

Lecture XII: Active Galactic Nuclei (AGN) Physical properties and relations with host galaxies

With slides taken and/or adapted from Bradley Peterson's "Brera Lectures" 2011

http://ned.ipac.caltech.edu/level5/March11/Peterson/

Astrophysics of Galaxies 2019-2020

Stefano Zibetti - INAF Osservatorio Astrofisico di Arcetri

Active Galactic Nuclei (AGN)

- * "...energetic phenomena in the nuclei, or central regions, of galaxies which cannot be attributed clearly and directly to stars." Peterson 1997, An Introduction to Active Galactic Nuclei
- Modern definition: "Active nuclei are those that emit radiation that is fundamentally powered by accretion onto supermassive (> 10⁶ M_☉) black holes."
- Properties (not all in all AGN):
 - Strong X-ray emission
 - Non-stellar UV-optical continuum
 - Relatively strong radio emission
 - * UV-through-NIR spectrum dominated by strong (broad) emission lines

^{*} LINERs?

* QSOs (Quasi Stellar Objects): like Quasars but radio quiet

UV-opt-NIR spectra of Seyferts (AGNs) Type-1 vs Type-2

- * Broad permitted lines (1000< FWHM/(km s⁻¹)< 25000)
- Narrow forbidden lines

Only narrow forbidden lines

- Low-Ionization Nuclear Emission Region:
 - Lower ionization levels than in Sy2
- LINER emission is often found to be very diffuse rather than nuclear: LIERs? (Singh et al. 2013, CALIFA)
 - Possibly powered by evolved stars rather than SMBH

BL Lac / Blazars

- * Similar to quasars, but no emission lines
- Quasars seen along the jet axis??

The AGN "unified model"

- Black hole plus accretion disk
- Broad-line region
- Narrow-line region
- Dusty "obscuringtorus"
- Jets (optional?)

Urry & Padovani 1995

Central engine: 1. not stars!

Must be small: limits on size from variability

$$\Delta t \sim 10^4 s \Rightarrow R \leq c\Delta t \sim 3 \times 10^{12} m \sim 10^{-4} pc \sim 20 AU$$

Must be efficient in converting mass to energy

* Cannot be stars:
$$L = \frac{\varepsilon f \, M_{\star} \, c^2}{\Delta t}$$

f fraction of mass burnt~10% ϵ nuclear fusion efficiency~0.7% stars lifetime: Δt ~107 yr

To get 10⁴⁵ erg s⁻¹ it would imply at least 10⁸ M_☉ of stars in 10⁻⁴ pc, i.e.

Central engine: 2. SuperMassive Black Hole

- The Eddington Luminosity argument
 - * Self-gravity must exceed radiation pressure, thus posing a lower limit to the mass of the central engine
 - For a moderately luminous Seyfert galaxy with L~10⁴⁴ erg s⁻¹,
 M>10⁶ M_☉
- * Energy from infall of matter onto a BH in a stable accreting disk if produced with ~10% efficiency
- * This makes much more energy available than nuclear fusion (0.7%)

Eddington Luminosity Limit

Energy flux

$$F = \frac{L}{4\pi r^2}$$

Momentum flux

$$P_{\rm rad} = \frac{F}{c} = \frac{L}{4\pi r^2 c}$$

Force due to radiation

$$F_{\rm rad} = P_{\rm rad} \sigma_e = \frac{L\sigma_e}{4\pi r^2 c}$$

This must be less than gravity

$$\frac{L\sigma_e}{4\pi r^2 c} < \frac{GMm}{r^2}$$

$$L < \frac{4\pi Gcm}{\sigma_e} M \approx 1.26 \times 10^{38} \left(\frac{M}{M_{\odot}}\right) \text{ergs s}^{-1}$$

"The Eddington Limit"

Available energy

- Potential energy of infalling mass m is converted to radiant energy with some efficiency η so $E = η mc^2$
- Potential energy is $U = GM_{BH}m/r$
- Energy dissipated at ~10 R_g where R_g = $GM_{\rm BH}$ / c^2 (to be shown)
- Available energy:

$$U = \frac{GM_{\rm BH}m}{10R_{\rm g}} = 0.1 \frac{GM_{\rm BH}m}{GM_{\rm BH}/c^2} = 0.1mc^2$$

– Thus the efficiency of accretion $\eta \approx 0.1$

Compare to hydrogen fusion 4H \rightarrow He with η = 0.007

Eddington Rate

- Accretion rate
 necessary to attain
 Eddington
 luminosity is the
 maximum possible
- Eddington rate is ratio of actual accretion rate to maximum possible

necessary to attain
$$\dot{M}_{\rm Edd} = \frac{L_{\rm Edd}}{\eta c^2} = \frac{1.47 \times 10^{17}}{\eta} \left(\frac{M_{\rm BH}}{M_{\odot}}\right) {\rm gm\ s^{-1}}$$

$$\dot{m} \equiv \lambda = \dot{M} / \dot{M}_{\rm Edd}$$

Temperature of the engine

- Dissipation of energy as matter "decays" to lower and lower orbits in the accretion disk
- Dimensional analysis:
 - Approximate Luminosity with black-body radiance

$$L = \frac{GM_{\rm BH}\dot{M}}{2r} = 2\pi r^2 \sigma T^4$$

$$T(r) \approx 3.7 \times 10^5 \,\dot{m}^{1/4} \left(\frac{M_{BH}}{10^8 M_{\odot}}\right)^{-1/4} \left(\frac{r}{R_{\rm g}}\right)^{-3/4} \,\mathrm{K}$$

The AGN "unified model"

- Black hole plus accretion disk
- Broad-line region
- Narrow-line region
- Dusty "obscuringtorus"
- Jets (optional?)

Urry & Padovani 1995

The Broad-Line Region

- UV, optical, and IR permitted lines have broad components
 - $-1000 \le FWHM \le 25,000 \text{ km s}^{-1}$
 - Spectra are typical of photoionized gases at T ≈ 10⁴ K
 - Absence of forbidden lines implies high density
 - C III] $\lambda 1909 \Rightarrow$ $n_{\rm e} < 10^{10} \, {\rm cm}^{-3}$

Self-similarity of BLRs

BLR Scaling with Luminosity

 To first order, AGN spectra look the same:

$$U = \frac{Q(\mathrm{H})}{4\pi r^2 n_{\mathrm{H}} c} \propto \frac{L}{n_{\mathrm{H}} r^2}$$

SDSS composites. Vanden Berk et al. (2004)

- ⇒ Same ionization parameter
- \Rightarrow Same density

$$r \propto L^{1/2}$$

Bentz et al. (2009)

Exception:
Baldwin effect
— CIV λ1549
is weaker in
more luminous
objects—
unknown
origin

The Narrow-Line Region

- $200 < FWHM < 1000 km s^{-1}$
- Partially resolvable in nearby AGNs
- In form of "ionization cones"

Falcke, Wilson, & Simpson 1998

NLR Spectra characterized by very high ionization lines

NLR diagnostics

- * Forbidden lines: properly apply photoionisation models and line diagnostics (T_e, n_e), no selfabsorption
- Kinematics
- Possible interpretation problems with dust

Why jets?

- * High spin + conservation of the magnetic flux results in strong B fields, which "guide" accelerated particles
- * Note that jets are common but apparently not mandatory

The "Obscuring Torus"

- The answer to the question: "why don't Seyfert 2s have broad lines?"
- Osterbrock (1978)
 suggested this since a
 simple absorbing
 medium would:
 - Redden the continuum
 - Completely obscure the continuum as well as the BLR

The "Obscuring Torus"

- The key to making this work is scattering by material in the throat of the torus.
 - Prediction: scattering introduces polarization, with E vector perpendicular to axis

Spectropolarimetry of Seyfert 2 Galaxies

Spectropolarimetry
 of the nuclei of Type
 2 Seyferts shows
 Type 1 spectra in
 polarized light, as
 predicted.

Summary of the AGN unified model

- Black Hole in the center: $M_{BH} \sim 10^6 \dots 10^{10} M_{\odot}$.
- Accretion disk extending to $\sim 100-1000R_S$, that is emitting radiation in the X-ray, EUV, UV, ... optical and TeV.
- ▶ Broad line region: Clouds of thick gas $(n_e \simeq 10^9 10^{10} cm^{-3})$ that are moving with $v_{BLR} \lesssim 10^4 \frac{km}{s}$ around the black hole and extend to $\sim 0.1 \dots 1pc$. Emission of broad allowed lines.
- Narrow line region: Clouds of thin gas $(n_e \lesssim 10^5 cm^{-3})$ that are moving with $v_{NLR} \simeq 10^2 10^3 \frac{km}{s}$ around the black hole and extend to some pc. Emission of narrow allowed and forbidden lines.
- Dust/molecular torus with inner radius: $\sim 1pc$ and outer radius: $\sim 50-100pc$ produces IR mm emission.
- Jets: Synchrotron radiation over the whole spectrum on scales from $0.1-10^6 pc$.

Credits: Ralf Bender's IMPRS course

Seyfert-2 nuclei vs "normal" galaxies

Use line-ratio
 diagrams to
 distinguish
 different
 ionization sources

SuperMassive Black Holes: mass

- Discrete dynamical tracers:
 - Stars (MW): optical/NIR highresolution observations over long time
 - * H₂O megamasers in the keplerian disk surrounding the BH: precise radial velocities and position with radio interferometry handful of SMBH
- * Virial methods: $M_{\rm BH} \propto \frac{\Lambda}{2}$

- Reverberation maps ("direct" method)
- Indirect methods based on calibrated scaling relations

Reverberation Maps (RM)

- Time variability of the luminosity of the central ionising source
- * BLR are illuminated by the ionising flux with the time delay corresponding to the light travel time *R*/*c*
- Broad lines are emitted and reach the observer with a time lag corresponding to the time delay *R/c* plus the recombination time scale (<< 1 sec, typically) and a Δt depending on the different path to the observer (also of the order of *R/c*)

Observed Response of an Emission Line

The relationship between the continuum and emission can be taken to be:

$$L(V,t) = \int_{-\infty}^{\infty} \Psi(V,\tau) \, C(t-\tau) \, d\tau$$
 Emission-line light curve Delay Map" Light Curve

Velocity-delay map is observed line response to a δ -function outburst

Simple velocity-delay map

Reverberation Mapping

- * First order approximation: the light curve of emission lines lags behind the light curve of the continuum by $\sim R/c$, where R is the "characteristic" distance of the line-emitting regions to the central source of ionising continuum
- Use cross-correlation to precisely determine the lag

RM: the stratified structure of BLRs

- Different lines correspond to different ionisation states (hence T and n)
- * Time lag (\propto R) is anti-correlated with Δv^2 as expected for keplerian orbits

$$M_{\rm BH} \propto \frac{\Delta V^2 R}{G} \Rightarrow \Delta V \propto R^{-1/2}$$

The relationship between emission-line Doppler width and reverberation lag for multiple emission lines in four AGNs. The $\Delta V \propto R^{-1/2}$ dependence is expected for a system dominated by the gravity of the central black hole. The dashed lines are the best fits to the data, and the solid lines have a forced slope of -1/2. Based on data from Peterson & Wandel (2000) and Onken & Peterson (2002).

https://blogs.stsci.edu/universe/2016/12/13/the-agn-space-telescope-and-optical-reverberation-mapping-project-agn-storm/

Radius-Luminosity relation for BLRs

- RM is
 observationally
 expensive: long
 campaigns and
 deep observations
- Rely on empirical relations that allow to use just 1 single-epoch spectrum
- Calibrate on RM sample

BLR Scaling with Luminosity

 To first order, AGN spectra look the same

$$U = \frac{Q(\mathrm{H})}{4\pi r^2 n_{\mathrm{H}} c} \propto \frac{L}{n_{\mathrm{H}} r^2}$$

- ⇒ Same ionization parameter *U*
- \Rightarrow Same density $n_{\rm H}$

$$r \propto L^{1/2}$$

SDSS composites, by luminosity Vanden Berk et al. (2004)

BH mass from single-epoch spectra

- Take a broad line, eg Hβ
- Measure L(Hβ) and get R from the Radius-Luminosity relation
- Measure Δv

where the proportionality constant is calibrated on detailed RM

SMBH-galaxy scaling relations

SMBH-galaxy scaling relations

Measurement of Central Black Hole Masses: The Mass Ladder

Scaling Relationships: Use with Caution

 When you think you're measuring mass, you're really measuring

$$M_{\rm BH} \propto R(\Delta V^2) \propto L^{1/2}(\Delta V^2)$$

When you think you're measuring
 Eddington ratio, you're really measuring

$$\frac{L}{L_{\text{Edd}}} \propto \frac{L}{M_{\text{BH}}} \propto \frac{L}{L^{1/2} (\Delta V^2)} \propto \frac{L^{1/2}}{\Delta V^2}$$

BH-galaxy coevolution?

- Scaling relations indicate that the SMBH and the host galaxy (actually, its bulge) know about each other
- Common growth in parallel through mergers?
- * Growth of SMBH and consequent AGN activity drive bulge growth via "feedback" and gas removal? on >3 orders of magnitude in mass?
- Growth of bulge simultaneously lead to SMBH growth by funnelling matter to the central SMBH?

Evidence for AGN feedback

- Ionization cones
- Outflows in different phases (ionized and molecular in partic.)
- Injection of energy/ momentum into the IGM
- How much "damage" is actually made?

Cresci et al. (2015) - NGC5643

Fabian et al. (2012) - Perseus cluster in X-rays with Chandra

SMBH through cosmic times

- * SMBH activity reached a peak at z~2, then gradual switch-off
- "Downsizing": the peak of space density moves to higher redshift for more luminous QSOs
- Much higher space density of QSOs in the past

(Integrated Flux Density) ~ (Integral of Accreted Mass) [Soltan 1982]

large number of quiescent SMBH in the local Universe

Space density of QSOs as a function of redshift (see Wall et al., 2005, Fig. 11)