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Kinematic from absorption lines 
spectra

✤ Comparison of observed 
spectrum with “shifted” (→ 
v) and broadened (→σ) 
spectrum of a star

✤ Today a composite spectrum 
of a mixture of stars is used: 
kinematics and weights of 
different stellar templates 
are fitted simultaneously
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More detailed modeling...

✤ Gaussian “modulated” with 
Hermite polynomials

✤ m>2 require *high* SNR; 
usually expansions stops at 
m=4 (h3 and h4 terms)

✤ → pPXF fitting code 
(Cappellari & Emsellem 2004)

PENALIZED PIXEL FITTING 139
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the process and the estimation of measurement errors are sim-
plified. In § 2 we describe the general problem. In § 3 we
discuss different approaches to the extraction, we find that spe-
cial care has to be taken when the LOSVD is undersampled
by the data or the S/N is low, and we present a solution based
on the maximum penalized likelihood formalism. In § 4 we
draw some conclusions.

2. FORMULATION OF THE PROBLEM

The parametric recovery of the LOSVD in pixel space starts
with creating a model galaxy spectrum by convolvingG (x)mod

a template spectrum by a parametrized LOSVD. Both theT(x)
object and the template spectra are rebinned in wavelength to
a linear scale in , while usually preserving the numberx p ln l
of spectral pixels. The best-fitting parameters of the LOSVD
are determined by minimizing the , which measures the2x
agreement between the model and the observed galaxy spec-
trum over the set of N good pixels:G(x)

N
2 2x p r , (1)! n

np1

where the residuals are defined as

G (x )! G(x )mod n nr p , (2)n DG(x )n

where is the measurement error on .DG(x ) G(x )n n

More specifically, the following model is adopted for the
galaxy spectrum:

K L

G (x) p w [B ∗ T ](x)" b P (x) w ≥ 0, (3)! !mod k k l l k
kp1 lp0

where is in general a library of K galaxy or stellar templates,Tk
is the broadening function, where is theB(x) p L (cx) L(v)

LOSVD, c is the speed of light, and * denotes convolution.
The are here chosen to be the Legendre polynomials ofP (x)l

order l and account for low-frequency differences in shape
between the galaxy and the templates. For each given ,L(v)
the optimization of is a bounded-variables linear least-2x
squares problem for the weights (w1,…, wK, b0,…, bL), which
can be solved, e.g., with the specific BVLS algorithm by Law-
son & Hanson (1995) or as a quadratic programming problem.
Here we are interested in the determination of the parameters
defining , and in what follows we will assume that theL(v)
weights of equation (3) are always optimized in this way. Mul-
tiplicative polynomials can also be included in the fit (see Kel-
son et al. 2000) without affecting the discussion that follows.
Following van der Marel & Franx (1993) and Gerhard

(1993), it has become standard to expand the LOSVD as a

Gauss-Hermite series

2 M!(1/2)ye
L(v) p 1" h H (y) , (4)![ ]m m"j 2p mp3

where and Hm are the Hermite polynomials.y p (v ! V )/j
With these definitions the minimization of the in equation2x
(1) is a nonlinear least-squares optimization problem for the
M parameters . Least-squares problems can(V, j, h , … , h )3 M

be solved much more efficiently than general ones by using
specific algorithms that require the user to provide the residuals
of equation (2) to compute explicitly the Hessian matrix ofrn

the merit function (see, e.g., Press et al. 1992, § 15.5). Here2x
we will use the MINPACK1 implementation (Moré, Garbow,
& Hillstrom 1980) of the Levenberg-Marquardt method for
nonlinear least-squares problems.

3. DISCUSSION
In this section we compare three different approaches to the

determination of the best-fitting parameters of the LOSVD in
equation (4). We explain the limitations of the differentmethods
and finally select the last one as the optimal choice. We do not
address here the template mismatch issue, which we assume
is minimized by the choice of an optimal library of templates
in equation (3), as in Emsellem et al. (2004).
To explain the characteristics of the three methods, we will

use each of them to extract a realistic but known LOSVD
observed by Scorza & Bender (1995) at along the′′r p 17
major axis of the S0 galaxy NGC 3115 (their Fig. A.2). This
LOSVD (Fig. 1) is representative of the one observed in a
number of galaxies and can be very well described by a double-
Gaussian parametrization

2 2(v ! V )jF(v) p I exp ! , (5)! j [ ]22 jjp1 j

with parameters , , km s ,!1I p 0.041 I p 0.032 V p 48.71 2 1

km s , km s , and km!1 !1V p !77.3 j p 70.0 j p 130.02 1 2

s (the LOSVD was shifted to zero mean velocity).!1

The best fit to using a fourth-order Gauss-Hermite seriesF(v)
(eq. [4]) is obtained with parameters km s ,!1V p 0.0 j p

km s , , and , while the best-!1114.8 h p !0.150 h p 0.0363 4

fitting Gaussian has km s and km s .!1 !1V p !2.3 j p 118.9

3.1. Fitting First(V, j)
In an ideal situation in which the LOSVD is perfectly sam-

pled by the data, the parameters of the LOSVD(h , … , h )3 M

(eq. [4]) are essentially uncorrelated to . Therefore, one(V, j)
expects the best-fitting parameters to change little, irrespective
of whether are fitted first or together with the other pa-(V, j)

1 We used an IDL porting of the code by Craig B. Markwardt, available
from the Web page http://cow.physics.wisc.edu/∼craigm/idl/.
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Velocity and dispersion fields of E’s

✤ σ dominates over V: “pressure” 
supported rather than rotation 
supported systems

✤ ordered rotation may be present 
or not

732 E. Emsellem et al.

Figure 4 – continued

C⃝ 2004 RAS, MNRAS 352, 721 –743

E1-2 E1
732 E. Emsellem et al.

Figure 4 – continued

C⃝ 2004 RAS, MNRAS 352, 721 –743

Emsellem et al. (2004, SAURON)
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Central (?) velocity dispersion

✤ in the good old times people had 
one spectrum per galaxy (and 
still now for the largest surveys 
and most of the intermediate/
high z galaxies) and have to live 
with that...

✤ σ0 is not an observable to take 
“as is”

✤ need to correct for aperture

✤ σ0 is not representative of the full 
galaxy

732 E. Emsellem et al.

Figure 4 – continued

C⃝ 2004 RAS, MNRAS 352, 721 –743

E1-2 E1
732 E. Emsellem et al.

Figure 4 – continued

C⃝ 2004 RAS, MNRAS 352, 721 –743
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The Faber-Jackson relation

19
76
Ap
J.
..
20
4.
.6
68
F

Faber & Jackson (1976)



Stefano Zibetti - INAF OAArcetri - Astrophysics of Galaxies  - Course 2019/2020 - Lecture IX

The F-J relation reloaded: SDSS

the observable (for example, we will studyX = log !, log Ro
or lo= !2.5 log Io). For each volume-limited catalog, we
fitted for the slope S and zero point of the linear relation. If
there really were a linear relation betweenM andX, and nei-
ther X norM evolved, then the slopes and zero points of the
different volume-limited catalogs would be the same.

To illustrate, the different symbols in Figure 4 show
hlog !|Mi, the Faber-Jackson relation (Faber & Jackson
1976), in our data set. Most data sets in the literature are
consistent with the scaling h!|Li / L1/4, approximately
independent of wave band. For example, Forbes & Ponman
(1999), using a compilation of data from Prugniel & Simien
(1996) report L / !3.92 in the B band. At longer wave-
lengths, Pahre, Djorgovski, & de Carvalho (1998) report
LK / !4.14"0.22 in theK band, with a scatter of 0.93 mag.

Stars, circles, diamonds, triangles, squares, and crosses
show the relation measured in volume-limited catalogs of
successively higher redshift (redshift limits are the same
as in Fig. 1). The galaxies in each subsample were further
divided into two equal-sized parts based on luminosity.
The symbols with error bars show the mean log ! for
each of these small bins in M, and the rms spread around
it (note that the error on the mean is smaller than the
size of the symbols in all but the highest redshift cata-
logs). The solid line shows the maximum likelihood esti-
mate of the slope of this relation at z = 0, which we

describe in x 4. Comparison with this line shows that the
higher redshift population is slightly brighter. The slope
of this line is shown in the top of each panel: ! / L1/4,
approximately, in all the bands, consistent with the
literature. The zero point, however, is different; at fixed
luminosity, the objects in our sample have velocity
dispersions that are smaller than those reported in the
literature by about log ! = 0.05.

We have enough data that we can actually do more
than simply measure the mean X at fixed M; we can also
compute the distribution around the mean. If we do this
for each catalog, then we obtain distributions that are
approximately Gaussian in shape, with dispersions that
depend on the range of luminosities that are in the sub-
sample. Rather than showing these, we created a compo-
site catalog by stacking together the galaxies from the
nonoverlapping volume-limited catalogs, and we then
divided the composite catalog into five equal-sized bins in
luminosity. The histograms in the bottom of the plot
show the shapes of the distribution of velocities in the
different luminosity bins. Except for the lowest and high-
est redshift catalogs for which the statistics are poorest,
the different distributions have almost the same shape;
only the mean changes.

Onemight have worried that the similarity of the distribu-
tions is a signature that they are dominated by measurement

Fig. 4.—Relation between luminosity L and velocity dispersion !. Stars, circles, diamonds, triangles, squares, and crosses show the error-weighted mean
value of log ! for a small range in luminosity in each volume-limited catalog (see text for details). (Only catalogs containingmore than 100 galaxies are shown.)
Error bars show the rms scatter around this mean value. Solid line shows the maximum likelihood estimate of this relation, and the label in the top left shows
the scaling it implies. Histograms show the distribution of log ! in small bins in luminosity. They were obtained by stacking together nonoverlapping volume-
limited catalogs to construct a composite catalog, and then dividing the composite catalog into five equal-sized bins in luminosity.

1854 BERNARDI ET AL. Vol. 125

Bernardi et al. (2003, paper II)

~9000 ETGs
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The fundamental plane

✤ Djorgovski & Davis (1987)

✤ Dressler et al. (1987)

✤ Faber et al. (1987)

✤ Link between size, dynamics 
and surface brightness

✤ Since size is the only distance-
dependent quantity, the FP 
relation is an excellent distance 
indicator

19
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Djorgovski & Davis (1987)
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FP reloaded: SDSS

✤ Important to define the 
quantities properly!

✤ r is chosen as the effective 
radius (half light)

✤ σ is corrected to represent 
the dispersion within r/8, 
assuming a “standard” 
dispersion curve (eg 
Jørgensen+95)

TABLE 3

Coefficients of the FP in the Complete and Magnitude-Limited Simulated Catalogs

Band a b c rmsorth rmsRo

Orthogonal Fits

Complete:
g* ...................................... 1.44 ! 0.05 "0.74 ! 0.01 "8.763 ! 0.028 0.056 0.100
r* ...................................... 1.48 ! 0.05 "0.75 ! 0.01 "8.722 ! 0.020 0.052 0.094

Magnitude-Limited:
g* ...................................... 1.39 ! 0.06 "0.74 ! 0.01 "8.643 ! 0.028 0.056 0.100
r* ...................................... 1.43 ! 0.05 "0.76 ! 0.01 "8.721 ! 0.021 0.052 0.093

Direct Fits

Complete:
g* ...................................... 1.09 ! 0.04 "0.74 ! 0.01 "7.992 ! 0.023 0.061 0.091
r* ...................................... 1.16 ! 0.04 "0.75 ! 0.01 "8.005 ! 0.020 0.056 0.088

Magnitude-Limited:

g* ...................................... 1.04 ! 0.05 "0.74 ! 0.01 "7.817 ! 0.025 0.061 0.090
r* ...................................... 1.11 ! 0.04 "0.75 ! 0.01 "7.895 ! 0.020 0.056 0.087

Notes.—Coefficients of the FP in the complete and magnitude-limited simulated catalogs have been
obtained by minimizing a !2 in which evolution in the surface brightnesses has been removed and which
weights objects by the inverse of the selection function.

Fig. 1.—FP in the four SDSS bands. Coefficients shown are those that minimize the scatter orthogonal to the plane, as determined by the maximum
likelihoodmethod. Surface brightnesses have been corrected for evolution.

Bernardi et al. (2003, paper III)
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Virial interpretation and the tilt of 
the FP

✤ Why are the exponent different from the virial theorem?

✤ Systematic variations in M/L or is the transformation from virial to 
observed quantities not correct?

Except where stated otherwise, we write the Hubble con-
stant as H0 = 100 h km s!1 Mpc!1, and we perform our
analysis in a cosmological world model with (!M, !",
h) = (0.3, 0.7, 0.7), where !M and !" are the present-day
scaled densities of matter and cosmological constant. In
such a model, the age of the universe at the present time is
t0 = 9.43 h!1 Gyr. For comparison, an Einstein–de Sitter
model has (!M, !") = (1, 0) and t0 = 6.52 h!1 Gyr. We
frequently use the notation h70 as a reminder that we have
set h = 0.7. In addition, we will frequently be interested in
the logarithms of physical quantities. Our convention is to
set R " log Ro and V " log !, where Ro and ! are effective
radii in h!1

70 kpc and velocity dispersions in kilometers per
second, respectively.

2. THE FUNDAMENTAL PLANE

In any given band, each galaxy in our sample is character-
ized by three numbers: its luminosity, L, its size, Ro, and its
velocity dispersion, !. Correlations between these three
observables are expected if early-type galaxies are in virial
equilibrium, because

!2
vir /

GMvir

2Rvir
/ Mvir

L

! "
Rvir

L=2

R2
vir

 !

: ð1Þ

If the size parameterRvir that enters the virial theorem is lin-
early proportional to the observed effective radius of the
light, Ro, and if the observed line-of-sight velocity disper-
sion ! is linearly proportional to !vir, then this relates the
observed velocity dispersion to the product of the observed
surface brightness and effective radius. Following Djorgov-
ski & Davis (1987), correlations involving all three variables
are often called the fundamental plane. In what follows, we
will show how the surface brightness, Ro, and ! are
correlated. Because both lo / !2:5 log½ðL=2Þ=R2

o & and ! are
distance-independent quantities (this assumes that cosmo-
logical dimming and K-corrections have been computed
correctly), it is in these variables that studies of early-type
galaxies are usually presented.

2.1. Finding the Best-Fitting Plane

The FP is defined by

logRo ¼ a log ! þ blog Io þ c ; ð2Þ

where the coefficients a,b, and c are determined by minimiz-
ing the residuals from the plane. There are a number of ways
in which this is usually done. Let

D1 " logRo ! a log !! blog Io ! c ;

Do "
D1

ð1 þ a2 þ b2Þ1=2
: ð3Þ

Then summing D2
1 over all N galaxies and finding that set of

a,b, and c for which the sum is minimized gives what is often
called the direct fit, whereas minimizing the sum of D2

o

instead gives the orthogonal fit. Although the orthogonal fit
is, perhaps, the more physically meaningful, the direct fit
is of more interest if the FP is to be used as a distance
indicator.

A little algebra shows that the direct-fit coefficients are

a ¼ !2
II!

2
RV ! !2

IR!
2
IV

!2
II!

2
VV ! !4

IV

; b¼ !2
VV!

2
IR ! !2

RV!
2
IV

!2
II!

2
VV ! !4

IV

;

c ¼ logRo ! a log !! blog Io ;

hD2
1i ¼ ð!2

II!
2
RR!

2
VV ! !2

II!
4
RV ! !2

RR!
4
IV ! !2

VV!
4
IR

þ 2!2
IR!

2
IV!

2
RVÞ=ð!

2
II!

2
VV ! !4

IVÞ ; ð4Þ
where logX "

P
i logXi=N and !2

xy "
P

iðlogXi ! logXÞ
)ðlogYi ! logYÞ=N, and X and Y can be Io, Ro, or !. For
what follows, it is also convenient to define rxy ¼ !2

xy=
ð!xx!yyÞ. The final expression above gives the scatter around
the relation. If surface brightness and velocity dispersion
are uncorrelated (we will show below that, indeed, !IV * 0),
then a equals the slope of the relation between velocity dis-
persion and the mean size at fixed velocity dispersion, b is
the slope of the relation between surface brightness and the
mean size at fixed surface brightness, and the rms scatter is
!RRð1! r2RV ! r2IRÞ

1=2. Errors in the observables affect the
measured !2

xy and thus will bias the determination of the
best-fit coefficients and the intrinsic scatter around the fit. If
"xy is the rms error in the joint measurement of log X and
log Y, then subtracting the appropriate "2xy from each !2

xy

before using them provides estimates of the error-corrected
values of a, b, and c. Expressions for the orthogonal fit coef-
ficients can be derived similarly, although, because they
require solving a cubic equation, they are lengthy, so we
have not included them here.

Neither minimization procedure above accounts for the
fact that the sample is magnitude-limited and has a cut at
small velocity dispersions. In addition, because our sample
spans a wide range of redshifts, we must worry about effects
that may be due to evolution. The magnitude limit means
that we cannot simply divide our sample up into small red-
shift ranges (over which evolution is negligible), because a
small redshift range probes only a limited range of luminosi-
ties, sizes, and velocity dispersions. To account for all these
effects, we use the maximum likelihood approach (e.g.,
Saglia et al. 2001) described in Paper II. This method is the
natural choice given that the joint distribution of
M " !2.5 log L, R " log Ro, and V " log ! is quite well
described by a multivariate Gaussian. The maximum likeli-
hood estimates of the mean values of these variables and the
parameters of the covariance matrix C that describes the
correlations between these variables are shown in Table 1 of
Paper II. What remains is to write down how the covariance
matrix changes when we change variables from (M,R,V ) to
(l, R, V ). Because (lo ! l*) " (M ! M*) + 5(R ! R*), the
covariance matrix becomes

F " ðk1; k2; k3Þ ; ð5aÞ

k1 ¼
!2
M þ 10!M!R#RM þ 25!2

R

!R!M#RM þ 5!2
R

!V!M#VM þ 5!R!V#RV

0

B@

1

CA ;

k2 ¼
!R!M#RM þ 5!2

R

!2
R

!R!V#RV

0

B@

1

CA ;

k3 ¼
!V!M#VM þ 5!R!V#RV

!R!V#RV

!2
V

0

B@

1

CA ;

EARLY-TYPE GALAXIES IN SDSS. III. 1867
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FP interpretation and the 𝜿3 formalism

✤ Assume proportionality 
between observed quantities 
and virial quantities

✤ c1, c2 “structure constants”

✤ Introduce the new variables:

Except where stated otherwise, we write the Hubble con-
stant as H0 = 100 h km s!1 Mpc!1, and we perform our
analysis in a cosmological world model with (!M, !",
h) = (0.3, 0.7, 0.7), where !M and !" are the present-day
scaled densities of matter and cosmological constant. In
such a model, the age of the universe at the present time is
t0 = 9.43 h!1 Gyr. For comparison, an Einstein–de Sitter
model has (!M, !") = (1, 0) and t0 = 6.52 h!1 Gyr. We
frequently use the notation h70 as a reminder that we have
set h = 0.7. In addition, we will frequently be interested in
the logarithms of physical quantities. Our convention is to
set R " log Ro and V " log !, where Ro and ! are effective
radii in h!1

70 kpc and velocity dispersions in kilometers per
second, respectively.

2. THE FUNDAMENTAL PLANE

In any given band, each galaxy in our sample is character-
ized by three numbers: its luminosity, L, its size, Ro, and its
velocity dispersion, !. Correlations between these three
observables are expected if early-type galaxies are in virial
equilibrium, because

!2
vir /

GMvir

2Rvir
/ Mvir

L

! "
Rvir

L=2
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: ð1Þ

If the size parameterRvir that enters the virial theorem is lin-
early proportional to the observed effective radius of the
light, Ro, and if the observed line-of-sight velocity disper-
sion ! is linearly proportional to !vir, then this relates the
observed velocity dispersion to the product of the observed
surface brightness and effective radius. Following Djorgov-
ski & Davis (1987), correlations involving all three variables
are often called the fundamental plane. In what follows, we
will show how the surface brightness, Ro, and ! are
correlated. Because both lo / !2:5 log½ðL=2Þ=R2

o & and ! are
distance-independent quantities (this assumes that cosmo-
logical dimming and K-corrections have been computed
correctly), it is in these variables that studies of early-type
galaxies are usually presented.

2.1. Finding the Best-Fitting Plane

The FP is defined by

logRo ¼ a log ! þ blog Io þ c ; ð2Þ

where the coefficients a,b, and c are determined by minimiz-
ing the residuals from the plane. There are a number of ways
in which this is usually done. Let

D1 " logRo ! a log !! blog Io ! c ;

Do "
D1

ð1 þ a2 þ b2Þ1=2
: ð3Þ

Then summing D2
1 over all N galaxies and finding that set of

a,b, and c for which the sum is minimized gives what is often
called the direct fit, whereas minimizing the sum of D2

o

instead gives the orthogonal fit. Although the orthogonal fit
is, perhaps, the more physically meaningful, the direct fit
is of more interest if the FP is to be used as a distance
indicator.

A little algebra shows that the direct-fit coefficients are

a ¼ !2
II!

2
RV ! !2

IR!
2
IV

!2
II!

2
VV ! !4

IV

; b¼ !2
VV!

2
IR ! !2

RV!
2
IV

!2
II!

2
VV ! !4

IV

;

c ¼ logRo ! a log !! blog Io ;

hD2
1i ¼ ð!2

II!
2
RR!

2
VV ! !2

II!
4
RV ! !2

RR!
4
IV ! !2

VV!
4
IR

þ 2!2
IR!

2
IV!

2
RVÞ=ð!

2
II!

2
VV ! !4

IVÞ ; ð4Þ
where logX "

P
i logXi=N and !2

xy "
P

iðlogXi ! logXÞ
)ðlogYi ! logYÞ=N, and X and Y can be Io, Ro, or !. For
what follows, it is also convenient to define rxy ¼ !2

xy=
ð!xx!yyÞ. The final expression above gives the scatter around
the relation. If surface brightness and velocity dispersion
are uncorrelated (we will show below that, indeed, !IV * 0),
then a equals the slope of the relation between velocity dis-
persion and the mean size at fixed velocity dispersion, b is
the slope of the relation between surface brightness and the
mean size at fixed surface brightness, and the rms scatter is
!RRð1! r2RV ! r2IRÞ

1=2. Errors in the observables affect the
measured !2

xy and thus will bias the determination of the
best-fit coefficients and the intrinsic scatter around the fit. If
"xy is the rms error in the joint measurement of log X and
log Y, then subtracting the appropriate "2xy from each !2

xy

before using them provides estimates of the error-corrected
values of a, b, and c. Expressions for the orthogonal fit coef-
ficients can be derived similarly, although, because they
require solving a cubic equation, they are lengthy, so we
have not included them here.

Neither minimization procedure above accounts for the
fact that the sample is magnitude-limited and has a cut at
small velocity dispersions. In addition, because our sample
spans a wide range of redshifts, we must worry about effects
that may be due to evolution. The magnitude limit means
that we cannot simply divide our sample up into small red-
shift ranges (over which evolution is negligible), because a
small redshift range probes only a limited range of luminosi-
ties, sizes, and velocity dispersions. To account for all these
effects, we use the maximum likelihood approach (e.g.,
Saglia et al. 2001) described in Paper II. This method is the
natural choice given that the joint distribution of
M " !2.5 log L, R " log Ro, and V " log ! is quite well
described by a multivariate Gaussian. The maximum likeli-
hood estimates of the mean values of these variables and the
parameters of the covariance matrix C that describes the
correlations between these variables are shown in Table 1 of
Paper II. What remains is to write down how the covariance
matrix changes when we change variables from (M,R,V ) to
(l, R, V ). Because (lo ! l*) " (M ! M*) + 5(R ! R*), the
covariance matrix becomes

F " ðk1; k2; k3Þ ; ð5aÞ

k1 ¼
!2
M þ 10!M!R#RM þ 25!2

R

!R!M#RM þ 5!2
R

!V!M#VM þ 5!R!V#RV

0

B@

1

CA ;

k2 ¼
!R!M#RM þ 5!2

R

!2
R

!R!V#RV

0

B@

1

CA ;

k3 ¼
!V!M#VM þ 5!R!V#RV

!R!V#RV

!2
V

0

B@

1

CA ;
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The 𝜿3 space

✤ 𝜿3-𝜿1: ~edge-on projection of 
the FP 

✤ 𝜿2-𝜿1: ~face-on projection of 
the FP 

✤ M/L increasing with mass (for 
luminous ellipticals) 

✤ All holds if the “structure 
constants” are constant!
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Are the constants constant? 
The non-homology problem

✤ Elliptical galaxies present 
systematic variations with 
mass/luminosity in

✤ density profiles

✤ hence dispersion profiles

✤ Structure constants cannot be 
constant in a strict sense!
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diagram obtained in this way, showing the expected trend of
blueing toward fainter luminosities (see Baldry et al. 2004). We
remark however that our WFV data-set contains too few giant
E galaxies to explore the relation at high luminosity. It appears
that, fainter than BT = −16, the scatter in the relation becames
increasingly large.

For the same set of galaxies we also compute the “outer
color gradient” as the slope of the line fitted to the B − I color
profile in the radial interval between r > 1.5 × σ and (two
points before) the last significant measurement. When plotting
the outer gradient we follow the convention of Vader et al.
(1988) of “positive” gradients when the the center is redder.
Figure 8 (bottom) shows the outer gradients as a function of
the B luminosity, revealing no significant correlation. We do
not confirm the trend found by Vader et al. (1988) in a brighter
(BT < −15.3, vertical line) sample who claimed that brighter
galaxies have more positive gradients (outer envelopes bluer
than inner regions) than fainter objects. Our fainter sample
shows that this trend does not hold at faint luminosities where
the outer gradients show a tremendous scatter.

Figure 8 (middle) shows the inner (or nuclear) color index
obtained as the difference of the B and I magnitudes integrated
within 1 × σ. There is only a weak tendency for redder nuclei
in brighter objects, but again with a large uncertainty.

5.3. Correlations among B-band structural parameters

Guided by the work of GG03 who based their study on a
sample of 18 dEs in Coma observed with the HST, combined
with 232 elliptical galaxies taken from the literature, we ana-
lyze in this Section several correlations among structural pa-
rameters of dE-E galaxies in the Virgo cluster that are derived
using the Sersic model.

We remark that the sample of Virgo elliptical galaxies we
are using is 90% complete at mp < 19. In other words the den-
sity of points in the various plots reflects the real frequency in
the parameter space of Virgo galaxies.

We begin by remarking, in full agreement with GG03 and
Caon et al. (1993), that in our sample there is a significant linear
increase of the Sersic index nwith the system luminosity (see
Fig. 9). Using the bisector linear regression we find:

log(n) = −0.12 × BT + 1.71 (R = −0.72). (4)

All dEs with BT > −17 have Sersic index n<∼ 2 while the few
giant Es have nas high as 7.

Secondly we show in Fig. 10 (top) that the relation BT ver-
sus ⟨µ⟩e, extensively studied by Binggeli & Cameron (1991),
Binggeli et al. (1984) and Ferguson & Binggeli (1994) shows
the existence of two separate regimes: dwarf elliptical galax-
ies having brighter surface brightness with increasing luminos-
ity, and giants showing the reverse trend. Furthermore the re-
lation between the effective surface brightness and the radius
(see Fig. 10, middle) is of inverse proportionality for giant el-
lipticals (Kormendy & Djorgowski 1989), i.e. smaller radii at
brighter mean surface brightness, while dEs show a sparse re-
lation (see also Capaccioli & Caon 1991). Third we show (bot-
tom) that the scale log Re increases with BT more rapidly for
giant Es than for dEs (see Binggeli et al. 1984).

Fig. 9. The dependence of nfrom BT . The dashed line gives the bisec-
tor linear regression.

In all panels of Fig.10 it appears that some dichotomy oc-
curs in passing from dEs to Es. However, as stressed for the first
time by GG03, all bright galaxies showing deviant trends in
this figure are the “partially evacuated core” or “core" galaxies
that show a flat slope in the inner <∼100 pc (<∼1.2 arcsec at the
distance of Virgo), as opposed to the “normal” galaxies with
a central cusp (that Faber et al. 1997, define as “power-law”
galaxies). It should be noted that the region of the Virgo cluster
mapped with completeness in this work does not contain many
“core” galaxies, beside M 84, M 86 and M 87 (the brightest ob-
jects in Fig. 10). Most “core” objects found in other clusters by
Faber et al. (1997) are much more luminous (−21 < BT < −24)
cD galaxies with large outer envelopes that are absent in Virgo.
These galaxies obey Sersic laws only in the outer profiles and
Graham et al. (2003b) have developed a formalism to model
their profiles in their full extent. The rectangles in Fig. 10 rep-
resent the loci occupied by them. Notice that the M 32-like ob-
jects (e.g. VCC 1297 and 1327) (both core galaxies) represent
the low-luminosity continuation of the core regime.

The E-dE dichotomy no longer appears when BT is plot-
ted as a function of µ0 in Fig. 11. GG03 conclude that “nor-
mal” dE-E galaxies have increasingly brighter central surface
brightness with increasing luminosity, until the onset of “core”
formation in elliptical galaxies at BT ∼ −20.5 mag. Together
with GG03 we conclude that among “normal” E-dE galaxies
there is no dichotomy in the structural parameters. Only the
“core” galaxies seem structurally different, perhaps due to a
different formation mechanism (see the discussion in Graham
et al. 2003b).

Given the significant correlation between BT and log n,
which clearly indicates a smooth, continuous transition from

Gavazzi et al. (2005)

5.2. M=LRatios

Unlike in the case of the !3 coefficient, the values that we
derive here forM=L are not influenced by the varying shape
of the surface brightness profiles and by the aperture effects.

In Figure 5 logM=L is shown as a function of the totalH-
band luminosity. No significant evidence of systematic var-
iation of M=L with L can be seen. The average logM=L is
0.09 (corresponding to M=L ! 1:2), with a large dispersion
of 0.2 dex. Systematic variations of M=L are therefore
unlikely to be solely responsible for the tilt of the FP. Fur-
ther evidence comes from replacing the measured values of
"0 with those obtained from the model assuming a constant
M=L for all galaxies:5 the resulting distribution of
D#2ða; bÞ is shown in Figures 2c and 2d for the whole
dynamical sample and for the subsample with "0 > 100 km
s$1, respectively. In both cases the distribution is inconsis-
tent with the values a ¼ 2, b¼ $1 expected on the basis of
the virial theorem and homology. This demonstrates that
the observed deviations of the profiles from self-similarity
are expected to cause an FP tilt similar to that observed, in
the absence of any variation inM=L.

5.3. Homology Breaking and Aperture Effects

The dynamical model provides the phase-space density
distribution for each galaxy. Potential and kinetic energy
can be calculated, and the gravitational radius Rg (see eq.
[B7]) and the rms velocity hv2i1=2 & "rms can be determined
as well. In order to investigate the consequences of the
breaking of the homology and of the aperture effects on the
coefficients of the FP relation, we study the dependence of
the ratios "0="rms and Re=Rg on Re. Re=Rg does not show
any significant correlation with Re. The relation between
"0="rms andRe is shown in Figure 6.

The clear correlation observed between these two param-
eters demonstrates that the commonly assumed linear pro-
portionality between "0 and "rms (eq. [7]) does not hold. In
principle, this can be a consequence both of an aperture
effect, depending on the slit aperture relative to Re, and of
the different velocity dispersion profiles.

The OLSB fit for the points gives

log
"0

"rms
¼ 0:106 logRe $ 0:558 ð11Þ

and is shown as the solid line. The dashed lines superposed
on Figure 6 show the theoretically expected aperture effect
for homologous galaxies following the Sérsic law6 (Sérsic
1968) with index $ ¼ 0:25, 0.35, 0.45, 0.55, and 0.85. Each
curve reflects the dependence of the velocity dispersion on
the radius and presents a linearly increasing part, whose
slope is largely independent of $, followed by a maximum
and a decreasing part, whose location and slope strongly
depend on $. It is evident that the slope of the mean relation
is largely determined by the aperture effect in its linear part,
while the nonhomology of the light profiles (given by the
different $ indexes) mostly contributes to the scatter. Insert-
ing the average relation in the virial FP equation (8), the FP
coefficients a ¼ 1:65 andb¼ 0:83 are obtained. Such values
are in very good agreement (within the 68.3% confidence
level) with those obtained fitting the FP on the data sample
in which "0 was replaced by the central velocity dispersion
modeled assuming constant M=L (see Figs. 2c–2d). The
agreement with the ‘‘ real ’’ FP coefficients is worse,
although within the 99.99% confidence level (see Figs. 2a–
2b).

6 IðrÞ ¼ I0 exp½$ðr=aÞ$ (, where I0 is the central surface brightness, $ is
the index ($ ¼ 0:25 corresponding to a de Vaucouleurs profile, $ ¼ 1 to an
exponential), and a is the scale factor.

Fig. 5.—M=L ratios as derived from the model as a function of the total
H-band luminosity. Symbols as in Fig. 4.

5 The exact value ofM=L is irrelevant in order to obtain the a andbcoef-
ficients.M=L ¼ 1:0 has been assumed for simplicity.

Fig. 6.—The "0="rms ratio as a function ofRe. Symbols as in Fig. 4. Solid
line: OLSB fit. Dashed lines: Theoretically expected relation for families of
homologous galaxies modeled by Sérsic laws. Each curve is labeled with the
corresponding $ index.
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Dynamical modeling  
(following Schwarzschild 1989)

✤ Assume a mass distribution

✤ by deprojecting the observed luminosity/mass image

✤ possibly adding a DM halo

✤ Compute the potential

✤ Calculate the possible orbits and their density in 3D  → different 
families of orbits

✤ Find the superposition of orbits that fit the luminosity/mass 
distribution and (if available) the kinematics
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Orbit families: 2D potential

✤ log potential mimics a dark 
matter halo, with flat rotation 
curve

✤ Angular momentum is NOT 
conserved!

✤ Inside Rc approximate a 2D 
harmonic oscillator: box 
orbits

✤ possible outside Rc:
✤  Loop orbits:

✤ never approach the 
center

✤ keep same rotation 
direction

✤  Box orbits:
✤ can go close to the 

center
✤ almost radial at large R
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Figure 3.10 A selection of loop (top row) and box (bottom row) orbits in the potential
ΦL(q = 0.9, Rc = 0.14) at the energy of Figures 3.8 and 3.9.

an anti-clockwise sense and closes on itself after one revolution is the closed
loop orbit, which is also shown at the bottom of Figure 3.8. In the surface of
section this orbit generates the single point 3. Orbits with non-zero annular
widths generate the curves that loop around the point 3. Naturally, there
are loop orbits that circulate in a clockwise sense in addition to the anti-
clockwise orbits; in the surface of section their representative curves loop
around the point 2.

The second type of closed curve in Figure 3.9 corresponds to box orbits.
The box orbit shown at the top of Figure 3.8 generates the curve marked 4.
All the curves in the surface of section that are symmetric about the origin,
rather than centered on one of the points 2 or 3, correspond to box orbits.
These orbits differ from loop orbits in two major ways: (i) in the course
of time a star on any of them passes arbitrarily close to the center of the
potential (in the surface of section their curves cross x = 0), and (ii) stars on
these orbits have no unique sense of rotation about the center (in the surface
of section their curves are symmetric about x = 0). The outermost curve
in Figure 3.9 (the zero-velocity curve) corresponds to the orbit on which
y = ẏ = 0; on this orbit the star simply oscillates back and forth along the
x axis. We call this the closed long-axis orbit. The curves interior to
this bounding curve that also center on the origin correspond to less and less
elongated box orbits. The bottom row of Figure 3.10 shows this progression
from left to right. Notice the strong resemblance of the most eccentric loop
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3.3 Orbits in planar non-axisymmetric potentials

Many, possibly most, galaxies have non-axisymmetric structures. These are
evident near the centers of many disk galaxies, where one finds a luminous
stellar bar—the Milky Way possesses just such a bar (BM §10.3). Non-
axisymmetry is harder to detect in an elliptical galaxy, but we believe that
many elliptical galaxies, especially the more luminous ones, are triaxial rather
than axisymmetric (BM §4.2). Evidently we need to understand how stars
orbit in a non-axisymmetric potential if we are to model galaxies successfully.

We start with the simplest possible problem, namely, planar motion in
a non-rotating potential.7 Towards the end of this section we generalize
the discussion to two-dimensional motion in potentials whose figures rotate
steadily, and in the next section we show how an understanding of two-
dimensional motion can be exploited in problems involving three-dimensional
potentials.

3.3.1 Two-dimensional non-rotating potential

Consider the logarithmic potential (cf. §2.3.2)

ΦL(x, y) = 1
2v2

0 ln

(
R2

c + x2 +
y2

q2

)
(0 < q ≤ 1). (3.103)

This potential has the following useful properties:
(i) The equipotentials have constant axial ratio q, so the influence of the

non-axisymmetry is similar at all radii. Since q ≤ 1, the y axis is the
minor axis.

(ii) For R =
√

x2 + y2 ≪ Rc, we may expand ΦL in powers of R/Rc and
find

ΦL(x, y) ≃
v2
0

2R2
c

(
x2 +

y2

q2

)
+ constant (R ≪ Rc), (3.104)

which is just the potential of the two-dimensional harmonic oscillator.
In §2.5 we saw that gravitational potentials of this form are generated
by homogeneous ellipsoids. Thus for R ∼< Rc, ΦL approximates the
potential of a homogeneous density distribution.

(iii) For R ≫ Rc and q = 1, ΦL ≃ v2
0 ln R, which yields a circular speed

vc ≃ v0 that is nearly constant. Thus the radial component of the force
generated by ΦL with q ≃ 1 is consistent with the flat circular-speed
curves of many disk galaxies.

The simplest orbits in ΦL are those that are confined to R ≪ Rc; when ΦL

is of the form (3.104), the orbit is the sum of independent harmonic motions

7 This problem is equivalent to that of motion in the meridional plane of an axisym-
metric potential when Lz = 0.
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Figure 3.8 Two orbits of a com-
mon energy in the potential ΦL

of equation (3.103) when v0 = 1,
q = 0.9 and Rc = 0.14: top, a box
orbit; bottom, a loop orbit. The
closed parent of the loop orbit is also
shown. The energy, E = −0.337, is
that of the isopotential surface that
cuts the long axis at x = 5Rc.

parallel to the x and y axes. The frequencies of these motions are ωx = v0/Rc

and ωy = v0/qRc, and unless these frequencies are commensurable (i.e.,
unless ωx/ωy = n/m for some integers n and m), the star eventually passes
close to every point inside a rectangular box. These orbits are therefore
known as box orbits.8 Such orbits have no particular sense of circulation
about the center and thus their time-averaged angular momentum is zero.
They respect two integrals of the motion, which we may take to be the
Hamiltonians of the independent oscillations parallel to the coordinate axes,

Hx = 1
2v2

x + 1
2v2

0
x2

R2
c

; Hy = 1
2v2

y + 1
2v2

0
y2

q2R2
c
. (3.105)

To investigate orbits at larger radii R ∼> Rc, we must use numerical
integrations. Two examples are shown in Figure 3.8. Neither orbit fills the
elliptical zero-velocity curve ΦL = E, so both orbits must respect a second
integral in addition to the energy. The upper orbit is still called a box orbit
because it can be thought of as a distorted form of a box orbit in the two-
dimensional harmonic oscillator. Within the core the orbit’s envelope runs
approximately parallel to the long axis of the potential, while for R ≫ Rc

the envelope approximately follows curves of constant azimuth or radius.
In the lower orbit of Figure 3.8, the star circulates in a fixed sense about

the center of the potential, while oscillating in radius. Orbits of this type
are called loop orbits. Any star launched from R ≫ Rc in the tangential
direction with a speed of order v0 will follow a loop orbit. If the star is
launched at speed ∼ v0 at a large angle to the tangential direction, the
annulus occupied by the orbit will be wide, while if the launch angle is small,
the annulus is narrow. This dependence is analogous to the way in which

8 The curve traced by a box orbit is sometimes called a Lissajous figure and is easily
displayed on an oscilloscope.
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Orbit families: triaxial potential

Statler (1987)

Box orbit Short axis tube orbit

Inner long axis 
tube orbit

Outer long axis 
tube orbit
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Homology holds (or as-if...)
✤ dispersion profiles are 

not homologous
✤ From 2- and 3-integral 

methods:
✤ dynamical M/L 

increases with σ
✤ M/L can be recovered 

from the simple virial 
formula and the FP

✤ However β is not the one 
expected from sersic 
models... things are 
much more complicated!

Cappellari et al. (2006, SAURON)

1130 M. Cappellari et al.

prescriptions of section 3.4 of Cappellari & Emsellem (2004). In

addition we observed M32 with SAURON in 2003 August with the

same configuration as for the other galaxies in Paper III, and ob-

tained two pointings resulting in an FOV of about 40 × 60 arcsec2.

For each galaxy in our sample we determined σ e, the luminosity-

weighted second moment of the line-of-sight velocity distribution

(LOSVD) within the half-light radius Re. Compared to the cen-

tral velocity dispersion σ c, which was sometimes used before, this

quantity has the advantage that it is only weakly dependent on the

details of the aperture used. The observed σ e is an approximation

to the second velocity moment which appears in the virial equation

(Binney & Tremaine 1987, Section 4.3). It is proportional to
√

M

(with M the galaxy mass), and so is weakly dependent on the de-

tails of the orbital distribution. These are the reasons why a similar

quantity (estimated, however, from long-slit data) was also adopted

by, for example, Gebhardt et al. (2000) to study the correlation be-

tween the mass of supermassive black holes (BHs) and the velocity

dispersion of the host galaxy.

The use of integral-field observations allows us to perform the

σ e measurements in a more rigorous manner than was possible

with long slits. We measured σ e from the data by co-adding all

luminosity-weighted spectra within Re. The resulting single ‘effec-

tive spectrum’ has extremely high S/N ! 300 per spectral element,

and is equivalent to what would have been observed with a single

aperture of radius Re centred on the galaxy. We then used PPXF, with

the same set of multiple templates from Vazdekis (1999, hereafter

VZ99) as in Paper III, to fit a purely Gaussian LOSVD from that

spectrum to determine σ (this time the higher-order Gauss–Hermite

moments are set to zero and are not fitted). This procedure takes

into account in a precise manner the effect of the galaxy rotation on

σ e, so that no extra correction is required.

As we do not sample all galaxies out to one Re we want to correct

for this effect and to estimate how much uncertainty this can intro-

duce in our σ e measurements. For this we show in Fig. 2 the profiles

of σ R , measured by co-adding the SAURON spectra within circu-

lar apertures of increasing radius, for all the 40 early-type galaxies

in Paper III which we sample to at least R e/2. In some cases the

selected circular aperture is not fully sampled by our data, and we

define the radius R ≡
√

A/π as that of a circular aperture with

the same area A on the sky actually covered by the SAURON data

inside that aperture. We fitted the profile of σ e versus R for every

galaxy with a power-law relation σ R ∝ Rγ and we determined the

biweight (Hoaglin, Mosteller & Tukey 1983) mean and standard

deviation for the exponent γ = −0.066 ± 0.035 in the entire set.

In addition we normalized the σ R values to the corresponding σ e/2,

defined as the dispersion at R e/2, and computed the biweight mean

from all galaxies, at different fractions of Re. This mean σ R profile

appears to be well described by the mean power-law relation fitted

to the individual profiles. One can see that generally σ R decreases

by less than 5 per cent from R e/2 up to Re, but the galaxy-to-galaxy

variations are significant. In summary, the aperture correction has

the form:

(

σR

σe

)

=

(

R

Re

)−0.066±0.035

. (1)

The logarithmic slope of our best-fitting relation is in reasonable

agreement with the value −0.04 found by Jørgensen et al. (1995)

and with the value −0.06 derived by Mehlert et al. (2003) from

long-slit spectroscopy.

The measured values of σ e for our sample are given in Table 1 to-

gether with the actual fraction of Re sampled by our kinematics. We
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Figure 2. Luminosity-weighted second moment of the LOSVD within an

aperture of radius R, normalized to its value at Re/2 (see text for details).

This plot shows, with the thin coloured lines, all the 40 E/S0 galaxies in

the SAURON sample for which Re/2 is not larger than the FOV. The open

circles represent the biweight mean of all the curves at every given radius. The

number of measurements sampled at every radius is not constant, moreover

there are significant galaxy-to-galaxy variations in the profiles. The thick

black line is a power-law relation σ R ∝ R−0.066 which has an exponent

defined by the biweight mean of the individual values for every galaxy. The

dashed lines indicate the standard deviation in the individual slopes. The

galaxy with the largest increase of the σ R profile at large radii is NGC 4550

(see Paper III).

decided not to restrict our σ e measurements to a smaller aperture so

as not to discard data for the galaxies that we sample to large radii.

In what follows we correct the values of σ e with the aperture cor-

rection of equation (1) to determine our correlations and to generate

our plots.

3 DY NA M I C A L M O D E L L I N G

3.1 Multi-Gaussian Expansion mass model

We constructed photometric models for all the 29 candidate galax-

ies (see beginning of Section 2.1) plus M32 with HST photome-

try and SBF distances. For this we used the Multi-Gaussian Ex-

pansion (MGE) parametrization by Emsellem, Monnet & Bacon

(1994), which describes the observed surface brightness as a sum of

Gaussians, and allows the photometry to be reproduced in detail, in-

cluding ellipticity variations and strongly non-elliptical isophotes.

The accurate MGE modelling of such a large sample of galaxies,

each consisting of three separate images, was made feasible by the

use of the MGE fitting method and software by Cappellari (2002),

which was designed with this kind of large-scale application in

mind.

Our MGE models were fitted simultaneously to three images: (i)

the WFPC2/PC1 CCD, (ii) the lower-resolution WFPC2 mosaic,

and (iii) a wide-field ground-based MDM image (Fig. 3). In Sec-

tion 2.2, we described how the ground-based and WFPC2 images

were carefully sky-subtracted and matched. The MGE fits were done

by keeping the position angle (PA) for all Gaussians fixed and taking

point spread function (PSF) convolution into account (our F814W

MGE PSF is given in table 3 of Cappellari et al. 2002). The quality

of the resulting fits was inspected, together with the kinematics, to

exclude the five galaxies which could not be reasonably well fitted

by a constant-PA photometric model (Section 2.1). This reduced the

original sample to 25 galaxies.
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Figure 8. (M/L)–σ e correlation. The errors in the M/L values shown here

and in the following plots represent the uncertainty in the distance as given

by Tonry et al. (2001), quadratically co-added to the 6 per cent modelling

error determined in Section 4.1. The errors on σ e are assumed to be 5

per cent. The solid line is the correlation obtained by fitting all galaxies,

while the dotted line is the fit obtained by excluding the five galaxies with

log σ e < 2. The galaxy with the smallest σ e is M32.

related to our σ e, but it is measured in a very different way. We found

that errors of 7 per cent in σ are needed to explain the scatter with

respect to a linear relation between log σ c and log σ e. This scatter

also includes very significant systematics due to the differences in

the data, analysis and measurement method. The adopted 5 per cent

error provides a conservative estimate of the true errors. Note that

for the galaxy M87 our σ e value is 20 per cent smaller than the

value adopted by Tremaine et al. (2002). Our SAURON kinematics,

however, agrees well with both the G-band and the Ca triplet stellar

kinematics by van der Marel (1994). Adopting our smaller σ e M87

would become an outlier of the M BH–σ e correlation.

We find a tight correlation (Fig. 8) with an observed rms scatter

in M/L of 18 per cent. The best-fitting relation is

(M/L) = (3.80 ± 0.14)
(

σe

200 km s−1

)0.84±0.07

. (7)

The value of σ 0 = 200 km s−1 was chosen, following Tremaine

et al. (2002), to minimize the uncertainty in α and the correlation

between α and β. The best-fitting values and the uncertainties, here

as in all the following correlations, were determined after increasing

the errors $yj in the M/L by quadratically co-adding a constant

‘intrinsic’ scatter so that ($yj)
2 is replaced by ($yj)

2 + ($y0)2, to

make χ 2/ν = 1, where ν = N − 2 = 23 is the number of degrees of

freedom in the linear fit (see, Tremaine et al. 2002, for a discussion of

the approach). The constant intrinsic scatter implied by the observed

scatter in this correlation is ∼13 per cent ($y0 = 0.053).

To test the robustness of the slope we also performed a fit only

to the galaxies with log σ e > 2, which is the range most densely

sampled by FP studies (e.g. Jørgensen et al. 1996). The relation be-

comes in this case (M/L) ∝ σ 1.06±0.18
e , which is steeper, but is still

consistent with equation (7) within the much larger uncertainty. The

steepening of the correlation at high σ e may also be due to a non-

perfect linearity of the relation (e.g. Zaritsky, Gonzalez & Zabludoff

2005), but this cannot be tested with our limited number of galax-

ies. The correlation computed using the Jeans determinations is even

tighter than equation (7), and gives (M/L)Jeans ∝ σ 0.77±0.06
e with an

observed scatter of only 15 per cent. However, due to the possi-

ble bias of the Jeans M/L values, we will use the Schwarzschild

determinations in what follows.

The use of σ e determined from integral-field data and using a

large aperture has the significant advantage that it is conceptually

rigorous and accurate. However, the (M/L)–σ correlation does not

appear to depend very strongly on the details by which σ is deter-

mined. We performed the same fit of Fig. 8 using as value of the

dispersion the σ e/8 measured from the SAURON data in an aperture

of radius R e/8. In this case the best-fitting correlation has the form

(M/L) ∝ σ 0.75±0.06
e/8 and the observed rms scatter in M/L is 21 per

cent. As an extreme test we used as dispersion the inhomogeneous

set of central values σ c, obtained from long-slit spectroscopic ob-

servations, as given in the HyperLeda catalogue. In this case the

best-fitting correlation becomes (M/L) ∝ σ 0.87±0.07
c and has an ob-

served scatter of 20 per cent. Both correlations are consistent within

the errors with the best-fitting (M/L)–σ e correlation, although they

have a larger scatter.

We also determined the correlation between the M/L and the

second moment of the velocity, corrected with equation (18) of

van der Marel & Franx (1993)

σ̃e ≈ σe(1 + h4,e

√
6), (8)

to include the contribution to the second moment of a non-zero h4,e

parameter. Equation (8) was obtained by integrating the LOSVD to

infinite velocities. In practice the second moment of a parametrized

LOSVD with dispersion σ and h4 = 0.1 is equal to σ̃ = 1, 1.11 and

1.21σ if one sets the LOSVD to zero for velocities larger than |V | >
2.45, 3 and 4σ , respectively. This shows that the correction has to be

used with care, being highly sensitive to the details of the LOSVD at

large velocities, where the LOSVD cannot be determined reliably.

In fact a measured positive h4 parameter, which means the LOSVD

is narrower than a Gaussian at small velocities, does not necessarily

imply that the wings of the LOSVD are precisely as described by the

Gauss–Hermite parametrization. We find a correlation consistent,

within the errors, with equation (7) and with comparable scatter.

We also studied the correlation of the dynamical M/L with the

galaxy luminosity (Fig. 9). For this we used our own total magni-

tudes in the I-band IT given in Table 1, transformed into absolute
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Figure 9. (M/L)–LI correlation. Note that all galaxies, with the exception

of M32 are brighter than the limit MI ≈ −20 mag, in absolute magnitudes,

which is set by the luminosity-selection criterion of the SAURON survey.

Due to the sensitivity of the fit to the single M/L of M32, this galaxy was

not included in this and in the following fits involving luminosity or mass,

but it is included in the plots, to allow a comparison with Fig. 8.
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∼15 per cent of the observed tilt. For the more reliable correlations

involving σ , comparison of the virial prediction of equation (15) and

the modelling result of equation (7) indicates that non-homology can

account for at most ∼7 per cent of the tilt. Both relations consistently

imply that the FP tilt reflects essentially a real variation of the total

M/L in the central regions of galaxies, which can be due to vari-

ations in the galaxies’ stellar population and/or in the dark matter

fraction. A similar conclusion was reached by Lanzoni et al. (2004)

from general considerations about the observed scaling relations of

early-type galaxies. The comparison of this section, however, in-

volves uncertainties due to the fact that the tilt may depend on the

sample-selection criteria. To assess if this plays an important role

we perform in the next section a direct comparison of the virial

predictions for the M/L derived from our own galaxy sample.

4.5 Comparison with virial predictions of M/L

An alternative way to test the validity of the virial and homology

assumptions and their influence on the FP tilt is to compute the ‘ob-

served’ virial (M/L)vir ∝ R eσ
2
e/L and to compare it directly to the

M/L derived from the dynamical models. This has the advantage

that it can be performed on our own galaxies and does not involve

any choice of FP parameters or selection effects. We fitted the cor-

relations of (M/L)vir, in the I band, with σ and with luminosity,

obtaining:

(M/L)vir ∝ σ 0.82±0.07
e , (16)

(M/L)vir ∝ L0.27±0.04. (17)

Equations (16) and (17) have an observed rms scatter of 19 per cent

and 27 per cent, and are fully consistent with the FP determina-

tions in equations (15) and (14), respectively. The scatter in these

correlations of virial determinations is comparable to the scatter de-

rived using the full dynamical models and, as in that case, appears

dominated by the intrinsic scatter in M/L.

Finally, the most direct way of measuring the accuracy of the

homology assumption is to compare (M/L)vir with the M/L from

the dynamical models. The correlation is shown in Fig. 13 and has
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Figure 13. Comparison between the (M/L)vir = β Reσ
2
e/(L G) derived

from the virial assumption and the M/L obtained from the Schwarzschild

models. The values of (M/L)vir were scaled to match the dynamical M/L,

and the best-fitting factor is β = 5.0 ± 0.1. The solid line is a fit between

the two quantities, while the dotted line represents a one-to-one correlation.

the form

(M/L) ∝ (M/L)1.08±0.07
vir . (18)

The observed slope is consistent with the determination based

on the FP (Section 4.4), implying that both the structural and

the orbital non-homology contribution cannot represent more than

∼15 per cent of the FP tilt (neglecting possible selection effects in

our sample, which are very difficult to estimate). Contrary to all

correlations shown before, the scatter in this correlation is not influ-

enced by the errors in the distance, as both M/L estimates use the

same distance. Adopting an intrinsic accuracy of 6 per cent in the

M/L determinations (Section 4.1), the scatter in (M/L)vir required

to make χ 2/ν = 1 is 14 per cent. The correlation between the virial

and the Jeans estimates gives (M/L)Jeans ∝ (M/L)0.94±0.06
vir with very

similar scatter to the correlation (18).

Comparing the virial and Schwarzschild M/L estimates we can

provide a direct ‘calibration’ of the virial mass, and M/L estimator

(which are often used only in a relative sense):

(M/L)vir =
β Reσ

2
e

(L G)
. (19)

The best-fitting scaling factor is β = 5.0 ± 0.1. We can compare this

value with the predictions from simple dynamical models, as done

by a number of previous authors (e.g. Michard 1980). For this we

computed the theoretical predictions for β from spherical isotropic

models described by the Sérsic profile R1/n , for different values

of n. The computation was performed using high-accuracy MGE

fits to the Sérsic profiles, obtained with the routines of Cappellari

(2002). From the fitted MGE models, which reproduce the profiles

to better than 0.05 per cent, the projected σ values can be computed

with a single one-dimensional numerical integration. The projected

luminosity-weighted σ was then integrated within a circular aper-

ture of radius Re to compute σ e which is needed to determine the

scaling factor β. In the range n = 2–10 the predicted β parameter

is approximated to better than 3 per cent by the expression

β(n) = 8.87 − 0.831n + 0.0241n2. (20)

(cf. Bertin, Ciotti & Del Principe 2002). The precise value predicted

for a R1/4 profile is β = 5.953 [the value becomes β = 5.872 with a

BH of 0.14 per cent of the galaxy mass as in Häring & Rix (2004)],

while the observed value of β ≈ 5.0 would correspond to a Sérsic

index n ≈ 5.5. However, the predictions of equation (20) only apply

in an idealized situation and do not take into account the details

in which (M/L)vir is measured from real data and the fact that

galaxies are not simple one-component isotropic spherical systems.

From our extended photometry (Section 2.2) we measured the n

values for the 25 galaxies of our sample by fitting the observed

radial surface-brightness profiles. The derived Sérsic indices span

the whole range n = 2–10 and will be presented in a future paper.

From the observed variation in the profiles β should be expected to

vary by a factor of ∼2.5 according to the idealized spherical model.

In practice, we find no significant correlation (linear correlation

coefficient r ≈ −0.13) between the measured β [the value required

to make (M/L)Schw = β R e σ 2
e/(L G)] and the one predicted by

equation (20). This shows that the idealized model is not a useful

representation of reality and cannot be used to try to improve the

(M/L)vir estimates. An investigation of the interesting question of

why the β parameter appears so constant in real galaxies and with

realistic observing conditions goes beyond the scope of the present

paper.

The results of this section show that the simple virial estimate of

M/L, and correspondingly of galaxy mass, is virtually unbiased, in
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∼15 per cent of the observed tilt. For the more reliable correlations

involving σ , comparison of the virial prediction of equation (15) and

the modelling result of equation (7) indicates that non-homology can

account for at most ∼7 per cent of the tilt. Both relations consistently

imply that the FP tilt reflects essentially a real variation of the total

M/L in the central regions of galaxies, which can be due to vari-

ations in the galaxies’ stellar population and/or in the dark matter

fraction. A similar conclusion was reached by Lanzoni et al. (2004)

from general considerations about the observed scaling relations of

early-type galaxies. The comparison of this section, however, in-

volves uncertainties due to the fact that the tilt may depend on the

sample-selection criteria. To assess if this plays an important role

we perform in the next section a direct comparison of the virial

predictions for the M/L derived from our own galaxy sample.

4.5 Comparison with virial predictions of M/L

An alternative way to test the validity of the virial and homology

assumptions and their influence on the FP tilt is to compute the ‘ob-

served’ virial (M/L)vir ∝ R eσ
2
e/L and to compare it directly to the

M/L derived from the dynamical models. This has the advantage

that it can be performed on our own galaxies and does not involve

any choice of FP parameters or selection effects. We fitted the cor-

relations of (M/L)vir, in the I band, with σ and with luminosity,

obtaining:

(M/L)vir ∝ σ 0.82±0.07
e , (16)

(M/L)vir ∝ L0.27±0.04. (17)

Equations (16) and (17) have an observed rms scatter of 19 per cent

and 27 per cent, and are fully consistent with the FP determina-

tions in equations (15) and (14), respectively. The scatter in these

correlations of virial determinations is comparable to the scatter de-

rived using the full dynamical models and, as in that case, appears

dominated by the intrinsic scatter in M/L.

Finally, the most direct way of measuring the accuracy of the

homology assumption is to compare (M/L)vir with the M/L from

the dynamical models. The correlation is shown in Fig. 13 and has
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Figure 13. Comparison between the (M/L)vir = β Reσ
2
e/(L G) derived

from the virial assumption and the M/L obtained from the Schwarzschild

models. The values of (M/L)vir were scaled to match the dynamical M/L,

and the best-fitting factor is β = 5.0 ± 0.1. The solid line is a fit between

the two quantities, while the dotted line represents a one-to-one correlation.

the form

(M/L) ∝ (M/L)1.08±0.07
vir . (18)

The observed slope is consistent with the determination based

on the FP (Section 4.4), implying that both the structural and

the orbital non-homology contribution cannot represent more than

∼15 per cent of the FP tilt (neglecting possible selection effects in

our sample, which are very difficult to estimate). Contrary to all

correlations shown before, the scatter in this correlation is not influ-

enced by the errors in the distance, as both M/L estimates use the

same distance. Adopting an intrinsic accuracy of 6 per cent in the

M/L determinations (Section 4.1), the scatter in (M/L)vir required

to make χ 2/ν = 1 is 14 per cent. The correlation between the virial

and the Jeans estimates gives (M/L)Jeans ∝ (M/L)0.94±0.06
vir with very

similar scatter to the correlation (18).

Comparing the virial and Schwarzschild M/L estimates we can

provide a direct ‘calibration’ of the virial mass, and M/L estimator

(which are often used only in a relative sense):

(M/L)vir =
β Reσ

2
e

(L G)
. (19)

The best-fitting scaling factor is β = 5.0 ± 0.1. We can compare this

value with the predictions from simple dynamical models, as done

by a number of previous authors (e.g. Michard 1980). For this we

computed the theoretical predictions for β from spherical isotropic

models described by the Sérsic profile R1/n , for different values

of n. The computation was performed using high-accuracy MGE

fits to the Sérsic profiles, obtained with the routines of Cappellari

(2002). From the fitted MGE models, which reproduce the profiles

to better than 0.05 per cent, the projected σ values can be computed

with a single one-dimensional numerical integration. The projected

luminosity-weighted σ was then integrated within a circular aper-

ture of radius Re to compute σ e which is needed to determine the

scaling factor β. In the range n = 2–10 the predicted β parameter

is approximated to better than 3 per cent by the expression

β(n) = 8.87 − 0.831n + 0.0241n2. (20)

(cf. Bertin, Ciotti & Del Principe 2002). The precise value predicted

for a R1/4 profile is β = 5.953 [the value becomes β = 5.872 with a

BH of 0.14 per cent of the galaxy mass as in Häring & Rix (2004)],

while the observed value of β ≈ 5.0 would correspond to a Sérsic

index n ≈ 5.5. However, the predictions of equation (20) only apply

in an idealized situation and do not take into account the details

in which (M/L)vir is measured from real data and the fact that

galaxies are not simple one-component isotropic spherical systems.

From our extended photometry (Section 2.2) we measured the n

values for the 25 galaxies of our sample by fitting the observed

radial surface-brightness profiles. The derived Sérsic indices span

the whole range n = 2–10 and will be presented in a future paper.

From the observed variation in the profiles β should be expected to

vary by a factor of ∼2.5 according to the idealized spherical model.

In practice, we find no significant correlation (linear correlation

coefficient r ≈ −0.13) between the measured β [the value required

to make (M/L)Schw = β R e σ 2
e/(L G)] and the one predicted by

equation (20). This shows that the idealized model is not a useful

representation of reality and cannot be used to try to improve the

(M/L)vir estimates. An investigation of the interesting question of

why the β parameter appears so constant in real galaxies and with

realistic observing conditions goes beyond the scope of the present

paper.

The results of this section show that the simple virial estimate of

M/L, and correspondingly of galaxy mass, is virtually unbiased, in
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∼15 per cent of the observed tilt. For the more reliable correlations

involving σ , comparison of the virial prediction of equation (15) and

the modelling result of equation (7) indicates that non-homology can

account for at most ∼7 per cent of the tilt. Both relations consistently

imply that the FP tilt reflects essentially a real variation of the total

M/L in the central regions of galaxies, which can be due to vari-

ations in the galaxies’ stellar population and/or in the dark matter

fraction. A similar conclusion was reached by Lanzoni et al. (2004)

from general considerations about the observed scaling relations of

early-type galaxies. The comparison of this section, however, in-

volves uncertainties due to the fact that the tilt may depend on the

sample-selection criteria. To assess if this plays an important role

we perform in the next section a direct comparison of the virial

predictions for the M/L derived from our own galaxy sample.

4.5 Comparison with virial predictions of M/L

An alternative way to test the validity of the virial and homology

assumptions and their influence on the FP tilt is to compute the ‘ob-

served’ virial (M/L)vir ∝ R eσ
2
e/L and to compare it directly to the

M/L derived from the dynamical models. This has the advantage

that it can be performed on our own galaxies and does not involve

any choice of FP parameters or selection effects. We fitted the cor-

relations of (M/L)vir, in the I band, with σ and with luminosity,

obtaining:

(M/L)vir ∝ σ 0.82±0.07
e , (16)

(M/L)vir ∝ L0.27±0.04. (17)

Equations (16) and (17) have an observed rms scatter of 19 per cent

and 27 per cent, and are fully consistent with the FP determina-

tions in equations (15) and (14), respectively. The scatter in these

correlations of virial determinations is comparable to the scatter de-

rived using the full dynamical models and, as in that case, appears

dominated by the intrinsic scatter in M/L.

Finally, the most direct way of measuring the accuracy of the

homology assumption is to compare (M/L)vir with the M/L from

the dynamical models. The correlation is shown in Fig. 13 and has
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Figure 13. Comparison between the (M/L)vir = β Reσ
2
e/(L G) derived

from the virial assumption and the M/L obtained from the Schwarzschild

models. The values of (M/L)vir were scaled to match the dynamical M/L,

and the best-fitting factor is β = 5.0 ± 0.1. The solid line is a fit between

the two quantities, while the dotted line represents a one-to-one correlation.

the form

(M/L) ∝ (M/L)1.08±0.07
vir . (18)

The observed slope is consistent with the determination based

on the FP (Section 4.4), implying that both the structural and

the orbital non-homology contribution cannot represent more than

∼15 per cent of the FP tilt (neglecting possible selection effects in

our sample, which are very difficult to estimate). Contrary to all

correlations shown before, the scatter in this correlation is not influ-

enced by the errors in the distance, as both M/L estimates use the

same distance. Adopting an intrinsic accuracy of 6 per cent in the

M/L determinations (Section 4.1), the scatter in (M/L)vir required

to make χ 2/ν = 1 is 14 per cent. The correlation between the virial

and the Jeans estimates gives (M/L)Jeans ∝ (M/L)0.94±0.06
vir with very

similar scatter to the correlation (18).

Comparing the virial and Schwarzschild M/L estimates we can

provide a direct ‘calibration’ of the virial mass, and M/L estimator

(which are often used only in a relative sense):

(M/L)vir =
β Reσ

2
e

(L G)
. (19)

The best-fitting scaling factor is β = 5.0 ± 0.1. We can compare this

value with the predictions from simple dynamical models, as done

by a number of previous authors (e.g. Michard 1980). For this we

computed the theoretical predictions for β from spherical isotropic

models described by the Sérsic profile R1/n , for different values

of n. The computation was performed using high-accuracy MGE

fits to the Sérsic profiles, obtained with the routines of Cappellari

(2002). From the fitted MGE models, which reproduce the profiles

to better than 0.05 per cent, the projected σ values can be computed

with a single one-dimensional numerical integration. The projected

luminosity-weighted σ was then integrated within a circular aper-

ture of radius Re to compute σ e which is needed to determine the

scaling factor β. In the range n = 2–10 the predicted β parameter

is approximated to better than 3 per cent by the expression

β(n) = 8.87 − 0.831n + 0.0241n2. (20)

(cf. Bertin, Ciotti & Del Principe 2002). The precise value predicted

for a R1/4 profile is β = 5.953 [the value becomes β = 5.872 with a

BH of 0.14 per cent of the galaxy mass as in Häring & Rix (2004)],

while the observed value of β ≈ 5.0 would correspond to a Sérsic

index n ≈ 5.5. However, the predictions of equation (20) only apply

in an idealized situation and do not take into account the details

in which (M/L)vir is measured from real data and the fact that

galaxies are not simple one-component isotropic spherical systems.

From our extended photometry (Section 2.2) we measured the n

values for the 25 galaxies of our sample by fitting the observed

radial surface-brightness profiles. The derived Sérsic indices span

the whole range n = 2–10 and will be presented in a future paper.

From the observed variation in the profiles β should be expected to

vary by a factor of ∼2.5 according to the idealized spherical model.

In practice, we find no significant correlation (linear correlation

coefficient r ≈ −0.13) between the measured β [the value required

to make (M/L)Schw = β R e σ 2
e/(L G)] and the one predicted by

equation (20). This shows that the idealized model is not a useful

representation of reality and cannot be used to try to improve the

(M/L)vir estimates. An investigation of the interesting question of

why the β parameter appears so constant in real galaxies and with

realistic observing conditions goes beyond the scope of the present

paper.

The results of this section show that the simple virial estimate of

M/L, and correspondingly of galaxy mass, is virtually unbiased, in
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Table 5. Correlation between stellar and dynamical mass. The first two
columns give the radius within which the dynamical mass is estimated and
the slope of the velocity dispersion profile assumed to correct for aperture
effects.

Radius σ V profile ξ Slope Intercept Scatter

R50,r −0.040 7.14 0.783 ± 0.019 2.19 0.127
R50,r −0.060 6.98 0.785 ± 0.021 2.18 0.128
R50,r −0.066 7.02 0.786 ± 0.017 2.17 0.128
rdeV −0.040 5.00 0.808 ± 0.026 1.93 0.113

Figure 16. Relation between stellar mass and dynamical mass Mdyn esti-
mated within the r-band Petrosian half-light radius (see equation 2). Lines
of different colours represent the median relations in different bins of light-
weighted age, increasing from log(t r /yr) = 9.5 (purple) to 10.1 (yellow).
The ratio between stellar and dynamical mass decreases with mass, as high-
lighted by the comparison with the one-to-one relation (dashed line).

because the zero-point is sensitive to our assumptions about the
radius within which the dynamical mass is estimated, the conver-
sion factor between dynamical and virial masses, and the stellar
initial mass function (IMF; which we assume constant for all the
galaxies). A linear fit to the relation in Fig. 16 yields

(M∗/M⊙) ∝ (Mdyn/M⊙)(0.783±0.019) (3)

with a scatter of 0.13 dex. The specific correction applied to σ V has
little effect on the fitted slope. As a check, we tried steeper velocity
dispersion profiles, with slopes −0.06 (Mehlert et al. 2003) and
−0.066 (Cappellari et al. 2006). These yielded relations between
log M ∗ and log Mdyn with slopes 0.785 ± 0.021 and 0.786 ± 0.017,
respectively, i.e. consistent within 1σ with the slope of the relation
in Fig. 16. We also tested the effect of estimating the dynamical mass
within the effective de Vaucouleurs radius rdeV instead of R50,r. The
dynamical masses obtained in this case were systematically higher,
by ∼0.13 dex, than those derived within R50,r. The relation between
log M∗ and log M dyn had a slope of 0.808 ± 0.026, i.e. slightly higher
but consistent within 1σ with the slope of the relation in Fig. 16.
These results are summarized in Table 5.

A robust result from Fig. 16, therefore, is that the ratio between
dynamical mass and stellar mass increases from the least massive
to the most massive early-type galaxies in our sample. Structural
non-homology does not appear to be responsible for this effect. We
have built different subsamples of galaxies, based on the value of
the Sersic index n fitted to the light profile in the SDSS data base.

The slope of the relation between log M ∗ and log M dyn within each
subsample remains close to that of the relation in Fig. 16, changing
from 0.847 for n = 3 to 0.801 for n = 5.5 (a de Vaucouleurs profile
corresponding to n = 4). Instead, the decrease in M ∗/M dyn with
stellar mass in Fig. 16 is consistent with the increase in the dynam-
ical mass-to-light ratio (M dyn/L) of early-type galaxies implied by
the Fundamental Plane under the assumption of structural homology
(Bender, Burstein & Faber 1992; Pierini et al. 2002; Zibetti et al.
2002; see also Cappellari et al. 2006, where no assumption on ho-
mology is made). This is also consistent with the increase in M dyn/L
with luminosity found by Padmanabhan et al. (2004) for a sample
of 29 469 SDSS elliptical galaxies. The decrease of M ∗/M dyn with
stellar mass could result from a more efficient mixing of dark mat-
ter and stars within the optical radius of massive galaxies relative to
low-mass galaxies, as expected if the most massive early-type galax-
ies assembled through multiple mergers of dissipationless systems
(see for discussion White 1980; Boylan-Kochlin, Ma & Quataert
2005; Humphrey et al. 2005; De Lucia et al. 2006).

The trend in M ∗/M dyn with stellar mass shows a weak depen-
dence on galaxy light-weighted age. This is shown in Fig. 16,
where lines of different colours indicate the median stellar mass
as a function of dynamical mass for galaxies in various age bins,
from log(t r/yr) = 9.5 (purple) to 10.1 (yellow). Lines of constant
age run parallel to the relation and, in spite of the small scatter,
it appears that, at given dynamical mass, galaxies with more mass
in stars are younger than those with small stellar mass (see also
Fig. 15b). This weak trend cannot be accounted for entirely by
the larger amount of mass returned to the interstellar medium by
evolved stars in older galaxies relative to younger ones. For the
Chabrier (2003) IMF adopted here, the returned stellar mass frac-
tion of a simple stellar population increases by about 0.03 dex from
log(t r/yr) = 9.5 to 10 (with little dependence on metallicity; the dif-
ferential change is similar for a Salpeter 1955 IMF). This effect can
thus account for only about 10 per cent of the trend in M ∗/M dyn

with age in Fig. 16.14 The bulk of the trend might result from a
systematically higher baryonic fraction and/or higher efficiency of
conversion of baryons into stars in young early-type galaxies rela-
tive to old ones. For example, if many of our early types form by
a merger of star-forming systems, those which currently have the
youngest populations are presumably the most recently merged and
so spent the longest time in the star-forming phase.

We now examine in more detail how age, stellar metallicity and
α/Fe ratio depend on stellar and dynamical mass. This is shown in
Fig. 17 for the early-type galaxies in our primary sample (Table 4
provides simple linear fits to the relations shown in the figure). The
relations followed by age, metallicity and α/Fe ratio as a function of
stellar mass (right-hand panels) reflect the conclusions drawn from
our analysis of the CMR and Mg2–σ V relations in Sections 3.1
and 3.2. In particular, we find that light-weighted age increases
(with a small scatter) with stellar mass in galaxies more massive
than 1011 M⊙, while there is a clear indication of a tail towards
younger ages in less massive galaxies (Panel d; see also fig. 12 of
Paper I). This confirms the results of several previous studies of
smaller samples of early-type galaxies at low- and slightly higher
redshifts (e.g. Caldwell & Rose 1998; Poggianti et al. 2001b;
van Dokkum & Ellis 2003; Thomas et al. 2005; Treu et al. 2005).
Stellar metallicity increases all the way from the least massive to the
most massive galaxies in our sample (Panel e). The relation tends

14For example, at M dyn ∼ 1011 M⊙, stellar mass increases from
log M ∗/M⊙ ∼ 10.75 for log(t r /yr) = 10 to ∼10.9 for log(t r /yr) = 9.5.
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Table 5. Correlation between stellar and dynamical mass. The first two
columns give the radius within which the dynamical mass is estimated and
the slope of the velocity dispersion profile assumed to correct for aperture
effects.
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Figure 16. Relation between stellar mass and dynamical mass Mdyn esti-
mated within the r-band Petrosian half-light radius (see equation 2). Lines
of different colours represent the median relations in different bins of light-
weighted age, increasing from log(t r /yr) = 9.5 (purple) to 10.1 (yellow).
The ratio between stellar and dynamical mass decreases with mass, as high-
lighted by the comparison with the one-to-one relation (dashed line).

because the zero-point is sensitive to our assumptions about the
radius within which the dynamical mass is estimated, the conver-
sion factor between dynamical and virial masses, and the stellar
initial mass function (IMF; which we assume constant for all the
galaxies). A linear fit to the relation in Fig. 16 yields

(M∗/M⊙) ∝ (Mdyn/M⊙)(0.783±0.019) (3)

with a scatter of 0.13 dex. The specific correction applied to σ V has
little effect on the fitted slope. As a check, we tried steeper velocity
dispersion profiles, with slopes −0.06 (Mehlert et al. 2003) and
−0.066 (Cappellari et al. 2006). These yielded relations between
log M ∗ and log Mdyn with slopes 0.785 ± 0.021 and 0.786 ± 0.017,
respectively, i.e. consistent within 1σ with the slope of the relation
in Fig. 16. We also tested the effect of estimating the dynamical mass
within the effective de Vaucouleurs radius rdeV instead of R50,r. The
dynamical masses obtained in this case were systematically higher,
by ∼0.13 dex, than those derived within R50,r. The relation between
log M∗ and log M dyn had a slope of 0.808 ± 0.026, i.e. slightly higher
but consistent within 1σ with the slope of the relation in Fig. 16.
These results are summarized in Table 5.

A robust result from Fig. 16, therefore, is that the ratio between
dynamical mass and stellar mass increases from the least massive
to the most massive early-type galaxies in our sample. Structural
non-homology does not appear to be responsible for this effect. We
have built different subsamples of galaxies, based on the value of
the Sersic index n fitted to the light profile in the SDSS data base.

The slope of the relation between log M ∗ and log M dyn within each
subsample remains close to that of the relation in Fig. 16, changing
from 0.847 for n = 3 to 0.801 for n = 5.5 (a de Vaucouleurs profile
corresponding to n = 4). Instead, the decrease in M ∗/M dyn with
stellar mass in Fig. 16 is consistent with the increase in the dynam-
ical mass-to-light ratio (M dyn/L) of early-type galaxies implied by
the Fundamental Plane under the assumption of structural homology
(Bender, Burstein & Faber 1992; Pierini et al. 2002; Zibetti et al.
2002; see also Cappellari et al. 2006, where no assumption on ho-
mology is made). This is also consistent with the increase in M dyn/L
with luminosity found by Padmanabhan et al. (2004) for a sample
of 29 469 SDSS elliptical galaxies. The decrease of M ∗/M dyn with
stellar mass could result from a more efficient mixing of dark mat-
ter and stars within the optical radius of massive galaxies relative to
low-mass galaxies, as expected if the most massive early-type galax-
ies assembled through multiple mergers of dissipationless systems
(see for discussion White 1980; Boylan-Kochlin, Ma & Quataert
2005; Humphrey et al. 2005; De Lucia et al. 2006).

The trend in M ∗/M dyn with stellar mass shows a weak depen-
dence on galaxy light-weighted age. This is shown in Fig. 16,
where lines of different colours indicate the median stellar mass
as a function of dynamical mass for galaxies in various age bins,
from log(t r/yr) = 9.5 (purple) to 10.1 (yellow). Lines of constant
age run parallel to the relation and, in spite of the small scatter,
it appears that, at given dynamical mass, galaxies with more mass
in stars are younger than those with small stellar mass (see also
Fig. 15b). This weak trend cannot be accounted for entirely by
the larger amount of mass returned to the interstellar medium by
evolved stars in older galaxies relative to younger ones. For the
Chabrier (2003) IMF adopted here, the returned stellar mass frac-
tion of a simple stellar population increases by about 0.03 dex from
log(t r/yr) = 9.5 to 10 (with little dependence on metallicity; the dif-
ferential change is similar for a Salpeter 1955 IMF). This effect can
thus account for only about 10 per cent of the trend in M ∗/M dyn

with age in Fig. 16.14 The bulk of the trend might result from a
systematically higher baryonic fraction and/or higher efficiency of
conversion of baryons into stars in young early-type galaxies rela-
tive to old ones. For example, if many of our early types form by
a merger of star-forming systems, those which currently have the
youngest populations are presumably the most recently merged and
so spent the longest time in the star-forming phase.

We now examine in more detail how age, stellar metallicity and
α/Fe ratio depend on stellar and dynamical mass. This is shown in
Fig. 17 for the early-type galaxies in our primary sample (Table 4
provides simple linear fits to the relations shown in the figure). The
relations followed by age, metallicity and α/Fe ratio as a function of
stellar mass (right-hand panels) reflect the conclusions drawn from
our analysis of the CMR and Mg2–σ V relations in Sections 3.1
and 3.2. In particular, we find that light-weighted age increases
(with a small scatter) with stellar mass in galaxies more massive
than 1011 M⊙, while there is a clear indication of a tail towards
younger ages in less massive galaxies (Panel d; see also fig. 12 of
Paper I). This confirms the results of several previous studies of
smaller samples of early-type galaxies at low- and slightly higher
redshifts (e.g. Caldwell & Rose 1998; Poggianti et al. 2001b;
van Dokkum & Ellis 2003; Thomas et al. 2005; Treu et al. 2005).
Stellar metallicity increases all the way from the least massive to the
most massive galaxies in our sample (Panel e). The relation tends

14For example, at M dyn ∼ 1011 M⊙, stellar mass increases from
log M ∗/M⊙ ∼ 10.75 for log(t r /yr) = 10 to ∼10.9 for log(t r /yr) = 9.5.
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Figure 1 | Disentangling the stellar and dark mass with integral-field stellar kinematics. The top panels show the symmetrized SAURON stellar kinematics
Vrms =

√
V 2 + σ2 for five galaxies representing a variety of shapes of the kinematics fields, and spanning a range in (M/L)stars values. Here V is the mean

stellar velocity and σ is the stellar velocity dispersion. The middle panel is the best-fitting dynamical model10 with a standard11 dark halo (model b in Table 1). The
bottom panel is a dynamical model where the (M/L)stars was fixed to be 0.65 times the best-fitting one. Where this decrease in (M/L)stars represents the change
in mass between a Salpeter and Kroupa IMF. The other three model parameters, the galaxy inclination i, the orbital anisotropy βz and the halo total massM200, were
optimized to fit the data, but cannot provide an acceptable description of the observations. This plots shows that, for a standard halo profile, the data tightly constrain
both the dark matter fraction and (M/L)stars. The effect would be even more dramatic if we had assumed a more shallow inner halo profile. The contours show the
observed and modelled surface brightness respectively. The values of (M/L)stars and the fraction of dark matter within a sphere with radius equal to the projected
half-light radiusRe are printed next to each panel. The galaxy names are given at the top.
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Figure 2 | The systematic variation of the IMF in early-type galaxies. The six panels show the ratio between the (M/L)stars of the stellar component, determined
using dynamical models, and the (M/L)Salp of the stellar population, measured via stellar population models with a Salpeter IMF, as a function of (M/L)stars.
The black solid line is a loess smoothed version of the data. Colours indicate the galaxies’ stellar velocity dispersion σe, which is related to the galaxy mass. The
horizontal lines indicate the expected values for the ratio if the galaxy had (i) a Chabrier IMF (red dash-dotted line); (ii) a Kroupa IMF (green dashed line); (iii) a
Salpeter IMF (x = −2.3, solid magenta line) and two additional power-law IMFs with (iv) x = −2.8 and (v) x = −1.5 respectively (blue dotted line). Different
panels correspond to different assumptions for the dark matter halos employed in the dynamical models as written in the black titles. Details about the six sets of models
are given in Table 1. A clear curved relation is visible in all panels. Panels a, b and e look quite similar, as for all of them the dark matter contributes only a small
fraction (zero in a and a median of 12% in b and e) of the total mass inside a sphere with the projected size of the region where we have kinematics (about one projected
half-light radiusRe). Panel f with a fixed contracted halo, still shows the same IMF variation, but it is almost systematically lower by 35% in (M/L)stars reflecting
the increase in dark matter fraction. The two black thick ellipses plotted on top of the smooth relation in panel d show the representative 1σ error for one measurement
at the given locations. We excluded from the plot the galaxies with very young stellar population (selected as having Hβ > 2.3 Å absorption). These galaxies have
strong radial gradients in their population, which break our assumption of spatially constantM/L and makes both (M/L)Salp and (M/L)stars inaccurate.
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The fast-slow rotators dichotomy
✤ In the traditional classification of early-type galaxies, 

fast rotators are basically S0s, while slow rotators are 
true ellipticals

✤ most of early-type galaxies have a significant fraction 
of stars in discs

✤ Sérsic indices of bulges of early-type galaxies are 
often small (nb<3)

✤ fast (ordered) rotation is related to existence of discs, 

✤ slow rotators (ellipticals) actually have large Sérsic 
indices and often can not be decomposed into two 
components.

6 Eric Emsellem et al.

Figure 3. λRe versus ellipticity ϵe for all 260 ATLAS3D galaxies. The colour and size of the symbols are associated with the mass of each galaxy, as indicated
at the bottom right of the panel. The dotted magenta line show the edge-on view for ellipsoidal galaxies integrated up to infinity with β = 0.70 × ϵ, as in
C+07. The solid magenta line is the corresponding curve restricted to an aperture at 1 Re and for β = 0.65 × ϵ (see text for details). The black dashed lines
correspond to the location of galaxies with intrinsic ellipticities ϵintr = 0.85, 0.75, 0.65, 0.55, 0.45, 0.35 along the relation given for an aperture of 1 Re

with the viewing angle going from edge-on (on the relation) to face-on (towards the origin).

see Paper II), confirming the claim made in E+07 that most ETGs
with low λR values have KDCs.

3.2 ATLAS3D galaxies in a λR-ϵ diagram

The combination of the measured λRe values with the apparent flat-
tening ϵe holds important clues pertaining to the intrinsic morphol-
ogy and dynamics of ETGs, as shown in E+07. In Fig. 3, we provide
a first glimpse at the distribution of galaxies in such a λR-ϵ diagram
for an aperture radius of 1 Re.

A more standard approach includes the use of (V/σ) as a
probe for the stellar kinematics of galaxies. In C+07, it has been
shown that there seems to be a broad trend between the anisotropy
of ETGs, parameterized1 with β, and their intrinsic (edge-on) el-
lipticity ϵintr . Fast rotators were found to be generally distributed

1 β is the anisotropy parameter simply defined as 1− σ2
z/σ

2
R for a steady-

state system where σR,z are the cylindrical components of the stellar veloc-
ity dispersion.

on the (V/σ)-ϵ diagram within the envelope traced by the edge-
on relation β = 0.7 × ϵintr (from the analytic formula of Binney
(2005)) and by its variation with inclination (Fig. 11 of C+07). This
analytic relation is nearly identical to the one β = 0.65, which in-
cludes aperture integration within 1 Re (Appendix B). Since V/σ
and λR of simple ellipsoidal systems (with constant anisotropy) can
be linked via a relatively simple formula (see Appendix B), we can
translate these β-ϵintr relations for λR and provide the correspond-
ing curves in a λR-ϵ diagram. These relations are shown in Fig. 3
for edge-on galaxies (dashed and solid magenta lines) as well as
the effect of inclination (dashed black lines, only for the relation
integrated within 1 Re).

We first confirm that most of the galaxies with λRe values sig-
nificantly above 0.1 are located above (or at the left) of the magenta
line in Fig. 3. The dashed line at ϵintr = 0.85 also provides a con-
venient upper envelope of the galaxies in our sample. This beauti-
fully confirms the predictions made in C+07, using only a small set
of targets, and reveals important characteristics of the internal state
of early-type galaxies, which will be further discussed in Sect. 5.1.

The majority of galaxies above the magenta line are consis-
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we associate the ”aperture” radiiR: for a given elliptical aperture or
isophote with an areaA,R is defined as the radius of the circle hav-
ing the same area A = πR2. These profiles (curves of growth) are
then interpolated to obtain parameter values at e.g., one (or half)
an effective radius Re (provided in Table 5 of Paper I). To build
diagrams together with quantities derived via the SAURON integral-
field data (see next Section), we use ellipse and position angle pro-
files provided by the photometry and limit the aperture radiusR to a
maximum value RS : it is the minimum between the considered ra-
dius (e.g., 1 Re) and the radius Rmax for which the corresponding
ellipse differs in area not more than 15% from the actual field cov-
erage provided by our spectrographic data, with the ellipse itself
lying at least 75% within that field of view. This guarantees that
we have both a good coverage in area (85%) and that the SAURON
spaxels reach sufficiently far out with respect to the borders of the
considered aperture. Changing these criteria only affects the mea-
sured aperture values for a few systems, and does not modify the
global results presented here. These radial profiles were extracted
from the available ground-based data. For most of the galaxies, we
relied on the green g band, close to the wavelength range covered
with the SAURON datacubes. For only a few galaxies, when the g
band data was not available or of poor quality, we instead relied
on the red r band or even on the SAURON images reconstructed di-
rectly from the datacubes: the data used for each individual galaxy
is indicated in Table B1.

A number of galaxies in our sample exhibit strong bars
(e.g. NGC 936, NGC 6548, see Krajnović et al. 2011, hereafter
Paper II). When the galaxy is viewed at rather low inclination
(close to face-on), the bar strongly influences the measured position
angle (as well as the ellipticity), implying a strong misalignment
between the photometric and kinematic major-axes. The (stellar)
kinematic major-axis is an excellent indicator of the line of nodes
of a disc galaxy, even when the galaxy hosts a relatively strong
bar, and this kinematic axis generally coincides with the outer
photometric major-axis outside the bar, where the light distribution
is dominated by a disc. The measured flattening does however
not properly reflect the instrinsic flattening of the galaxy when
measured in the region of the bar. In galaxies with obvious bars,
such as NGC936, NGC 3400, NGC3412, NGC3599, NGC3757,
NGC3941, NGC4262, NGC4267, NGC4477, NGC4608,
NGC4624, NGC4733, NGC4754, NGC5473, NGC5770,
NGC6548, UGC 6062, we therefore use the global kinematic
position angle, as derived from the two-dimensional SAURON
stellar kinematics, with the moment ellipticity value from the outer
parts of the galaxy (outside the region influenced by the bar; values
provided in Paper II), both for the derivation of e.g., λR, and for all
plots of the present paper.

2.2 The SAURON data

The SAURON integral-field spectrograph (Integral Field Unit, here-
after IFU) has been extensively used at the Cassegrain focus of the
WilliamHerschel Telescope since 1999 (Bacon et al. 2001). All ob-
servations were conducted using the low spatial resolution mode
which provides a field of view of about 33′′×41′′and a spatial sam-
pling of 0.′′94×0.′′94. The narrow spectral range allows the user to
probe a few stellar absorption and ionised gas emission lines with a
spectral resolution of about 4 Angströms (FWHM).

All data reduction was performed using the dedicated
XSauron software wrapped in a scripted pipeline. A set of 64
galaxies included in the ATLAS3D sample were observed prior
to the mounting of the volume phase holographic (VPH) grat-

Figure 1. Histogram of the maximum aperture radius Rmax covered by the
SAURON observations of all 260 ATLAS3D galaxies (normalised by Re).
The red line shows the corresponding cumulative function (right vertical
scale) for galaxies with R > Rmax: we cover about 92%, 43% and 18% at
Re/2,Re and 1.5 Re, respectively, as indicated by the vertical/horizonthal
(dashed/dotted) lines.

ing (mostly from the original SAURON survey, see de Zeeuw et al.
2002, for details). For these galaxies, we obtained an average of 2
hours on source sometimes following a mosaicing strategy to cover
the targets with the largest effective radii. The spectral resolution at-
tained for these galaxies is about 4.2 Angströms FWHM. For most
of the 196 remaining targets, we integrated 1 hour on source centred
on the object, including two (slightly dithered) 30mns exposures:
only when the source was extended did we allow for a mosaic of
2 fields to attempt to fully cover the region within 1 Re, with two
30mns exposure for each field. The orientation of the SAURON field
was adapted to each target to optimise the coverage of the galaxy
taking into account its apparent photometric flattening. The spectral
resolution attained for these 196 galaxies is about 10% better (due
to the use of the VPH grating) and reaches 3.9 Angströms FWHM.

The 260 final merged datacubes (with 0.′′8×0.′′8 re-
binned spaxels) were then analysed using a common analy-
sis pipeline, and using a minimum signal-to-noise threshold of
40 for the adaptive binning (Cappellari & Copin 2003). Gas
and stellar kinematics were extracted via a pPXF algorithm
(Cappellari & Emsellem 2004) with a library of stellar templates
as in Emsellem et al. (2004), but adopting here the MILES li-
brary (Sánchez-Blázquez et al. 2006) and an optimised template per
galaxy (see Paper I for details).

We derived λR and V/σ from growing effective apertures, as
in E+07, following the ellipticity and position angle profiles ob-
tained from the photometry, or from the constant values (kinemetric
axes and moment ellipticity from the outer part) for galaxies with
obvious bars (see Sect. 2.1). Using two-dimensional spectroscopy,
the expression for λR as given by:

λR ≡ ⟨R |V |⟩
⟨R

√
V 2 + σ2⟩

, (1)

transforms into

λR =

∑Np

i=1 FiRi |Vi|
∑Np

i=1 FiRi

√

V 2
i + σ2

i

, (2)

where Fi, Ri, Vi and σi are the flux, circular radius, velocity and
velocity dispersion of the ith spatial bin, the sum running on theNp

bins. Considering the signal-to-noise threshold used here, we expect
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fast rotators are basically S0s, while slow rotators are 
true ellipticals

✤ most of early-type galaxies have a significant fraction 
of stars in discs

✤ Sérsic indices of bulges of early-type galaxies are 
often small (nb<3)

✤ fast (ordered) rotation is related to existence of discs, 
✤ slow rotators (ellipticals) actually have large Sérsic 

indices and often can not be decomposed into two 
components.

16 Eric Emsellem et al.

Figure 16. λRe versus apparent ellipticity ϵe within 1 Re with symbols
as in the bottom panel of Fig. 15. The blue and red filled coloured areas
show the region where 1:1 and 2:1 merger remnants lie from the study of
Bois et al. (2011): the red area corresponds to the merger remnants with a
retrograde main progenitor (w.r.t. the orbital angular momentum) while the
blue area corresponds to a prograde main progenitor. The green lines show
the limit between Slow and Fast Rotators and the magenta line is as in Fig. 7.

5.3 Early-type galaxy formation and assembly processes

Various physical processes often invoked for the formation and as-
sembly of galaxies can contribute to or influence the specific angu-
lar momentum of the central stellar component of early-type galax-
ies, and consequently the measured λR value, and we briefly review
these here in the context of the classification of ETGs into Fast and
Slow Rotators.

Dissipative processes followed by star formation should gen-
erally help preserving (or rebuiding) stellar rotation in galaxies (see
e.g., an early discussion in the context of early-type galaxies in
Bender et al. 1992). Accretion of gas from external sources, either
via the large-scale filaments (e.g. Sancisi et al. 2008; Dekel et al.
2009; Khochfar & Silk 2009) or extracted by tidal forces from a
gas-rich galaxy passing by, thus contribute to an increase of λR if
the gas is co-rotating with the main existing stellar component, as-
suming that this additional gas forms stars. This could also be a way
for galaxies to rebuild a fast rotating disc-like component. Such a
process should preferentially occur in gas-rich environments, e.g.,
at high redshifts (z larger than about 2) and/or in low-density re-
gions, disfavouring for instance the inner regions of dense clusters
at moderate to low redshifts. An extreme version of such a mech-
anism is the case of very high gas fractions in disc-like objects,
expected to be relevant mostly at high redshift: in such a situa-
tion, strong instabilities lead the galaxy to become ”clumpy”, with
massive gas clouds forming stars and evolving as a N -body sys-
tem with low N (see e.g. Elmegreen et al. 2008, 2009). Evolving
in relative isolation, such a system can end up as a disc galaxy (a
Fast Rotator, e.g. Bournaud et al. 2008) where the contribution of
its spheroidal component varies depending on the exact initial con-
ditions (gas fraction, spatial distribution, angular momentum).

Subsequent evolution due to disc instabilities, spiral den-
sity waves and bars, will tend to heat the stellar component
(Sellwood & Binney 2002; Debattista et al. 2006; Sales et al. 2009;
Minchev & Famaey 2010), and decrease λR accordingly, but the
global stellar angular momentum of Fast Rotators should not
change dramatically because of such secular evolution processes.

Such perturbations could, however, be a trigger for inner gas fu-
elling then leading to the formation of a central rapidly rotating
stellar component (e.g. Wozniak et al. 2003). Similarly, gas strip-
ping from a galaxy, if done in a nearly adiabatic way, should not
change λR too drastically, even though the system would morpho-
logically and dynamically evolve on a relaxation timescale and this
may affect the morphology and dynamics of its central region. This
should also concern ram pressure stripping (Gunn & Gott 1972;
Quilis, Moore, & Bower 2000; Rasmussen, Ponman, & Mulchaey
2006), or AGN feedback if the major effect remains focused on the
gas component.

For a disc-like (spiral) galaxy to become a Slow Rotator,
numerical simulations have suggested that it needs to accrete at
least half of its stellar mass via mergers (Bournaud et al. 2007;
Jesseit et al. 2009; Bois et al. 2010; Bois et al. 2011). As the or-
bital angular momentum for a (binary) merger event is often the
main contributor (Khochfar & Burkert 2006), major mergers can
form Fast Rotators (Bois et al. (2011), hereafter Paper VI; and see
also Springel & Hernquist (2005)) even from slowly rotating galaxy
progenitors (Di Matteo et al. 2009), the outer structure being gen-
erally more significantly affected (Coccato et al. 2009). Numerical
studies show anyway that, among binary mergers, only major 1:1 or
2:1 mergers can form Slow Rotators, as it requires enough baryonic
angular momentum to be transfered outwards (see Paper VI for de-
tails). We illustrate this by indicating where the 1:1 and 2:1 major
merger remnants (including gas and star formation) conducted in
Paper VI lie in a λR-ϵ diagram in Fig. 16, assuming that the progen-
itors were spiral galaxies which have λR values close to the maxi-
mum value observed for our sample of early-type galaxies. There is
a clear separation between the merger remnants which are Slow and
Fast Rotators: this corresponds to an initially different sign of the
spin of the more early-type progenitor (Paper VI) with respect to
the orbital angular momentum as illustrated by the red and blue ar-
eas (corresponding to retrograde and prograde spins, respectively)
in Fig. 16. Although such a distinction may be damped if we more
broadly sample the input parameters for the progenitors (including
their mass ratios) or include more realistic merger trees, the crite-
rion defined here to separate Fast and Slow Rotators seems to prop-
erly distinguish two families of galaxies: the merger remnants in Pa-
per VI which are Fast Rotators all have regular velocity fields with
small photometric versus kinematic misalignments, while most of
the remnants which are Slow Rotators have kpc-size KDCs (see also
van den Bosch et al. 2008; Hoffman et al. 2010, Paper VI), and are
spread over a wide range of misalignment angle values.

In a similar context, “2σ” galaxies (10 in our sample, 4 of
which are Slow Rotators) clearly stand out in an ϵ-Mass diagram
within the Slow Rotator class (see Fig. 11), and such systems
could be formed when two spiral galaxies with (roughly) opposed
spins merge (Crocker et al. 2009). Another scenario relies on the
accretion of external and counter-rotating gas in a spiral galaxy
(Rubin et al. 1992). Crocker et al. (2009) recently suggested that
the sense of rotation of the remnant gas component could indi-
cate which scenario is preferred: associated with the thicker com-
ponent for the merger scenario, or with the thinner component for
the accretion scenario. In the prototype galaxy NGC4550, the gas
rotates with the thicker stellar disc, favouring a merger event. How-
ever, other 2σ galaxies seem to show various configurations for the
gas. We should also examine more cautiously a broader range of
mergers forming such systems, as well as simulate the accretion
of counter-rotating gas, before we can go further and constrain the
main formation process involved here. In any case, such Slow Ro-
tators very probably require an existing cold, spiral-like progenitor
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we associate the ”aperture” radiiR: for a given elliptical aperture or
isophote with an areaA,R is defined as the radius of the circle hav-
ing the same area A = πR2. These profiles (curves of growth) are
then interpolated to obtain parameter values at e.g., one (or half)
an effective radius Re (provided in Table 5 of Paper I). To build
diagrams together with quantities derived via the SAURON integral-
field data (see next Section), we use ellipse and position angle pro-
files provided by the photometry and limit the aperture radiusR to a
maximum value RS : it is the minimum between the considered ra-
dius (e.g., 1 Re) and the radius Rmax for which the corresponding
ellipse differs in area not more than 15% from the actual field cov-
erage provided by our spectrographic data, with the ellipse itself
lying at least 75% within that field of view. This guarantees that
we have both a good coverage in area (85%) and that the SAURON
spaxels reach sufficiently far out with respect to the borders of the
considered aperture. Changing these criteria only affects the mea-
sured aperture values for a few systems, and does not modify the
global results presented here. These radial profiles were extracted
from the available ground-based data. For most of the galaxies, we
relied on the green g band, close to the wavelength range covered
with the SAURON datacubes. For only a few galaxies, when the g
band data was not available or of poor quality, we instead relied
on the red r band or even on the SAURON images reconstructed di-
rectly from the datacubes: the data used for each individual galaxy
is indicated in Table B1.

A number of galaxies in our sample exhibit strong bars
(e.g. NGC 936, NGC 6548, see Krajnović et al. 2011, hereafter
Paper II). When the galaxy is viewed at rather low inclination
(close to face-on), the bar strongly influences the measured position
angle (as well as the ellipticity), implying a strong misalignment
between the photometric and kinematic major-axes. The (stellar)
kinematic major-axis is an excellent indicator of the line of nodes
of a disc galaxy, even when the galaxy hosts a relatively strong
bar, and this kinematic axis generally coincides with the outer
photometric major-axis outside the bar, where the light distribution
is dominated by a disc. The measured flattening does however
not properly reflect the instrinsic flattening of the galaxy when
measured in the region of the bar. In galaxies with obvious bars,
such as NGC936, NGC 3400, NGC3412, NGC3599, NGC3757,
NGC3941, NGC4262, NGC4267, NGC4477, NGC4608,
NGC4624, NGC4733, NGC4754, NGC5473, NGC5770,
NGC6548, UGC 6062, we therefore use the global kinematic
position angle, as derived from the two-dimensional SAURON
stellar kinematics, with the moment ellipticity value from the outer
parts of the galaxy (outside the region influenced by the bar; values
provided in Paper II), both for the derivation of e.g., λR, and for all
plots of the present paper.

2.2 The SAURON data

The SAURON integral-field spectrograph (Integral Field Unit, here-
after IFU) has been extensively used at the Cassegrain focus of the
WilliamHerschel Telescope since 1999 (Bacon et al. 2001). All ob-
servations were conducted using the low spatial resolution mode
which provides a field of view of about 33′′×41′′and a spatial sam-
pling of 0.′′94×0.′′94. The narrow spectral range allows the user to
probe a few stellar absorption and ionised gas emission lines with a
spectral resolution of about 4 Angströms (FWHM).

All data reduction was performed using the dedicated
XSauron software wrapped in a scripted pipeline. A set of 64
galaxies included in the ATLAS3D sample were observed prior
to the mounting of the volume phase holographic (VPH) grat-

Figure 1. Histogram of the maximum aperture radius Rmax covered by the
SAURON observations of all 260 ATLAS3D galaxies (normalised by Re).
The red line shows the corresponding cumulative function (right vertical
scale) for galaxies with R > Rmax: we cover about 92%, 43% and 18% at
Re/2,Re and 1.5 Re, respectively, as indicated by the vertical/horizonthal
(dashed/dotted) lines.

ing (mostly from the original SAURON survey, see de Zeeuw et al.
2002, for details). For these galaxies, we obtained an average of 2
hours on source sometimes following a mosaicing strategy to cover
the targets with the largest effective radii. The spectral resolution at-
tained for these galaxies is about 4.2 Angströms FWHM. For most
of the 196 remaining targets, we integrated 1 hour on source centred
on the object, including two (slightly dithered) 30mns exposures:
only when the source was extended did we allow for a mosaic of
2 fields to attempt to fully cover the region within 1 Re, with two
30mns exposure for each field. The orientation of the SAURON field
was adapted to each target to optimise the coverage of the galaxy
taking into account its apparent photometric flattening. The spectral
resolution attained for these 196 galaxies is about 10% better (due
to the use of the VPH grating) and reaches 3.9 Angströms FWHM.

The 260 final merged datacubes (with 0.′′8×0.′′8 re-
binned spaxels) were then analysed using a common analy-
sis pipeline, and using a minimum signal-to-noise threshold of
40 for the adaptive binning (Cappellari & Copin 2003). Gas
and stellar kinematics were extracted via a pPXF algorithm
(Cappellari & Emsellem 2004) with a library of stellar templates
as in Emsellem et al. (2004), but adopting here the MILES li-
brary (Sánchez-Blázquez et al. 2006) and an optimised template per
galaxy (see Paper I for details).

We derived λR and V/σ from growing effective apertures, as
in E+07, following the ellipticity and position angle profiles ob-
tained from the photometry, or from the constant values (kinemetric
axes and moment ellipticity from the outer part) for galaxies with
obvious bars (see Sect. 2.1). Using two-dimensional spectroscopy,
the expression for λR as given by:

λR ≡ ⟨R |V |⟩
⟨R

√
V 2 + σ2⟩

, (1)

transforms into

λR =

∑Np

i=1 FiRi |Vi|
∑Np

i=1 FiRi

√

V 2
i + σ2

i

, (2)

where Fi, Ri, Vi and σi are the flux, circular radius, velocity and
velocity dispersion of the ith spatial bin, the sum running on theNp

bins. Considering the signal-to-noise threshold used here, we expect
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λR versus ϵ for ATLAS3D galaxies. Barred galaxies not used 
for the decomposition are shown as small dots for 
completeness. Left: symbols represent Sérsic indices as 
shown in the legend, while colour coding quantifies the D/T 
ratio, as shown on the colour bar under the diagram. Right: 
symbols show different types of kinematics from Paper II and 
are described in the legend: (a) non-rotating galaxies, (b) 
featureless non-regular rotators, (c) KDC, (d) 2σ and (e) 
regular rotators. Colours again quantify D/T ratios, as shown 
on the colour bar, but now we also highlight those galaxies 
which do not have an exponential component, but have nb < 
3 (purple). The green line separates slow (below the line) 
from fast (above the line) rotators (Paper III). The dashed 
magenta line shows the edge-on view for ellipsoidal galaxies 
with anisotropy β = 0.7ϵ, from Cappellari et al. (2007).
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Kinematically decoupled components

✤ Indication of some “dramatic event”:

✤ accretion of gas with different angular momentum

✤ mergers
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Orbital decompositions for a general galaxy sample

✤ Cold=circular, 
disk

✤ Warm=short-
axis tube

✤ Hot=box and 
long-axis tube

Zhu et al. (Nature Astronomy, 2017 in press,
from CALIFA)


