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Kinematics from observations
✤ Doppler effect: radial component only
✤ lack of two tangential components unless proper motions 

but...
✤ μ[μarcsec yr-1] = 21 * vt [100 km s-1] / D [Mpc]
✤ becoming accessible in M31 with masers!
✤ Out of reach beyond the Local Group

N

E

Proper Rotation � Geometric Distance

D = VRot / µRot

~70 µarcsec/year

~15 µarcsec/year

~15 µarcsec/year

- Distance error gets ~equal contributions from rotation 
curve uncertainty and proper motion uncertainty (initially)
- Expect ~10% uncertainty (initially)

(c.f. Brunthaler et al work on M33)

Credits: Jeremy Darling + Gordon+08 [Spitzer 24μm image]
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Radial velocities
✤ Require adequate spectral resolution (and 

accuracy!)

✤ At optical wavelengths ∆λ~1.5Å
✤ Must take into account the velocity distribution 

f(v) along the line of sight that is integrated
✤ Assuming that the spectrum is independent of v

✤ If F is narrow (almost a δ), the resulting spectrum 
Ftot directly reflects the velocity distribution f(v), 
with a broadening 
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Velocity distribution and spectral “smoothing”
✤ Previous formalism is computationally expensive so normally this 

is done in velocity space

✤ The convolution with the velocity distribution becomes “trivial”

✤ At 0th order everything is gaussian, but in some cases broadening 
is not purely gaussian

✤ for very strong/high-SNR line observations the profiles are 
better represented by a Voigt profile: central gaussian (doppler 
broadened) is convolved with the lorentzian due to natural 
line-width broadening (uncertainty principle!) (e.g. damping 
wings!)

✤ departures from pure gaussianity are important kinematic 
diagnostics (h3-h4, skewness and kurtosis)
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Kinematics and spatial resolution

✤ 0D measurements: single beam 
representative of the entire galaxy

✤ 1D measurements: long slit 
spectroscopy

✤ 2D measurements: integral field 
spectroscopy, interferometric radio 
maps
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Rotation of disk galaxies
✤ Best done with (narrow and) strong emission lines: Hα, Hβ, HI-21cm..., but also done 

with stellar absorption lines for gas poor/passive galaxies

✤ Measure only the l.o.s. component → tangential (rotational) velocity from de-projection

✤ Assume axis-symmetry

✤ Inclinations (and PA) derived from images can be quite uncertain and different from 
those derived from kinematics: bars, oval disks, (asymmetric) spiral arms can bias the 
estimates!
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Long-slit rotation curves
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Single-beam measurement

✤ Velocity profile in the integral of the (covered part of the) galaxy

✤ Must assume some spatial line intensity profile to interpret!

UGC 11348: No H i data in AGC archive; use Theureau
et al. (1998; lesser quality than reprocessing of archive data).

AGC 330564/CGCG 476-075: Strong, solid-body inner
ORC profile rises above Vmax—bar?

AGC 330712: Strong H! , but no [N ii] to trace along
ORC.

UGC 12721: Patchy H ii along disk (isolated points appear
to be real, match I band).

AGC 330721: Treat as if no H i data; likely confused with
known companion.

AGC 330768/CGCG 476-112: Sole case of strong ORC
asymmetry outside of cluster cores, from interacting neighbor
at 16 h!1 kpc.

AGC 331185/F2532: New AGC name for AGC 331096
(deactivated). H i spectrum has been published as AGC

331096, and recorded in the NED. Identified as AGC 331096
in Vogt (1995).

AGC 330918/CGCG 498-012: Use TF I-band data from
Han & Mould (1992); assume Rd ¼ R23:5=3:5.

AGC 330958/CGCG 477-020: H i marginal (S/N barely
acceptable) and !cz ¼ 1200 km s!1 from ORC; assume
nondetection in H i and calculate H i gas mass from rms, not
flux.

AGC 331013/CGCG 478-003: H i marginal (S/N barely
acceptable) and !cz ¼ 200 km s!1 from ORC; assume non-
detection in H i and calculate H i gas mass from rms, not flux.

Figure 14 presents the data on the derived rotation curves
for the entire sample of galaxies, sorted by right ascension and
labeled by AGC name. Filled circles designate the H! data,
and open circles the [N ii] data (where traced). Error bars

Fig. 14.—Rotation curves are shown for the entire sample, sorted by right ascension and labeled by AGC name. Filled circles show H! data, and open circles
[N ii] data; error bars are plotted when larger than 10 km s!1. The x-axis shows the radial distance along the major axis, in h!1 kpc, and the y-axis the velocity, in
kilometers per second. The cluster name is noted for galaxies within 2 h!1 Mpc of a cluster center, with the galaxy radius (h!1 Mpc) and velocity offset (") inset
below the morphological type. The absolute magnitudeMI is then added if available. For galaxies within one h!1 Mpc of a cluster center, an arrow from the center of
the rotation curve points toward the cluster center (the angle between the x-axis and the arrow indicates the position of the major axis relative to the cluster center.)
To the right of each rotation curve we present the H i line profile, preserving the velocity scale on the y-axis. The line profile is scaled along the x-axis to fill the
available horizontal space rather than in absolute flux units, but the line profile is scaled lower and drawn as a dotted line for galaxies that are H i deficient by more
than a factor of 2.5 (log H idef # 0:40). [See the electronic edition of the Journal for additional panels of this figure.]

PROPERTIES OF CLUSTER SPIRALS. I. 3295No. 6, 2004

Hα+NII 
rotation curve

HI velocity 
profile

✤ For classical rotation curves with a flat outer profile, it is easy to 
derive the maximum rotational velocity ~corresponding to the 
asymptotic value, i.e. the break in the HI profiles

Vogt et al. (2004)
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Rotation curves
✤ The amplitude and flattening of galaxy rotation curves is inconsistent 

with pure baryonic disks (well known since pioneering works of Vera 
Rubin ~50 years ago)

✤ Systematic variations of the shape of the rotation curve with galaxy 
luminosity (relevant also to test DM properties and its coupling to 
baryons): the Universal Rotation Curve (Persic & Salucci 1991)
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The Tully-Fisher relation
✤ Tight scaling relation between 

Luminosity and circular velocity 
discovered by Tully & Fisher 
(1977)

✤ Dimensional interpretation

✤ Actual slope is generally 
shallower, yet quite uncertain, 
ranging from 2.4 to almost 4 (see 
Pizagno+07)

✤ Key relation in distance ladder
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Baryonic TF

✤ Why departure from 
simplistic expectation?

✤ systematic variations in 
M/L, both baryonic and 
dark: try to use baryonic 
mass?

✤ systematic variation in the 
mass and velocity profiles 
(related: what exactly is 
the radius in those 
equations??)

L100 BARYONIC TULLY-FISHER RELATION Vol. 533

Fig. 1.—Tully-Fisher relation plotted as (a) stellar mass and (b) baryonic
disk mass against rotation velocity. The squares represent galaxies where the
circular velocity is estimated from the line width by , while the circles1V = W2c 20

have from resolved rotation curves. The data employed include theV = Vc flat

H-band data of Bothun et al. (1985; red), the -band data of Verheijen (1997;′K
black), and the I-band data of Pildis et al. (1997) with velocities as reported
by Eder & Schombert (2000; green). Also shown are the B-band data of
McGaugh & de Blok (1998; light blue) and of Matthews et al. (1998; dark
blue). The stellar mass is computed from the luminosity by assuming a constant
mass-to-light ratio ( ), so (a) is directly analogous to the usualM = U L∗ ∗
luminosity–line width diagram. We assume mass-to-light ratios for the stellar
populations of late-type galaxies of , , , and ′B I H KU = 1.4 U = 1.7 U = 1.0 U =∗ ∗ ∗ ∗

(see text). In (b), we plot the total baryonic disk mass0.8 M /L M =, , d

with . In (a), a clear break is apparent. Galaxies withM !M M = 1.4M∗ gas gas H i

fall systematically below the Tully-Fisher relation defined by"1V ! 90 km sc

brighter galaxies. In (b), the deficit in mass apparent in (a) has been restored
by including the gas mass. The solid line is an unweighted fit to the red-band
data in (b) with a correlation coefficient of 0.92 and a slope indistinguishable
from 4.

data of Verheijen (1997) and McGaugh & de Blok (1998) for
which is measured from resolved rotation curves. The dataVf lat
of Verheijen (1997) are -band data for spiral galaxies in the′K
UMa cluster (Tully et al. 1996), while the data discussed by
McGaugh & de Blok (1998) are B-band data drawn from a
variety of sources.
The two red-band data sets, the H-band data of Bothun et

al. (1985) at the bright end and the I-band dwarf galaxy sample
at the faint end, together suffice to define a Tully-Fisher relation
over five decades in stellar mass. The rotation curve samples
are consistent with these data. For comparison, we also examine
the gas-rich, late-type galaxy sample of Matthews, van Driel,
& Gallagher (1998). Their B-band data are entirely consistent
with our own data, provided we make the same inclination cut,

. Although this inclination limit is of obvious impor-i 1 45!
tance, it is interesting to note that by including or excluding
the galaxies that they note as having strongly asymmetric or
single-horned H i profiles makes no difference to the result.
In all cases, we have simply taken the data as given by each

source. Aside from the necessary inclination correction, we
have not made any corrections for internal extinction or for
noncircular motions (shown to be small for late-type systems
by Rix & Zaritsky 1995 and by Beauvais & Bothun 1999).
That the data treated in this way produce a good Tully-Fisher
relation indicates, to first order, that these effects are not
important.

3. RESULTS

Figure 1 illustrates the Tully-Fisher relation for the combined
data sets. Two versions are shown: in Figure 1a, the stellar
mass is plotted in place of luminosity, and in Figure 1b, the
total luminous baryonic mass is shown. In order to place the
data sets using different bandpasses for photometry on the same
scale, we convert luminosity to stellar mass assuming a fixed
mass-to-light ratio for each band. The value of the mass-U∗
to-light ratio appropriate to the stellar populations of late-type
galaxies with ongoing star formation has been examined in
detail by de Jong (1996). We adopt his model for a 12 Gyr
old, solar metallicity population with a constant star formation
rate and Salpeter initial mass function (IMF). The adopted
mass-to-light ratios are , , , andB I HU = 1.4 U = 1.7 U = 1.0∗ ∗ ∗

.5 These - and I-band mass-to-light ratios′K ′U = 0.8 M /L K∗ , ,

are consistent with the maximum disk fits to the bright galaxies
of Verheijen (1997) and Palunas (1996). We do of course expect
variation in stellar populations and their mass-to-light ratios.
This should be modest in the redder bands, especially H and
, which are not very sensitive to differences in star formation′K

history. The I-band mass-to-light ratio is not very sensitive to
metallicity (Worthey 1994), so this should suffice for the fainter
galaxies that, in any case, are dominated by gas mass. The B
band is a less robust indicator of stellar mass, so we do not
include these data in the fit in Figure 1b. While the absolute
normalization of stellar mass-to-light ratios remains uncertain,
tweaking the adopted values has no effect on the basic result.
The stellar mass plotted in Figure 1a is simply M* =

U*L, so this plot is directly analogous to the conventionalluminosity–line width diagram. The baryonic disk mass plotted
in Figure 1b is the sum of stars and gas, . TheM = M !Md ∗ gas
mass in gas is taken from the observed H i mass with the
standard correction for helium and metals: . ItM = 1.4Mgas H i

5 For the mean H"K" color of late-type galaxies given by de Jong (1996),
.′H KU = 1.2U∗ ∗

appears that molecular gas is not a significant mass component
in these late-type galaxies (Schombert et al. 1990; de Blok &
van der Hulst 1998; Mihos, Spaans, & McGaugh 1999; Ger-
ritsen & de Blok 1999).
There have previously been hints (e.g., Romanishin, Strom,

& Strom 1983) that faint galaxies fall below the extrapolated
Tully-Fisher relation for bright galaxies. Matthews et al. (1998)
and Stil & Israel (2000) claim to see this in their samples,
though it is not entirely clear from their data. The apparent
discrepancy in our results stems not from a difference in the
data but from what is taken to define the Tully-Fisher relation.
Matthews et al. (1998) and Stil & Israel (2000) compare their
data with the lines fitted to the B-band data of brighter galaxies.
These fiducial lines have a shallow slope that overpredicts con-
siderably the luminosities of faint galaxies when extrapolated
to low circular velocity. It is not clear whether or not it is safe
to extrapolate the slope in this fashion. Extinction appears to
be relatively more important in brighter galaxies, with careful
corrections giving steeper slopes (Tully et al. 1998). Samples
of galaxies with low intrinsic extinctions also give considerably
steeper B-band slopes (Sprayberry et al. 1995; Verheijen 1997;
McGaugh & de Blok 1998). The H-band data of Bothun et al.
(1985) and the -band data of Verheijen (1997), two bands′K
in which extinction is minimal, also indicate steep slopes. A
steep slope is also supported by the calibration of the Tully-
Fisher relation from the Hubble Space Telescope Key Project
(Sakai et al. 2000). Such a slope eliminates the discrepancy
reported by Matthews et al. (1998) and by Stil & Israel (2000).
Nevertheless, it is now clear from the larger dwarf sample

stars stars+gas
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employed here that there is indeed a break in the Tully-Fisher
relation for faint field6 galaxies. For , galaxies!1V ! 90 km sc

are underluminous for their rotation velocity, as predicted by
the extrapolation of a linear fit to the bright galaxy data. There
is a great amount of scatter here too—the relation bends and
flares. There have been concerns that there might be curvature
in the Tully-Fisher relation (e.g., Bothun & Mould 1987), but
the data in Figure 1a are probably better described by a broken
power law, if it makes sense to fit anything to the faint end at
all.
A break in the Tully-Fisher relation would have important

ramifications for its application and interpretation. However,
many of these faint galaxies are very gas rich. So much so, in
fact, that the gas outweighs the stars in most of them for any
reasonable choice of stellar mass-to-light ratio (J. M. Schom-
bert, S. S. McGaugh, & J. A. Eder 2000, in preparation). There-
fore, in Figure 1b, we examine the effects of including the gas
mass in the ordinate by plotting the total observed baryonic
disk mass, . This has the remarkable effect ofM = M "Md ∗ gas
restoring a single linear relation over the entire span of the
observations.
It appears that the fundamental relation underpinning the

Tully-Fisher relation is one between rotation velocity and total
baryonic disk mass (see Persic & Salucci 1988). This relation
has the form

bM = AV . (2)d c

An unweighted fit to the red (I-, H-, and -band) data gives′K
and . The precise valuelog A = 1.57! 0.25 b = 3.98! 0.12

of the normalization would of course change if we assumed a
different distance scale or different stellar mass-to-light ratios.
The slope is indistinguishable from . If we fix the slopeb = 4
to this value, the normalization is M, km!4 s4.!2A ≈ 35 h 75

4. IMPLICATIONS

The basic result seen in Figure 1b falls directly out of the
observations. All that have did was assume a plausible mass-
to-light ratio for the stars, add in the gas mass, and plot the
data. This simple result has a number of interesting impli-
cations.
First, there is an apparently universal relation between bary-

onic mass and rotation velocity, with a single normalization.
While this relation specifically applies to our sample of late-
type spiral galaxies, it seems plausible that it might also apply
to early-type spiral galaxies, provided appropriate consideration
is given to the bulge component, which might require a different
U*, and to any other baryonic components that might be sig-nificant (like molecular gas).
The logarithmic slope of the relation is indistinguishable

from 4. While this slope is often attributed to the virial theorem,
it is possible to derive other slopes as well depending on the
assumptions one makes (Mo et al. 1998). Current cold dark
matter models predict a slope of 3 (Mo et al. 1998; Steinmetz
& Navarro 1999), which is excluded at 8 j. Significant tweak-
ing is required to obtain the observed slope. Feedback from
supernovae is often invoked in this context (van den Bosch
2000), but it is not obvious that the modest amount of feedback
required by the Tully-Fisher relation is consistent with the large

6 The -band data of Pierini & Tuffs (1999) shows a steep slope with no′K
break down to . These are cluster galaxies, so this makes sense!1V ≈ 60 km sc

if these objects are less gas rich than the field sample.

amount needed to explain the luminosity function (Lobo &
Guiderdoni 1999). The correct slope and normalization are pre-
dicted by one alternative to cold dark matter (Milgrom 1983).
In this alternative, there is no dark matter—all of the mass is
baryonic.
Whatever mechanism sets the observed relation is intimately

connected to the observed baryonic mass. The interpretation
of the standard luminosity–line width relation has long sup-
posed that the stellar mass-to-light ratios of galaxies are nearly
uniform. Indeed, the error budget allowed by the modest
amount of intrinsic scatter observed in the band is easily′K
consumed by variations in the star formation history (Verheijen
1997). There is little room left for variation in the IMF or for
cosmic scatter in the underlying mass–rotation velocity relation.
We have now addressed another piece of this puzzle. In

addition to the near constancy of , we have explicitly cor-U∗
rected for the stellar fraction . Equation (1) now reduces tof∗

M = f f M . (3)d d b tot

The presumed mass–rotation velocity relation can now show
through in the observations, provided both and are universalf fb d

constants. The baryon fraction of the universe is constant by
definition. But it is less obvious that the fraction of baryons
that resides in the disk should be the same for all spiral galaxies.
Indeed, it is frequently suggested (e.g., Navarro, Eke, & Frenk
1996) that the sort of faint dwarfs studied here are likely to
lose a significant portion of their baryons. This idea is blatantly
at odds with the data since the product would no longer7f fd b

be constant.
It seems to us implausible that could be some arbitraryfd

yet universal fraction. While it is easy to imagine mechanisms
that might prevent some of the baryons from cooling to join
the disk, it is difficult to contemplate any that do so with the
required precision. There is very little room in the budget for
the intrinsic scatter for any scatter in . Let us call the massfd
in the baryons that is not already accounted for in the disk
mass . The disk fraction is thenMother

M "M∗ gasf = . (4)d M "M "M∗ gas other

If this other form of baryonic mass is significant (Mother ∼ M*),then , but there should be a lot of scatter in unlessf ! 1 fd d

some magical mechanism strictly regulates the ratio Mother/
. This unlikely situation occurs naturally only if(M "M )∗ gas

, so . The modest intrinsic scatter inM K M "M f r 1other ∗ gas d

the baryonic Tully-Fisher relation therefore suggests that the
luminous mass in stars and gas represents nearly all the baryons
associated with an individual galaxy and its halo, thus arguing
against a significant mass of dark baryons in these systems.

5. CONCLUSIONS

We have explored the Tully-Fisher relation over five decades
in luminous mass. This is a considerable increase in dynamic
range over previous studies. We find clear evidence for a break
in the optical Tully-Fisher relation around . Gal-!1V ≈ 90 km sc

axies with rotation velocities less than this are underluminous
relative to the extrapolation of the fit to more rapidly spinning

7 One could contemplate a variable provided that it was a very finelyfd
tuned (zero scatter) function of circular velocity. For example, wouldf ∝ Vd c

recover the slope predicted by cold dark matter.
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employed here that there is indeed a break in the Tully-Fisher
relation for faint field6 galaxies. For , galaxies!1V ! 90 km sc

are underluminous for their rotation velocity, as predicted by
the extrapolation of a linear fit to the bright galaxy data. There
is a great amount of scatter here too—the relation bends and
flares. There have been concerns that there might be curvature
in the Tully-Fisher relation (e.g., Bothun & Mould 1987), but
the data in Figure 1a are probably better described by a broken
power law, if it makes sense to fit anything to the faint end at
all.
A break in the Tully-Fisher relation would have important

ramifications for its application and interpretation. However,
many of these faint galaxies are very gas rich. So much so, in
fact, that the gas outweighs the stars in most of them for any
reasonable choice of stellar mass-to-light ratio (J. M. Schom-
bert, S. S. McGaugh, & J. A. Eder 2000, in preparation). There-
fore, in Figure 1b, we examine the effects of including the gas
mass in the ordinate by plotting the total observed baryonic
disk mass, . This has the remarkable effect ofM = M "Md ∗ gas
restoring a single linear relation over the entire span of the
observations.
It appears that the fundamental relation underpinning the

Tully-Fisher relation is one between rotation velocity and total
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4. IMPLICATIONS

The basic result seen in Figure 1b falls directly out of the
observations. All that have did was assume a plausible mass-
to-light ratio for the stars, add in the gas mass, and plot the
data. This simple result has a number of interesting impli-
cations.
First, there is an apparently universal relation between bary-

onic mass and rotation velocity, with a single normalization.
While this relation specifically applies to our sample of late-
type spiral galaxies, it seems plausible that it might also apply
to early-type spiral galaxies, provided appropriate consideration
is given to the bulge component, which might require a different
U*, and to any other baryonic components that might be sig-nificant (like molecular gas).
The logarithmic slope of the relation is indistinguishable

from 4. While this slope is often attributed to the virial theorem,
it is possible to derive other slopes as well depending on the
assumptions one makes (Mo et al. 1998). Current cold dark
matter models predict a slope of 3 (Mo et al. 1998; Steinmetz
& Navarro 1999), which is excluded at 8 j. Significant tweak-
ing is required to obtain the observed slope. Feedback from
supernovae is often invoked in this context (van den Bosch
2000), but it is not obvious that the modest amount of feedback
required by the Tully-Fisher relation is consistent with the large

6 The -band data of Pierini & Tuffs (1999) shows a steep slope with no′K
break down to . These are cluster galaxies, so this makes sense!1V ≈ 60 km sc

if these objects are less gas rich than the field sample.

amount needed to explain the luminosity function (Lobo &
Guiderdoni 1999). The correct slope and normalization are pre-
dicted by one alternative to cold dark matter (Milgrom 1983).
In this alternative, there is no dark matter—all of the mass is
baryonic.
Whatever mechanism sets the observed relation is intimately

connected to the observed baryonic mass. The interpretation
of the standard luminosity–line width relation has long sup-
posed that the stellar mass-to-light ratios of galaxies are nearly
uniform. Indeed, the error budget allowed by the modest
amount of intrinsic scatter observed in the band is easily′K
consumed by variations in the star formation history (Verheijen
1997). There is little room left for variation in the IMF or for
cosmic scatter in the underlying mass–rotation velocity relation.
We have now addressed another piece of this puzzle. In

addition to the near constancy of , we have explicitly cor-U∗
rected for the stellar fraction . Equation (1) now reduces tof∗

M = f f M . (3)d d b tot

The presumed mass–rotation velocity relation can now show
through in the observations, provided both and are universalf fb d

constants. The baryon fraction of the universe is constant by
definition. But it is less obvious that the fraction of baryons
that resides in the disk should be the same for all spiral galaxies.
Indeed, it is frequently suggested (e.g., Navarro, Eke, & Frenk
1996) that the sort of faint dwarfs studied here are likely to
lose a significant portion of their baryons. This idea is blatantly
at odds with the data since the product would no longer7f fd b

be constant.
It seems to us implausible that could be some arbitraryfd

yet universal fraction. While it is easy to imagine mechanisms
that might prevent some of the baryons from cooling to join
the disk, it is difficult to contemplate any that do so with the
required precision. There is very little room in the budget for
the intrinsic scatter for any scatter in . Let us call the massfd
in the baryons that is not already accounted for in the disk
mass . The disk fraction is thenMother

M "M∗ gasf = . (4)d M "M "M∗ gas other

If this other form of baryonic mass is significant (Mother ∼ M*),then , but there should be a lot of scatter in unlessf ! 1 fd d

some magical mechanism strictly regulates the ratio Mother/
. This unlikely situation occurs naturally only if(M "M )∗ gas

, so . The modest intrinsic scatter inM K M "M f r 1other ∗ gas d

the baryonic Tully-Fisher relation therefore suggests that the
luminous mass in stars and gas represents nearly all the baryons
associated with an individual galaxy and its halo, thus arguing
against a significant mass of dark baryons in these systems.

5. CONCLUSIONS

We have explored the Tully-Fisher relation over five decades
in luminous mass. This is a considerable increase in dynamic
range over previous studies. We find clear evidence for a break
in the optical Tully-Fisher relation around . Gal-!1V ≈ 90 km sc

axies with rotation velocities less than this are underluminous
relative to the extrapolation of the fit to more rapidly spinning

7 One could contemplate a variable provided that it was a very finelyfd
tuned (zero scatter) function of circular velocity. For example, wouldf ∝ Vd c

recover the slope predicted by cold dark matter.

total baryonic mass in the disk

McGaugh et al. (2000)
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Mass decomposition in disk 
galaxies from rotation curves

✤ Most spiral/disk galaxies have flat rotation curves for r→∞ (as 
traced by HI, which can go out several disk scalelengths >10)
✤ pure rotation implies that the gravitational potential is 

provided by a mass distribution ρ∝R-2 for large R: DM halo!
✤ Gravitational potential is additive: total is given by the sum of 

all components, disk, bulge (if any) and halo ⇒

✤ Decomposition usually not unique, rather degenerate
✤ Possible complications from non-zero dispersion and 

deviation from pure rotational dynamics

Outline

Rotation curves and mass distributions

Dynamical relations

Exponential disk

Dark matter halo

Maximum disk hypothesis

Independent checks on the maximum disk hypothesis

Modified dynamics

To get the total rotation curve for a system consisting of three
components add these circular velocities in quadrature:

Vcirc(R) =
⇥
V

2
disk

(R) + V
2
bulge

(R) + V
2
halo

(R)
⇤1/2

One can make things easier by fitting an exponential disk to the
observations and use the analytic form of the corresponding
rotation curve.

If in addition there is gas, this should be treated in the same way.

In practice we have for the stars only surface brightness

distributions, so we need an undetermined mass-to-light ratio M/L

in order to turn this into a surface density distribution.

From the solar neighborhood we can only find that M/L is of order
a few in solar units.

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of galaxies
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Dark halos

✤ Kinematic observations show

✤ Baryonic matter however declines much more steeply, typically as exponential

✤ Need to introduce an unseen (from electromagnetic radiation) component: the dark matter halo

✤ Some popular DM halo profiles:

✤ Isothermal

✤ Navarro, Frenk & White (1996)

✤ Einasto (Merrit et al. 2006)                                                        [note it declines exponentially!]
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Example of rotation curve decomposition:  
the bulgeless galaxy NGC 3198 
van Albada et al. (1985), slides from Piet van der Kruit’s lecture

Outline

Rotation curves and mass distributions

Dynamical relations

Exponential disk

Dark matter halo

Maximum disk hypothesis

Independent checks on the maximum disk hypothesis

Modified dynamics

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of galaxies

HI intensity HI velocity field,
aka “spider diagram”

Outline

Rotation curves and mass distributions

Dynamical relations

Exponential disk

Dark matter halo

Maximum disk hypothesis

Independent checks on the maximum disk hypothesis

Modified dynamics

The di�culty with the maximum disk hypothesis is that it is
possible to make similar good fits with lower disk masses ...

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of galaxies



Stefano Zibetti - INAF OAArcetri - Astrophysics of Galaxies  - Course 2019/2020 - Lecture VIII

Example of rotation curve decomposition:  
the bulgeless galaxy NGC 3198 
van Albada et al. (1985), slides from Piet van der Kruit’s lecture

Outline

Rotation curves and mass distributions

Dynamical relations

Exponential disk

Dark matter halo

Maximum disk hypothesis

Independent checks on the maximum disk hypothesis

Modified dynamics

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of galaxies

HI intensity HI velocity field,
aka “spider diagram”

Outline

Rotation curves and mass distributions

Dynamical relations

Exponential disk

Dark matter halo

Maximum disk hypothesis

Independent checks on the maximum disk hypothesis

Modified dynamics

The di�culty with the maximum disk hypothesis is that it is
possible to make similar good fits with lower disk masses ...

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of galaxies

Outline

Rotation curves and mass distributions

Dynamical relations

Exponential disk

Dark matter halo

Maximum disk hypothesis

Independent checks on the maximum disk hypothesis

Modified dynamics

... and even no disk mass at all!

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of galaxies



Stefano Zibetti - INAF OAArcetri - Astrophysics of Galaxies  - Course 2019/2020 - Lecture VIII

Example of rotation curve decomposition:  
the bulgeless galaxy NGC 3198 
van Albada et al. (1985), slides from Piet van der Kruit’s lecture

Outline

Rotation curves and mass distributions

Dynamical relations

Exponential disk

Dark matter halo

Maximum disk hypothesis

Independent checks on the maximum disk hypothesis

Modified dynamics

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of galaxies

HI intensity HI velocity field,
aka “spider diagram”

Outline

Rotation curves and mass distributions

Dynamical relations

Exponential disk

Dark matter halo

Maximum disk hypothesis

Independent checks on the maximum disk hypothesis

Modified dynamics

The di�culty with the maximum disk hypothesis is that it is
possible to make similar good fits with lower disk masses ...

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of galaxies

Outline

Rotation curves and mass distributions

Dynamical relations

Exponential disk

Dark matter halo

Maximum disk hypothesis

Independent checks on the maximum disk hypothesis

Modified dynamics

... and even no disk mass at all!

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of galaxies

Outline

Rotation curves and mass distributions

Dynamical relations

Exponential disk

Dark matter halo

Maximum disk hypothesis

Independent checks on the maximum disk hypothesis

Modified dynamics

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of galaxies



Stefano Zibetti - INAF OAArcetri - Astrophysics of Galaxies  - Course 2019/2020 - Lecture VIII

Example of rotation curve decomposition:  
the bulgeless galaxy NGC 3198 
van Albada et al. (1985), slides from Piet van der Kruit’s lecture

Outline

Rotation curves and mass distributions

Dynamical relations

Exponential disk

Dark matter halo

Maximum disk hypothesis

Independent checks on the maximum disk hypothesis

Modified dynamics

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of galaxies

HI intensity HI velocity field,
aka “spider diagram”

Outline

Rotation curves and mass distributions

Dynamical relations

Exponential disk

Dark matter halo

Maximum disk hypothesis

Independent checks on the maximum disk hypothesis

Modified dynamics

The di�culty with the maximum disk hypothesis is that it is
possible to make similar good fits with lower disk masses ...

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of galaxies

Outline

Rotation curves and mass distributions

Dynamical relations

Exponential disk

Dark matter halo

Maximum disk hypothesis

Independent checks on the maximum disk hypothesis

Modified dynamics

... and even no disk mass at all!

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of galaxies

Outline

Rotation curves and mass distributions

Dynamical relations

Exponential disk

Dark matter halo

Maximum disk hypothesis

Independent checks on the maximum disk hypothesis

Modified dynamics

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of galaxies

Maximum disk hypothesis



Stefano Zibetti - INAF OAArcetri - Astrophysics of Galaxies  - Course 2019/2020 - Lecture VIII

The maximum disk hypothesis

✤ Put as much mass as possible in the disk, by rescaling the surface 
brightness profile by a suitably large M/L (constant!)

✤ do not overshoot the measured rotation curve!

✤ check consistency with M/L from stellar estimates

✤ helps to explain wiggles and truncations reflected from the SB profile 
in the rotation curves

✤ Recent results from Verheijen and collaborators show that vertical 
dispersion in disks is inconsistent with the large mass surface density 
implied by MD
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Disk dynamics and spiral structure 
(Binney & Tremaine, chap. 6)
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Disks and spiral structure

✤ Key morphological property

✤ determines largely the Hubble type

✤ related to star formation

✤ Different kinds of spirals hint at different origins
Grand design spiral NGC 5364 Flocculent spiral M33

Tidally disturbed spiral M51

Barred spiral NGC1300
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Fundamentals of spiral structure

✤ Leading and trailing arms: most 
undisturbed grand design spirals 
are trailing

✤ Impossible to tell unless one can 
determine which side is the near 
one (eg via distribution of 
globular clusters)

6.1 Fundamentals of spiral structure 469

Figure 6.4 Leading and trail-
ing arms.

The strength of the spiral structure can be parametrized by the ampli-
tude of its Fourier components, defined by expressing the surface brightness
as a Fourier series (eq. B.66),

I(R,φ)

I(R)
= 1 +

∞∑

m=1

Am(R) cosm[φ− φm(R)] (Am(R) > 0). (6.1)

Here I(R) ≡ (2π)−1
∫ 2π
0 dφ I(R,φ) is the azimuthally averaged surface bright-

ness at radius R, and Am and φm are the amplitude and phase of the mth
Fourier component.

If a single Fourier component m dominates the spiral structure, the
strength can also be parametrized by the arm-interarm surface-brightness
ratio K, which is related to Am by

K =
1 + Am

1 − Am
. (6.2)

Most grand-design spiral galaxies have two arms and approximate two-
fold rotational symmetry. In near-infrared light, which traces the surface
density, the amplitude of the arms lies in the range 0.15 ∼< A2 ∼< 0.6 (Rix
& Zaritsky 1995), corresponding to arm-interarm ratios of 1.4 ∼< K ∼< 4.
Grand-design spirals with m ≠ 2 are rare, although a significant fraction
of disk galaxies exhibit lopsided distortions (A1 ∼> 0.2) in their outer parts,
and careful Fourier decomposition occasionally reveals three-armed spiral
patterns (Rix & Zaritsky 1995). The dominance of two-armed patterns in
grand-design spirals is a striking observational fact that demands explanation
in a successful theory of spiral structure.

(b) Leading and trailing arms Spiral arms can be classified by their
orientation relative to the direction of rotation of the galaxy. A trailing arm
is one whose outer tip points in the direction opposite to galactic rotation,
while the outer tip of a leading arm points in the direction of rotation (see
Figure 6.4).

It is not easy to determine observationally whether the arms of a given
galaxy are leading or trailing. In face-on galaxies we cannot determine the

470 Chapter 6: Disk Dynamics and Spiral Structure

A B

y

y

x

z

y

y

x

z

to the sun

= receding = approaching

observer’s

view

side view

Figure 6.5 The appearance of leading and trailing arms. Galaxy A has leading arms,
while galaxy B has trailing arms, but both exhibit the same image on the sky and the
same radial-velocity field.

direction of rotation from radial velocities, and in edge-on galaxies we cannot
see the spiral arms. Even in galaxies with intermediate inclinations the task
is difficult, as we now show. Consider the two galaxies A and B in Figure 6.5.
In both cases the (x, y) plane is the celestial sphere and the z axis points
towards the Sun. Galaxy A is inclined so that the side nearest the Sun is in
the half plane y > 0, while galaxy B is closer in the half plane y < 0. We have
marked a spiral pattern and a rotation direction on both galaxies; the spiral
in A is leading and in B is trailing. Despite this difference the appearance
of both galaxies as seen from the Sun is the same; Figure 6.5 shows that
in both systems the spiral pattern curves in an anti-clockwise direction as
one moves out from the center, and the side with x > 0 has radial velocity
towards the Sun. Thus radial-velocity measurements cannot by themselves
distinguish leading and trailing spirals in thin disks.

To determine whether a given galaxy leads or trails, we must determine
which side of the galaxy is closer to us. A variety of clues can be used to
do this. If the inner disk is dusty, so it absorbs a significant fraction of the
starlight passing through it, then the surface brightness of the bulge at a
given distance along its apparent minor axis will be lower on the near side,
and the number density of any population with a spheroidal distribution
(such as globular clusters) will also be lower (see Figure 6.6). Similarly, dust
filaments in the inner disk obscure a larger fraction of the bulge light on the
near side, and hence are more prominent.

In almost all cases in which the answer is unambiguous, the spiral arms
trail (Hubble 1943; de Vaucouleurs 1959; Pasha 1985). The arms in our own
Galaxy trail as well (BM §4.3). There are occasional reports of galaxies with
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Figure 6.6 Distinguishing near and far sides of a disk galaxy. The dots represent objects
such as novae or globular clusters. There is an obscuring dust layer in the central plane of
the disk which is shown as a line in the side view at left. In the observer’s view, at right,
objects behind the dust layer (open circles) are fainter and hence fewer are present in a
flux-limited survey.

leading arms (Pasha 1985; Buta, Byrd, & Freeman 2003), and transitory one-
armed leading spirals can be produced by plausible dynamical processes, for
example encounters with companion galaxies on retrograde orbits. Never-
theless, in the vast majority of cases spiral arms are trailing.

(c) The pitch angle and the winding problem The pitch angle α
at any radius R is the angle between the tangent to the arm and the circle
R = constant (see Figure 6.8); by definition 0 < α < 90◦.

It is useful to think of the center of each arm as a mathematical curve
in the plane of the galaxy, which we write in the form φ+ g(R, t) = constant
where t is the time. Suppose that the galaxy has m-fold rotational symmetry,
that is, the arm pattern is unchanged if we rotate the galaxy by 2π/m radians
(m > 0). Then a more convenient expression, which defines the locations of
all m arms, is

mφ+ f(R, t) = constant (mod 2π), (6.3)

where f(R, t) ≡ mg(R, t) is the shape function. It is also useful to intro-
duce the radial wavenumber

k(R, t) ≡
∂f(R, t)

∂R
. (6.4)

The sign of k determines whether the arms are leading or trailing. If, as
we shall always assume, m > 0 and the galaxy rotates in the direction of
increasing φ, then

leading arms ⇔ k < 0 ; trailing arms ⇔ k > 0. (6.5)

The pitch angle is given by

cotα =

∣∣∣∣R
∂φ

∂R

∣∣∣∣ , (6.6)
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Fundamental of spiral structure

✤ Pitch angle α

✤ If spirals were just originally linear 
structure wound up by the 
differential rotation, over several Gyr 
the pitch angle would be <1 deg and 
arms way too tightly wound
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Figure 6.8 How a material arm winds up in
a differentially rotating disk. The rotation law
is Ω(R) ∝ R−1.

smaller than observed pitch angles. This discrepancy is called the winding
problem: if the material originally making up a spiral arm remains in the
arm, the differential rotation of the galaxy winds up the arm in a time short
compared with the age of the galaxy. A remarkably clear statement of the
winding problem was given over a century ago by Wilczynski (1896).

There are several possible ways to resolve the winding problem:
(i) It may be that the spiral pattern is statistically in a steady state, but

that any individual spiral arm is quite young. If we continuously dribble
cream into a freshly stirred cup of coffee, each droplet briefly takes on
a spiral form before it is stretched out and disappears. Similarly, if
localized luminosity features are continuously produced in a galactic
disk (say, by the collapse of a gravitationally unstable patch, leading to
a burst of star formation) each feature will be sheared out into a spiral,
which winds up more and more but lasts only until the luminous young
stars die off. This model, which we discuss further in §6.4.3, is plausible
for flocculent galaxies but cannot explain grand-design spirals.

(ii) As we have discussed, the Lin–Shu hypothesis is that spiral structure is a
stationary density wave in the stellar density and gravitational potential
of the disk, and hence not subject to the winding problem.2

(iii) The spiral pattern may be a temporary phenomenon resulting from a
recent violent disturbance such as a close encounter with another galaxy.

2 Other types of stationary wave are possible. New stars that explode as supernovae
induce further star formation in adjacent regions—direct evidence of this is seen in su-
pershells, complex HI structures with radii of several hundred parsecs that appear to be
formed by a sequence of supernovae, and are often bordered by young stars. Mueller &
Arnett (1976) and Gerola & Seiden (1978) have suggested that star formation induced
in this way could lead to a detonation wave of star formation that propagates across
the entire galaxy like an infectious disease, and takes the form of a grand-design spiral.
However, a wave of this kind cannot explain the presence of spiral structure in the old disk
stars, and fine tuning is needed to ensure that induced star formation is reliable enough to
propagate across the whole galaxy, but not so strong that it consumes all of the interstellar
gas.
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Figure 6.7 Pitch angles (eq. 6.6) in degrees, as a function of Hubble type (Ma 2002).

where the partial derivative is evaluated along the curve (6.3). Thus

cotα =

∣∣∣∣
kR

m

∣∣∣∣ . (6.7)

Figure 6.7 shows the pitch angle as a function of Hubble type for a
sample of spiral galaxies. The pitch angle is correlated with Hubble type—
as it should be, since openness of the spiral arms is one of the criteria in
Hubble’s classification scheme—but there is substantial scatter. The typical
spiral has α ≃ 10◦–15◦.

We now conduct a simple thought experiment. At some initial time
t = 0 we paint a narrow stripe or arm radially outward across the disk of a
galaxy. The initial equation of the stripe is φ = φ0, where φ is the azimuthal
angle (Figure 6.8). The disk rotates with an angular speed Ω(R), where R is
the distance from the center of the disk. The disk is said to be in differential
rotation if Ω(R) is not independent of R. When the disk is in differential
rotation the arm does not remain radial as the disk rotates. The location of
the arm φ(R, t) is described by the equation

φ(R, t) = φ0 + Ω(R)t. (6.8)

The pitch angle is given by equation (6.6),

cotα = Rt

∣∣∣∣
dΩ

dR

∣∣∣∣ . (6.9)

For a galaxy with a flat circular-speed curve, RΩ(R) = vc = 200 km s−1,
R = 5 kpc, and t = 10 Gyr, the pitch angle would now be α = 0.14◦, far

from wikipedia
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Resonances in perturbative regime

✤ Natural frequencies

✤ circular orbit Ω

✤ epicyclic frequency κ

✤ In general orbits are rosettae

✤ By choosing a rotating reference frame with frequency Ωp satisfying the 
relation                              n, m integers orbits are closed

✤ If a perturbation is static in one of these frames a resonance occurs

6.2 Wave mechanics of disks 481

Figure 6.10 The appearance of elliptical orbits in a frame rotating at Ωp = Ω − nκ/m.
Left: (n, m) = (0, 1), solid line; (1, 2), dotted line; (1,−2), dashed line. Right: (n, m) =
(2, 3).

6.2 Wave mechanics of differentially rotating disks

6.2.1 Preliminaries

(a) Kinematic density waves The galactocentric distance of a particle
that orbits in the equatorial plane of an axisymmetric galaxy is a periodic
function of time with period Tr (see eq. 3.17). During the interval Tr the
azimuthal angle increases by an amount ∆φ (eq. 3.18b). These quantities
are related to the radial and azimuthal oscillation frequencies Ωr = 2π/Tr

and Ωφ = ∆φ/Tr. In general, ∆φ/(2π) is irrational, so the orbit forms a
rosette figure such as the one shown in Figure 3.1.

Now suppose that we view the orbit from a frame that rotates at angular
speed Ωp. In this frame, the azimuthal angle is φp = φ−Ωpt, which increases
in one radial period by ∆φp = ∆φ − ΩpTr. Therefore we can choose Ωp so
that the orbit is closed; in particular, if ∆φp = 2πn/m, where m and n are
integers, the orbit closes after m radial oscillations. In this case

Ωp = Ωφ −
nΩr

m
≃ Ω −

nκ

m
, (6.24)

where in the last equality we have approximated Ωφ and Ωr by their values
for nearly circular orbits, the circular frequency Ω and the epicycle frequency
κ (see eqs. 3.79). The appearance of the closed orbits in the rotating frame
is shown in Figure 6.10.

In general Ω(R) − nκ(R)/m will be a function of radius, so no single
choice for Ωp can ensure that orbits at all radii are closed. In Figure 6.11 we
show the behavior of Ω−nκ/m for several values of m and n. The curves are

co-rotation: n=m=0

Inner Lindblad resonance: n=1, m=2

Outer Lindblad resonance: n=1, m=-2



Stefano Zibetti - INAF OAArcetri - Astrophysics of Galaxies  - Course 2019/2020 - Lecture VIII

Resonances

✤ A perturbation rotating with 
frequency !p will give rise to 
various resonances at the radii 
corresponding to the 
intersection of the curves 

482 Chapter 6: Disk Dynamics and Spiral Structure

Figure 6.11 Behavior of
Ω − nκ/m in: (top) the
isochrone potential (eq. 2.47);
(bottom) Model I for our
Galaxy, described in §2.7.

plotted for two representative galactic circular-speed curves, the isochrone
potential (eq. 2.47) and Model I for our Galaxy, as described in Table 2.3.

This diagram exhibits an intriguing fact noticed by Lindblad many
decades ago: while most of the Ω − nκ/m curves vary rapidly with radius,
the curve for n = 1, m = 2 (or n = 2, m = 4, etc.) is relatively constant
across much of the galaxy.3 To understand the significance of Lindblad’s re-

3 This result is related to the shape of galaxy circular-speed curves in their inner parts.
In most galaxies the circular speed rises linearly from the center with a steep slope. Thus,
both Ω and κ are large at small radii, so for most values of m and n, |Ω − nκ/m| is
much larger near the center than at large radii. However, in the central region where the

!p

!p
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Spirals as kinematic waves?

✤ Ω-κ/2 is almost constant throughout a galaxy

✤ The ovals corresponding to the closed orbits will slowly precess 
with different frequency as a function of radius

484 Chapter 6: Disk Dynamics and Spiral Structure

Figure 6.12 Arrangement of closed orbits in a galaxy with Ω− 1
2κ independent of radius,

to create bars and spiral patterns (after Kalnajs 1973b).

because the spiral pattern itself produces a non-axisymmetric component of
the gravitational field. A major goal of spiral-structure theory is to determine
whether the non-axisymmetric gravitational field due to the spiral itself can
coordinate the drift rates of the orbits in such a way as to produce long-lived
spiral patterns.

(b) Resonances Orbits, like springs and drums, have natural resonant
frequencies. If the gravitational field generated by spiral structure perturbs
an orbit near one of its resonant frequencies, then the response of the orbit is
strong, even when the perturbing field is weak. To investigate the response
of a stellar disk to non-axisymmetric forces, an essential first step is to locate
the resonant orbits.

A gravitational potential that is stationary in a rotating frame can be
written in the form Φ1(R,φ, t) = Φ(R,φ − Ωpt), where Ωp is the pattern
speed of the potential. Examples of systems that generate potentials of this
form include the rotating bars seen at the centers of many disk galaxies, a
satellite galaxy on a circular orbit in the disk plane, and any stationary spi-
ral structure pattern (i.e., any structure with a well-defined pattern speed).
More complicated potentials can be regarded as superpositions of potentials
with different pattern speeds.

We now examine the effect of a weak potential of this form on a disk
composed of stars on circular or near-circular orbits. Since the potential is
periodic in φ−Ωpt, it can be decomposed into a series of terms proportional
to cos[m(φ−Ωpt)+ fm(R)], where m ≥ 0 is an integer. We studied orbits in
potentials of this form in §3.3.3, and found that resonances occurred when
the circular frequency Ω and the epicycle frequency κ in the unperturbed
axisymmetric potential satisfied one of three conditions: Ω = Ωp (corotation
resonance), m(Ω−Ωp) = κ (inner Lindblad resonance), or m(Ω−Ωp) = −κ
(outer Lindblad resonance). These resonances occur at specific radii in a
differentially rotating disk. The location and even the existence of these
radii, called the corotation and Lindblad radii, depend on the circular-speed
curve and the pattern speed. For example, inspection of Figure 6.11 shows
that the isochrone potential has zero or two inner Lindblad radii with m = 2,

✤ Winding problems is overcome: 
winding for these waves is much 
slower

✤ Explains why m=2 spirals are 
common

✤ Needs fine tuning to keep drift 
rates well behaved after the 
spirals are formed (growing 
instability due to density 
enhancement)



Stefano Zibetti - INAF OAArcetri - Astrophysics of Galaxies  - Course 2019/2020 - Lecture VIII

Wave mechanics of disks

✤ In perturbative regime and tightly wound spiral pattern hypothesis 
dispersion relations for density waves can be obtained for both stellar 
disks and gaseous disks (see BT for equations!)

✤ Notably, at the corotation and Lindblad resonances these relations 
break down, but in between waves can travel!

✤ The disk behaves like a resonant cavity between the 
Lindblad resonances and the edges of the forbidden 
zone
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Local Stability and Toomre Q

✤ For stars

✤ For fluid

✤ Stability (=no exponential divergence for wave equation) for a given 
wavelength requires Q>1

496 Chapter 6: Disk Dynamics and Spiral Structure

Figure 6.13 Neutral stability curves for tightly wound axisymmetric perturbations in a
fluid disk (dashed line, from eq. 6.67) and a stellar disk (solid line, from eq. 6.70).

a relation first derived by Toomre (1964).
There is no solution to (6.70), and thus the stellar disk is stable, if

Q ≡
σRκ

3.36GΣ
> 1 (for stars). (6.71)

The stability boundary (6.70) is plotted in Figure 6.13 as a function of the di-
mensionless ratios Q and λ/λcrit. Note the close analogy between fluid and
stellar disks: the dashed (fluid) and solid (stellar) stability curves in Fig-
ure 6.13 almost coincide, and the stability criterion for stellar disks (6.71) is
obtained from the criterion for fluid disks (6.68) simply by replacing the
sound speed vs by the radial velocity dispersion σR, and the coefficient
π ≃ 3.14 by 3.36. The inequality (6.68) or (6.71) is known as Toomre’s
stability criterion;7 its physical interpretation is discussed in the context
of the uniformly rotating sheet in §5.6.1. Toomre’s Q can be thought of as a
temperature scale for galactic disks. “Hot” disks have large velocity disper-
sion and high Q, while “cool” disks have low dispersion and Q, and “cold”
disks have zero dispersion and Q = 0.

As Q drops below unity, instability first appears at a single wavelength,
which we may write as λ(most unstable) ≡ pλcrit, where the constant p is
0.5 or 0.55 for zero-thickness fluid or stellar disks, respectively. Toomre’s
stability criterion is reliable only if λ(most unstable) is short compared to
the size of the system (since we have used the WKB approximation), and
long compared to the thickness of the disk (since we have modeled the disk as
razor-thin), but in practice it often works reasonably well somewhat outside
the regime in which it is strictly justified.

7 An approximate version of equation (6.68) dates back to Safronov (1960).
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Since the quantities on the right side of equation (6.64) are real, ω2 must
also be real. If ω2 > 0, then ω is real and the disk is stable. If, on the other
hand, ω2 < 0, say ω2 = −p2, then ω = ±ip, and exp(−iωt) = exp(±pt).
Hence for ω2 < 0, there is a perturbation whose amplitude grows exponen-
tially, and the disk is unstable. Thus all perturbations with wavenumber
|k| < kcrit or wavelength λ > λcrit are unstable, where

kcrit ≡
κ2

2πGΣ
; λcrit ≡

2π

kcrit
=

4π2GΣ

κ2
. (6.65)

Moreover, the instability is a violent one: as the wavelength of the distur-
bance shrinks to zero, the growth rate p = (4π2GΣ/λ−κ2)1/2 grows without
limit—a cold, zero-thickness disk disintegrates on small scales in an arbitrar-
ily short time!

Next consider a fluid disk with non-zero sound speed. For axisymmetric
disturbances, equation (6.55) reads

ω2 = κ2 − 2πGΣ|k| + v2
s k2. (6.66)

Once again, the disk is unstable if and only if ω2 < 0, and the line of neutral
stability is

κ2 − 2πGΣ|k| + v2
s k2 = 0. (6.67)

The fluid disk is stable if there is no solution of equation (6.67) for positive
|k|. Since the equation is quadratic in |k|, it is easily solved, and we find that
axisymmetric stability requires

Q ≡
vsκ

πGΣ
> 1 (for fluids). (6.68)

The line of neutral stability defined by equation (6.67) is drawn in Figure 6.13
in terms of the dimensionless ratios Q and λ/λcrit.

The stability criterion (5.166) for a uniformly rotating sheet is a special
case of (6.68) when κ = 2Ω. Of course, in a general disk vs, κ, and Σ are all
functions of radius, so Q is also a function of radius. In this case Q(R) < 1
implies only local axisymmetric instability near radius R, in the sense that
a short-wavelength traveling wave that crosses a region with Q(R) < 1 will
be amplified while it is in this region.

The analysis of the stability of a stellar disk is similar. By analogy we
expect that the boundary between stable and unstable axisymmetric waves is
given by ω = 0, just as in the case of a fluid disk. Thus from equation (6.61)
the stability boundary is given by

κ2 = 2πGΣ|k|F(0,σ2
Rk2/κ2), (6.69)

or, using the first of equations (6.63) and the identity (C.67),

|k|σ2
R

2πGΣ
=

[
1 − e−σ

2
Rk2/κ2

I0

(
σ2

Rk2

κ2

)]
, (6.70)



Stefano Zibetti - INAF OAArcetri - Astrophysics of Galaxies  - Course 2019/2020 - Lecture VIII

Theories of Spiral Structure

✤ Lin-Shu (1964-1966): quasi-steady density wave

✤ Chaotic spiral arms

✤ Tidal arms

✤ Driving bars and oval distortions

✤ detonation waves (self-propagating SF)

✤ (magnetic fields, obsolete)



Stefano Zibetti - INAF OAArcetri - Astrophysics of Galaxies  - Course 2019/2020 - Lecture VIII

Lin-Shu theory

✤ Spiral pattern is the most unstable mode of the galactic disk

✤ As wave amplitude builds, energy dissipation in the interstellar medium 
leads to damping

✤ Instability and damping reach an equilibrium

✤ Predictions

✓Prevalence of trailing arms due to the “swing amplification” 
mechanism

✓m=2 prevails because the region between the Lindblad resonances is 
the largest

✓star formation occurs in the narrow high-density arms as a response 
of the gas/ISM to the density wave

? nobody knows if the spiral pattern is actually stationary in ~Gyr 
timescale!

? how many grand design spirals are isolated and not barred such that 
the Lin-Shu theory is actually the explanation for the spiral pattern?

482 Chapter 6: Disk Dynamics and Spiral Structure

Figure 6.11 Behavior of
Ω − nκ/m in: (top) the
isochrone potential (eq. 2.47);
(bottom) Model I for our
Galaxy, described in §2.7.

plotted for two representative galactic circular-speed curves, the isochrone
potential (eq. 2.47) and Model I for our Galaxy, as described in Table 2.3.

This diagram exhibits an intriguing fact noticed by Lindblad many
decades ago: while most of the Ω − nκ/m curves vary rapidly with radius,
the curve for n = 1, m = 2 (or n = 2, m = 4, etc.) is relatively constant
across much of the galaxy.3 To understand the significance of Lindblad’s re-

3 This result is related to the shape of galaxy circular-speed curves in their inner parts.
In most galaxies the circular speed rises linearly from the center with a steep slope. Thus,
both Ω and κ are large at small radii, so for most values of m and n, |Ω − nκ/m| is
much larger near the center than at large radii. However, in the central region where the

from wikipedia
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Chaotic spiral arms

✤ Local instabilities in the gas 
lead to the formation of new 
stars in small patches (for 
Q=1 the typical scale is ~0.2 
kpc)

✤ Patches are sheared by the 
differential rotation

✤ Stellar feedback (SNe) heat 
the gas and re-stabilize the 
disk

NGC 2841
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Tidal arms

✤ http://youtu.be/H5KXl4YORYo

✤ Also possible trigger for steady-
density waves

6.4 Damping and excitation of spiral structure 527

Figure 6.25 Model of the encounter between M51 and NGC 5195, shown in three orthog-
onal views. The lower left view can be compared with Figure 6.1 or Plate 1. Note that the
low-density tidal tail at the 2 o’clock position relative to the center of M51 is similar to
a low surface-brightness feature in Figure 6.1. In this pioneering experiment the galaxies
were represented as point masses (the filled circles) surrounded by disks of orbiting test
particles. From Toomre & Toomre (1972), reproduced by permission of the AAS.

to disk galaxies what a soundboard is to a piano. It organizes and augments
the chaotic aspects of spiral galaxies . . .whenever the stellar disk is presented
with a relatively flat spectrum of gravitational noise from the gas clouds, it
picks out and augments the spatial frequencies which it prefers. And . . . it is
this bias which leads to pictures that human astronomers happen to prefer
as well” (Toomre & Kalnajs 1991).

At best, this is an appealing scenario for intermediate-scale spiral struc-
ture, rather than a real theory. Many questions remain unanswered: what de-
termines whether a galaxy has flocculent, intermediate-scale or grand-design
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Figure 6.26 Model of the interacting galaxy pair NGC 7753, a large grand-design Sb
spiral, and NGC 7752 (the small compact companion at lower right). The left panel shows
a negative V -band image and the right panel shows an N-body simulation. The orbit of
the companion is marked with a solid line above the disk plane and a dashed line below.
The two galaxies are separated by 60 kpc. From Salo & Laurikainen (1993), reproduced
by permission of the AAS.

structure? What are the relative roles played by inhomogeneities in the gas
disk and substructure in the dark halo? Can nonlinear interactions between
waves help to organize or generate spiral structure on intermediate scales?
And what, if anything, does understanding such spiral structure teach us
about the structure and evolution of galaxies?

6.5 Bars

6.5.1 Observations

Reviews of the properties of bars in disk galaxies are given in BM (§4.4.7),
Sellwood & Wilkinson (1993) and Buta et al. (1996). Images of barred
galaxies are shown in Plate 10 and Figures 6.27 and 6.28. Here we focus on
those properties that are most relevant to interpreting the dynamics.

Bars vary from those that dominate the appearance of the disk, such
as the ones shown in the images, to weak oval distortions that are visible
only in careful Fourier decompositions of the light distribution. Thus the
fraction of disk galaxies that are barred depends on the selection criterion.
Classification by eye—still the most reliable method—shows that about 30%
of spiral galaxies are strongly barred in optical light; the fraction rises to 50%

http://youtu.be/H5KXl4YORYo
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✤ Bars!

✤ Bar instability occurs in 
cold disks or in absence of 
a stabilizing halo

✤ Possible origin?

Global disk (in)stability
506 Chapter 6: Disk Dynamics and Spiral Structure

Figure 6.17 Further evolution of the disk in Figure 6.16, after removing the constraint
that the disk remain axisymmetric.

These initial conditions do not correspond to an exact stationary solu-
tion of the collisionless Boltzmann equation (the df that is a stationary solu-
tion for the chosen surface density, the Kalnajs df of eq. 4.168, is somewhat
unrealistic because it has an integrable singularity). To obtain a stationary
df, Hohl simply ran his program for several orbital times while constraining
the gravitational field to remain azimuthally symmetric. The resulting evo-
lution is shown in Figure 6.16. Apart from some blurring of the sharp outer
edge of the initial distribution, there is rather little change, indicating that
the disk has settled into equilibrium. The velocity dispersion of the stars
does not rise noticeably, Q remains near unity, and there is no sign of any
instability. These results suggest that in this case Toomre’s local stability
criterion Q > 1 is also sufficient for global stability to axisymmetric modes.

With the disk now in equilibrium, Hohl removed the constraint that
the gravitational field should remain axisymmetric. The resulting evolution,
shown in Figure 6.17, is dramatically different. In less than two rotations,
the disk evolves into a bar-like structure with trailing spiral arms. At later
times the bar gradually dissolves, leaving behind a disk with large random
velocities (Q ≈ 2–4) surrounding a slowly rotating oval structure. There is
evidently a strong m = 2 or bar instability, which was not predicted by
the local analysis of the previous section.
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Bars

✤ Bars can drive a spiral structure

✤ Not all spirals have bars though...

✤ Easily formed in unstable disks

✤ Bars rotate like solid bodies (constant angular speed)

✤ Stops at or before corotation

✤ Gas flows along the bar, shocks at the edges

✤ Important role in distributing angular momentum
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Figure 6.27 NGC 5383, a barred spiral (Hubble classification SBb). Note the two nearly
straight dust lanes parallel to the bar, which appear as light streaks in this negative image.
From Sandage & Bedke (1994), courtesy of the Observatories of the Carnegie Institution
of Washington.

or more if weak bars are included. Bars appear even more prominent in near-
infrared images (Eskridge et al. 2000). Since the near-infrared light traces
the disk mass (§6.1.2), strong bars represent a substantial non-axisymmetric
distortion of the mass distribution of the disk.

Our Galaxy is the nearest barred spiral (see §2.7e), although this is
far from obvious because the characteristic non-axisymmetric structure of
a bar cannot be seen in any edge-on galaxy. The presence of a bar at the
center of our Galaxy was suggested long ago (Johnson 1957; de Vaucouleurs
1964), but this insight was not widely accepted for several decades, until
overwhelming evidence had accumulated from several lines of investigation.
Modern observational probes of the Galactic bar include the kinematics of HI
and molecular gas in the central few kpc, near-infrared surface photometry,
gravitational microlensing, and star counts (Gerhard 2002; Merrifield 2003).

Two of the Galaxy’s satellites, the Large and Small Magellanic Clouds,
are barred irregular galaxies. The nearest giant spiral galaxy, M31, contains
an oval distortion which can be interpreted as a bar (Stark 1977), although
most observers still classify M31 as a normal rather than a barred spiral.


