisticsDisplay(&weatherData);  
 ForecastDisplay forecastDisplay(&weatherData);

 
 weatherData.setMeasurements(80, 65, 30.4f);  
 weatherData.setMeasurements(82, 70, 29.2f);  
 weatherData.setMeasurements(78, 90, 29.2f);

 
 return 0;  
}

Create the
concrete subject

Test the pattern

int main() {

 
 WeatherData weatherData;

 
 CurrentConditionsDisplay currentDisplay(&weatherData);  
 StatisticsDisplay statisticsDisplay(&weatherData);  
 ForecastDisplay forecastDisplay(&weatherData);

 
 weatherData.setMeasurements(80, 65, 30.4f);  
 weatherData.setMeasurements(82, 70, 29.2f);  
 weatherData.setMeasurements(78, 90, 29.2f);

 
 return 0;  
}

Create the
concrete subject

Create the displays
and pass the
concrete subject

Test the pattern

int main() {

 
 WeatherData weatherData;

 
 CurrentConditionsDisplay currentDisplay(&weatherData);  
 StatisticsDisplay statisticsDisplay(&weatherData);  
 ForecastDisplay forecastDisplay(&weatherData);

 
 weatherData.setMeasurements(80, 65, 30.4f);  
 weatherData.setMeasurements(82, 70, 29.2f);  
 weatherData.setMeasurements(78, 90, 29.2f);

 
 return 0;  
}

Simulate
measurements

Create the
concrete subject

Create the displays
and pass the
concrete subject

Push or pull ?

• In the previous implementation the state is
pushed from the Subject to the Observer

• If the Subject had some public getter
methods the Observer may pull the state
when it is notified of a change

• If the state is modified there’s no need to
modify the update(), change the getter
methods

Pull example

public: void update() {  
 temperature = weatherData->getTemperature();  
 humidity = weatherData->getHumidity();  
 display();  
}

Pull example

public: void update() {  
 temperature = weatherData->getTemperature();  
 humidity = weatherData->getHumidity();  
 display();  
}

The update() method in the
Observer interface now is
decoupled from the state of the
concrete subject

Pull example

public: void update() {  
 temperature = weatherData->getTemperature();  
 humidity = weatherData->getHumidity();  
 display();  
}

The update() method in the
Observer interface now is
decoupled from the state of the
concrete subject

We just have to change the
implementation of the update() in
the concrete observers

Pull example

public: void update() {  
 temperature = weatherData->getTemperature();  
 humidity = weatherData->getHumidity();  
 display();  
}

The update() method in the
Observer interface now is
decoupled from the state of the
concrete subject

We just have to change the
implementation of the update() in
the concrete observers

This must be a pointer
to the concrete subject

instead of Subject
interface, or you can

not use its getter
methods

Flexible updating
•To have more flexibility in updating the observers the Subject
may have a setChanged() method that allows the
notifyObservers() to trigger the update()  
 
setChanged() {  
 changed = true;  
}  
public: void notifyObservers() const {  
 if(changed) {  
 for(list< Observer* >::iterator itr = observers.begin();  
 observers.end() != itr; ++itr) {  
 Observer* observer = *itr;  
 observer->update(temperature, humidity, pressure);  
 }  
 changed = false;  
 }  
}  

Flexible updating
•To have more flexibility in updating the observers the Subject
may have a setChanged() method that allows the
notifyObservers() to trigger the update()  
 
setChanged() {  
 changed = true;  
}  
public: void notifyObservers() const {  
 if(changed) {  
 for(list< Observer* >::iterator itr = observers.begin();  
 observers.end() != itr; ++itr) {  
 Observer* observer = *itr;  
 observer->update(temperature, humidity, pressure);  
 }  
 changed = false;  
 }  
}  

call the setChanged() method when the state has
changed enough to tell the observers

Flexible updating
•To have more flexibility in updating the observers the Subject
may have a setChanged() method that allows the
notifyObservers() to trigger the update()  
 
setChanged() {  
 changed = true;  
}  
public: void notifyObservers() const {  
 if(changed) {  
 for(list< Observer* >::iterator itr = observers.begin();  
 observers.end() != itr; ++itr) {  
 Observer* observer = *itr;  
 observer->update(temperature, humidity, pressure);  
 }  
 changed = false;  
 }  
}  

call the setChanged() method when the state has
changed enough to tell the observers

check the flag to start the notifications

Observer and pointers

• In the pull version of Observer the Subject contains
a pointer to an Observer, and the Observer can hold
a pointer to the Subject.

• Neither object owns the other, and either object can
be deleted at any time. They are separate objects
that just happen to communicate with each other via
pointers.

• Remind: before an Observer is deleted, it must be
unregistered from every Subject it is observing.
Otherwise, the Subjects will keep trying to Update it
via the invalid pointer, causing undefined behavior.

Observer and pointers

• In the pull version of Observer the Subject contains
a pointer to an Observer, and the Observer can hold
a pointer to the Subject.

• Neither object owns the other, and either object can
be deleted at any time. They are separate objects
that just happen to communicate with each other via
pointers.

• Remind: before an Observer is deleted, it must be
unregistered from every Subject it is observing.
Otherwise, the Subjects will keep trying to Update it
via the invalid pointer, causing undefined behavior.

Do this in the destructor

Observer and pointers

• In the pull version of Observer the Subject contains
a pointer to an Observer, and the Observer can hold
a pointer to the Subject.

• Neither object owns the other, and either object can
be deleted at any time. They are separate objects
that just happen to communicate with each other via
pointers.

• Remind: before an Observer is deleted, it must be
unregistered from every Subject it is observing.
Otherwise, the Subjects will keep trying to Update it
via the invalid pointer, causing undefined behavior.

Do this in the destructor

Also remind to destroy the Subject after its
Observers have been destroyed, or some

Observers will try to unregister from an already
destroyed Subject (again using an invalid pointer…

Observer and video games

• Some game engines (e.g. OGRE3D) let
programmers extend Ogre::FrameListener and
implement:  
virtual void frameStarted(const
FrameEvent& event)  
virtual void frameEnded(const
FrameEvent& event)

• These are methods called by the main game loop
before and after the 3D scene has been drawn.
Add code in those methods to create the game.

Observer and video games

• Some game engines (e.g. OGRE3D) let
programmers extend Ogre::FrameListener and
implement:  
virtual void frameStarted(const
FrameEvent& event)  
virtual void frameEnded(const
FrameEvent& event)

• These are methods called by the main game loop
before and after the 3D scene has been drawn.
Add code in those methods to create the game.

class GameFrameListener : public Ogre::FrameListener {  
public:
 virtual void frameStarted(const FrameEvent& event) {
 // Do things that must happen before the 3D scene
 // is rendered (i.e., service all game engine
 // subsystems).
 pollJoypad(event);
 updatePlayerControls(event);
 updateDynamicsSimulation(event);
 resolveCollisions(event);
 updateCamera(event);
 // etc.  
 }
 virtual void frameEnded(const FrameEvent& event) {
 // Do things that must happen after the 3D scene
 // has been rendered.
 drawHud(event);
 // etc.  
 }
};

Model-View-Controller

The observer pattern and
GUIs

• The observer pattern is also very often
associated with the model-view-controller
(MVC) paradigm.

• In MVC, the observer pattern is used to
create a loose coupling between the model
and the view.  
Typically, a modification in the model triggers
the notification of model observers which
are actually the views.

http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Paradigm
http://en.wikipedia.org/wiki/Loose_coupling

MVC: GoF brief description

• “MVC consists of three kinds of objects.  
The model is the application object, the
view is its screen presentation, and the
controller defines the way the user interface
reacts to user input. Before MVC, user
interface designs tended to lump these objects
together. MVC decouples them to increase
flexibility and reuse.”

MVC schema

• The model maintains
data, views display all
or a portion of the
data, and controller
handles events that
affect the model or
view(s).

• Whenever a controller
changes a model’s data
or properties, all
dependent views are
automatically updated.

MVC schema

• The model maintains
data, views display all
or a portion of the
data, and controller
handles events that
affect the model or
view(s).

• Whenever a controller
changes a model’s data
or properties, all
dependent views are
automatically updated.

Controller
•knows how this particular application works
•controls the view and the model

Model
•“real world”
•works when the controller asks it to work
•updates the view

View
•user interface
•knows how to communicate with the end user

MVC UML schema

• The Model acts as a Subject from the
Observer pattern and the View takes on the
role of the Observer object.

MVC: a composite pattern

• MVC is not defined as a design pattern per-se
in GoF, but is rather referred to as a “set of
classes to build a user interface” that uses
design patterns such as Observer, Strategy, and
Composite.”

• The relation between Model and View is
implemented as Observer…

MVC: a composite pattern

• The relation between View and Controller is
implemented using the Strategy pattern

• The View uses the Controller to implement a
specific type of response. The controller can
be changed to let the View respond differently
to user input.

MVC: a composite pattern

• The relation between View and Controller is
implemented using the Strategy pattern

• The View uses the Controller to implement a
specific type of response. The controller can
be changed to let the View respond differently
to user input.

Strategy pattern: we have objects that hold alternate algorithms to solve a problem.

In this DP an algorithm is separated from the object that uses it, and encapsulated as its own
object.
• A concrete strategy implements one behavior, one implementation of how to solve the same

problem
• It separates algorithm for behavior from object that wants to act
• Allows changing an object's behavior dynamically without extending / changing the object itself

MVC in action

1. The end user manipulates the view
(e.g. presses a button).

2. The user's actions are interpreted by
the view.

3. The view passes the interpreted
commands to the controller.

4. The controller decides 
what to do…

5. …and the controller makes the model
act.

6. The model acts independently, and
according to the requests of the
controller

7. The model notifies the views
interested in its updates

8. Each notified view displays the
information in its own way.

ViewModel

Controller

User

876

5 4 3

2 1

MVC: sequence diagram

MVC in action
GUI Window

Value SetAdd:

View::setButtonPressed() {
 int value = addTextField.getInt();
 controller->setBalance(value);
}

View::showTotal(int total) {
 totalTextField.setInt(total);
}

View

ValueTotal:

Controller Model

Controller::setBalance(int val) {
 model->setTotal(v);
}

Model::setTotal(int val) {
 total = v;
 notify();
}

Model::notify() {
 for(view : views)
 view->showTotal(total);
}

MVC in action - 2
GUI Window

Value GetTotal:

View::getButtonPressed() {
 controller->getBalance();
}

View::showTotal(int total) {
 totalTextField.setInt(total);
}

View

Controller Model

Controller::getBalance() {
 int total = model->getTotal();
 view->showTotal(total);
}

Model::getTotal() {
 return total;
}

Model::notify() {
 for(view : views)
 view->showTotal(total);
}

Model

• represents the“real world”

• is capable of completing “real world”tasks
independently

• is controlled by the controller

• the controller makes the model act

• the model updates the view

• has methods to set/get its state

View
• it is the user interface

• all the callback functions of the windowing system

• all the widgets of the windowing system

• knows how to communicate with the enduser

• knows how to present things to the end user

• knows how to receive the end user’s actions

• does not decide what to do with the user’s actions: lets the controller decide

• has feedback, manipulation and query methods:

• has methods like showValueInTextField(), setRadioButtonX() to present things to the end
user,

• has methods like onButtonXXXPressed(), onSliderYYYMoved() to capture the end user’s
actions,

• has methods like getDropDownSelection(), getCheckBoxXX() to capture the end user’s
selections made some time ago

Controller

• Controls the application

• makes application specific decisions

• knows how this application should behave

• Controls the application by making the model and the view
act

• knows WHAT the model and the view are capable of
doing

• knows WHAT the model and the view should do

• doesn’t know HOW things are done inside the model
and the view

Example

class Observer {

public:

virtual ~Observer() {}

virtual void update() = 0;

};

class Subject {

public:

virtual ~Subject() {}

virtual void notify() = 0;

virtual void addObserver(Observer* o) = 0;

virtual void removeObserver(Observer* o) = 0;

};

Example: Model
class Model : public Subject {

public:

int getData(){  
return data;  

}

void setData(const int i) {  
data = i;  
notify();  

}

virtual void
addObserver(Observer* o) {  

observers.push_back(o);  
}

virtual void
removeObserver(Observer* o) {  

observers.remove(o);  
}

virtual void notify() {  
for (Observer* observer :  

 observers)  
observer->update();  

}

private:

 int data = 0;

 list<Observer*> observers;

};

Example: Controller
class Controller {  
public:

Controller(Model* m) : model(m) {}

void increment() {  
int value = model->getData();  
value++;  
model->setData(value);  

}

void decrement() {  
int value = model->getData();  
value--;  
model->setData(value);  

}

private:

Model* model;

};

Example: View
class View : public Observer {  
public:

View(Model* m, Controller* c) {  
model = m;  
model->addObserver(this);  
controller = c;  

}

virtual ~View() {  
 model->removeObserver(this);  
}

void displayTextField(int i) {  
cout << "Text field: " << i << endl;  

}

virtual void update() {  
int value = model->getData();  
displayTextField(value);  

}

void incrementButton() {  
controller->increment();  

}

void decrementButton() {  
controller->decrement();  

}

private:

 Model* model;  
 Controller* controller;

};

Example: main

Model* model = new Model;

Controller* controller = new Controller(model);

View* view = new View(model, controller);

// simulate user interaction:

view->incrementButton();

view->incrementButton();

view->incrementButton();

view->decrementButton();

View and Controller and MVP

• Often View and Controller classes are
merged

• There are variations of MVC, like
MVP (Model-View-Presenter) where
View and Controller are merged. A
new actor, called Presenter is
introduced; it can access the View and
the Model directly, and the Model-
View relationship can still exist where
relevant. The Presenter can update
the model and the view directly.

MVC and QT

• The QT Framework has a different
architecture: Model/View/Delegates

• Delegates: classes that provide
complete control over presentation
and editing of data items, instead of
using controllers. A Delegate has
access to both view and model.

• If you do not use the delegates,
then in QT you use a Model/View
architecture, in which the
Controller is merged with the View

MVC with wxWidgets
and QT

wxWidgets

• It is an open source cross-platform GUI toolkit.

• Programmers use the same API to write GUI
applications on multiple platforms

• The same application is recompiled on a
different system and it will look as native on
each system

• Provides helper libraries for networks,
multimedia, multithreading, HTML viewing,
etc.

wxWidgets: model

It is the same of the previous example:  
 
class Model : public Subject {  
public:  
 int getData() const {  
 return data;  
 }  
 void setData(const int i);  
 virtual void addObserver(Observer* o)  
override;  
 virtual void removeObserver(Observer* o) override;  
 virtual void notify() override;  
private:  
 int data = 0;  
 std::list<Observer*> observers;  
};

wxWidgets: Controller

• Also the controller is the same of the previous
example:  
 
#include "Model.h"  
class Controller {  
public:  
 Controller(Model* m) : model(m) {}  
 void increment();  
 void decrement();  
private:  
 Model* model;  
};

wxWidgets: View

• The view is necessarily different: it has to deal
with the way in which wxWidgets shows the
GUI elements.

• We can extend a base class wxFrame, that
represents a window whose size and position
can (usually) be changed by the user.

• It usually has thick borders and a title bar, and
can optionally contain a menu bar, toolbar
and status bar. A frame can contain any
window that is not a frame or dialog.

wxWidgets: View

• Since View extends wxFrame it is possible to
show it on the screen. Since it has to be an
Observer for the Model we can use multiple
inheritance.

• As a wxFrame it contains all the GUI widgets,
and places them within the panel of the frame.

• It contains pointers to model and controller
and uses them to get the data to be shown
and to invoke the methods to change the
model.

wxWidgets: View
class View : public wxFrame, public Observer {  
private:

protected:  
 Model* model;  
 Controller* controller;

 wxStaticText* staticText;  
 wxTextCtrl* textCtrl;  
 wxButton* incrementButton;  
 wxButton* decrementButton;

 virtual void onIncrementButtonClick(wxCommandEvent& event);  
 virtual void onDecrementButtonClick(wxCommandEvent& event);

public:  
 View(Model* model, Controller* controller, wxWindow* parent=NULL, wxWindowID id =
wxID_ANY, const wxString& title = wxEmptyString, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxSize(500,300), long style =
wxDEFAULT_FRAME_STYLE|wxTAB_TRAVERSAL);  
 virtual ~View();  
 virtual void update() override;  
};

Some GUI widgets receive an input from the
user, e.g. buttons are clicked. Upon these events

there is code that has to be executed
(callbacks)

wxWidgets: View
class View : public wxFrame, public Observer {  
private:

protected:  
 Model* model;  
 Controller* controller;

 wxStaticText* staticText;  
 wxTextCtrl* textCtrl;  
 wxButton* incrementButton;  
 wxButton* decrementButton;

 virtual void onIncrementButtonClick(wxCommandEvent& event);  
 virtual void onDecrementButtonClick(wxCommandEvent& event);

public:  
 View(Model* model, Controller* controller, wxWindow* parent=NULL, wxWindowID id =
wxID_ANY, const wxString& title = wxEmptyString, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxSize(500,300), long style =
wxDEFAULT_FRAME_STYLE|wxTAB_TRAVERSAL);  
 virtual ~View();  
 virtual void update() override;  
};

Some GUI widgets receive an input from the
user, e.g. buttons are clicked. Upon these events

there is code that has to be executed
(callbacks)

The callbacks invoke the controller methods:  
 
void View::onIncrementButtonClick(wxCommandEvent &event) {
 controller->increment();
}

void View::onDecrementButtonClick(wxCommandEvent &event) {
 controller->decrement();
}

wxWidgets: View

• The constructor sets up the GUI elements and
registers to the model:  
 
View::View(Model* model, Controller* controller, wxWindow* parent,
wxWindowID id, const wxString& title, const wxPoint& pos, const wxSize&
size, long style) : wxFrame(parent, id, title, pos, size, style) {  
 this->model = model;  
 this->model->addObserver(this);  
 this->controller = controller;  
 
 this->SetSizeHints(wxDefaultSize, wxDefaultSize);  
 wxBoxSizer* frameSizer;  
 frameSizer = new wxBoxSizer(wxHORIZONTAL);  
 staticText = new wxStaticText(this, wxID_ANY, wxT("Value"),  
 wxDefaultPosition, wxDefaultSize, 0);  
 staticText->Wrap(-1);  
 frameSizer->Add(staticText, 0, wxALL, 5);  
 //...

wxWidgets: View

• The update() method gets data from the model
and updates the widgets of the GUI:  
 
void View::update() {  
 int value = model->getData();  
 wxString wxIntString =  
 wxString::Format(wxT("%i"),value);  
 textCtrl->ChangeValue(wxIntString);  
}

• When building the GUI the callbacks are associated
to the events generated by the widgets:  
 
incrementButton->Connect(wxEVT_COMMAND_BUTTON_CLICKED,
wxCommandEventHandler(View::onIncrementButtonClick), NULL, this);  
decrementButton->Connect(wxEVT_COMMAND_BUTTON_CLICKED,
wxCommandEventHandler(View::onDecrementButtonClick), NULL, this);

wxWidgets: main

• In wxWidgets there’s no explicit main()

• We create a wxApp object, with an OnInit()
method that instantiate at least a wxFrame or
wxDialog and shows it.

• In our MVC we also instantiate a model, a controller
and set their connections.

• A wxIMPLEMENT_APP macro instantiates the
wxApp objects and executes it, basically providing the
main() procedure access point to the program.

wxWidgets: main

• In wxWidgets there’s no explicit main()

• We create a wxApp object, with an OnInit()
method that instantiate at least a wxFrame or
wxDialog and shows it.

• In our MVC we also instantiate a model, a controller
and set their connections.

• A wxIMPLEMENT_APP macro instantiates the
wxApp objects and executes it, basically providing the
main() procedure access point to the program.

QT
• It is an extremely popular open source cross-platform

GUI toolkit.

• Programmers use the same API to write GUI
applications on multiple platforms

• The same application is recompiled on a different
system and it will adapt its look on each system

• Differently from wWidgets the QT toolkit does
not use the native widgets but re-implements
them with low level graphic APIs

• It provides many helper libraries, from databases to
networking

QT: model and controller

• They remain the same of the wxWidgets
example, and of the text-based example

• QT offers several classes that can be used as
models, but for the sake of consistency this
example shows how to implement the same
general architecture of the previous example

QT: view

• The view class extends some QT window
class or specific QT view class

• In this example we are going to extend
QMainWindow and Observer

• Widgets and description of how to place
and connect them in the panel is within a
different class, that is included as an attribute

QT: view helper

• This simple class (usually automatically generated
with a RAD tool) contains widgets and a setup
method that places them within a window.

• Instead of registering callbacks QT connects so
called SIGNALs (generated by some widget or
object) to SLOTs (associated to methods/
function):  
 
QObject::connect(incrementButton, SIGNAL(clicked()),  
 View, SLOT(onIncrementButton()));

QObject::connect(decrementButton, SIGNAL(clicked()),  
 View, SLOT(onDecrementButton())

QT: view

class View : public QMainWindow, public
Observer {  
 Q_OBJECT  
public:  
 View(Model* m, Controller* c,  
 QWidget *parent = 0);  
 ~View();  
 virtual void update() override;

private slots:  
 void onIncrementButton();  
 void onDecrementButton();

private:  
 ViewWindow* ui;  
 Model* model;  
 Controller* controller;  
};

View::View(Model* m, Controller* c,  
 QWidget* parent) :  
 QMainWindow(parent),  
 ui(new ViewWindow()),  
 model(m), controller(c) {

 model->addObserver(this);  
 ui->setupUi(this);  
 update();  
}

void View::update() {  
 int value = model->getData();  
 ui->textCtrl  
 ->setText(QString::number(value));  
}

QT: view

class View : public QMainWindow, public
Observer {  
 Q_OBJECT  
public:  
 View(Model* m, Controller* c,  
 QWidget *parent = 0);  
 ~View();  
 virtual void update() override;

private slots:  
 void onIncrementButton();  
 void onDecrementButton();

private:  
 ViewWindow* ui;  
 Model* model;  
 Controller* controller;  
};

View::View(Model* m, Controller* c,  
 QWidget* parent) :  
 QMainWindow(parent),  
 ui(new ViewWindow()),  
 model(m), controller(c) {

 model->addObserver(this);  
 ui->setupUi(this);  
 update();  
}

void View::update() {  
 int value = model->getData();  
 ui->textCtrl  
 ->setText(QString::number(value));  
}

The methods associated with the slots invoke the controller methods:  
 
void View::onIncrementButton() {
 controller->increment();
}

void View::onDecrementButton() {
 controller->decrement();
}

QT: main

• A QApplication object is instantiated in main(),
then model, controller and view are
instantiated and the view object is shown with
the show() method:  
 
QApplication app(argc, argv);

Model* model = new Model;  
Controller* controller = new Controller(model);  
View view(model, controller);  
view.show();

return app.exec();

QT: main

• A QApplication object is instantiated in main(),
then model, controller and view are
instantiated and the view object is shown with
the show() method:  
 
QApplication app(argc, argv);

Model* model = new Model;  
Controller* controller = new Controller(model);  
View view(model, controller);  
view.show();

return app.exec();

Reading material

• M. Bertini, “Programmazione Object-Oriented in C++”,
parte II, cap. 3

Credits

• These slides are based on the material of:

• Glenn Puchtel

• Fred Kuhns, Washington University

• Aditya P. Matur, Purdue University

http://www.wustl.edu/

