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ABSTRACT 
We consider an expanding Friedmann cosmology containing a “gas” of self-gravitating masses. 

The masses condense into aggregates which (when sufficiently bound) we identify as single particles 
of a larger mass. We propose that after this process has proceeded through several scales, the mass 
spectrum of condensations becomes “self-similar” and independent of the spectrum initially 
assumed. Some details of the self-similar distribution, and its evolution in time, can be calculated 
with the linear perturbation theory. Unlike other authors, we make no ad hoc assumptions about 
the spectrum of long-wavelength initial perturbations: the nonlinear 7V-body interactions of the 
mass points randomize their positions and generate a perturbation to all larger scales ; this should 
fix the self-similar distribution almost uniquely. The results of numerical experiments on 1000 
bodies are presented; these appear to show new nonlinear effects: condensations can “bootstrap” 
their way up in size faster than the linear theory predicts. Our self-similar model predicts relations 
between the masses and radii of galaxies and clusters of galaxies, as well as their mass spectra. We 
compare the predictions with available data, and find some rather striking agreements. If the 
model is to explain galaxies, then isothermal “seed” masses of ~3 x 107 M© must have existed 
at recombination. To explain clusters of galaxies, the only necessary seeds are the galaxies them- 
selves. The size of clusters determines, in principle, the deceleration parameter ; presently available 
data give only very broad limits, unfortunately. 
Subject headings: cosmology — galaxies — galaxies, clusters of 

I. INTRODUCTION 

The observed matter content of the Universe is very 
clumpy over a range of mass exceeding 15 orders of 
magnitude, from stars (~ 1 M0) through clusters and 
galaxies, to clusters of galaxies of 1015 M0. However, 
on progressively larger scales the evidence for dumpi- 
ness is less striking. Considerable effort has been 
required to demonstrate the existence of superclusters 
(see Bogart and Wagoner 1973 for a recent treatment). 
On scales larger than ~ 50 Mpc (but smaller than the 
present horizon of ~ 103 Mpc) the Universe is prob- 
ably isotropic and homogeneous, corresponding to an 
expanding Friedmann cosmology. Even if the earliest 
epochs were characterized by chaos and large-scale 
inhomogeneity (Misner 1968; Rees 1972; Peebles 
1972), the isotropy of the cosmic microwave back- 
ground argues for a Friedmann model at recombination 
and subsequently. After recombination (and the 
roughly coincident transition to matter dominance) 
the Universe probably evolves according to the pres- 
sureless dynamical equations (see, e.g., Peebles 1971 
or Weinberg 1972). 

In this context, how are the various scales of 
dumpiness to be explained? Star formation from a 
diffuse medium of sufficient density (and suitable other 
parameters) may be a purely astrophysical—as opposed 
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to cosmological—problem: stars form at various 
epochs, and the process can be observed and studied 
in the present. In contrast, the condensation of sub- 
stantially larger scales, especially galaxies and clusters 
of galaxies, seems to be a unique cosmological event. 
The accepted view, convincingly stated by Peebles 
(1965), Silk (1968) and others, puts the formation of 
these large-scale objects at some epoch between recom- 
bination and the present, because only in this period 
have the large condensing masses been substantially 
smaller than the cosmological horizon but bigger than 
their Jeans lengths. 

A linear theory of inhomogeneous perturbations 
has been extensively developed for both isothermal 
and adiabatic disturbances (Lifshitz 1946; Zel’dovich 
1967; for a review see Field 1974), and much recent 
work has been directed toward propagating an initially 
postulated spectrum of matter perturbations through 
the complicated era of recombination, into the era 
where the perturbations condense into (hopefully) 
observed objects. This program has yielded consider- 
able cosmological understanding in many respects, but 
it has not thus far been completely successful in ex- 
plaining the basic observational data : the mass distri- 
bution of galaxies and their linear sizes, the masses and 
sizes of clusters of galaxies, the fact that there is no 
strong clustering on larger scales. 

In the usual framework of the linear perturbation 
analysis, physical processes at or before recombination 
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(such as photon viscosity) can modify a postulated 
spectrum of perturbations (Michie 1967; Silk 1968; 
Field and Shepley 1968; Peebles and Yu 1970). Never- 
theless, the spectrum of masses that comes out at 
recombination is dictated in a linear fashion by the 
initial spectrum put in. The simplest power-law spectra 
(which have been tried most frequently) seem to yield 
only large-mass (~1015Mo) condensations, not 
smaller galactic masses. One way out of this dilemma 
has recently been put forth by Zel’dovich and his 
collaborators (Zel’dovich 1970; Sunyaev and Zel’do- 
vich 1972; Doroshkevich et al. 1973): The large-mass 
condensations may collapse to flat, irregular “pan- 
cakes,” form shocks, and fragment into much smaller 
lumps. In this picture small-mass objects form from 
nonlinear processes in large-mass ones. Here, we want 
to investigate a possible opposite process : Can larger- 
mass objects form from the nonlinear interaction of 
smaller masses? 

A first observational clue is that condensations in 
the present Universe are not “small disturbances.” 
They may be closer to an opposite limit, that of point 
masses in a self-gravitating gas. The view is rather 
commonly held that this discreteness evolved after the 
present mass distribution had been determined by the 
linear theory of small disturbances—even strong con- 
densations were once weak (cf. Weinberg 1972, p. 576). 

We do not adopt this view. Instead, we start with 
two ideas suggested by Peebles (1965, 1972): that the 
development of larger scales of condensation may have 
been sequential; and specifically, that statistical ran- 
domness in an “incoherent dust” model induces the 
growth of larger instabilities with increasing time. We 
outline in this paper a model which is initially grainy 
and remains so at all times, starting with an initial 
mass spectrum of “small” masses which are supposed 
to have been formed by other processes. The initial 
time is taken as recombination or soon after. As the 
expanding Friedmann cosmology evolves, the mass 
points condense into aggregates which (when they are 
themselves sufficiently bound) we identify as single 
particles of a larger mass. In this way, the condensa- 
tion proceeds to larger scales. We will insist that our 
model contain no ad hoc information about an initial 
spectrum of long-wavelength density perturbations: 
When condensations has proceeded to lumpiness on a 
certain scale, the statistical randomness in the positions 
of the discrete lumps is itself a perturbation to all 
larger scales, and this causes condensation of in- 
creasingly large masses at later and later times. We 
take these statistical fluctuations as the only source of 
long-wavelength perturbations. We will see in §11 
that there are dimensional grounds for suspecting that 
the behavior of the system at late times depends only 
very weakly—perhaps not at all—on the initially 
assumed spectrum of seed masses and their statistical 
distribution. When the condensation has proceeded 
to scales much larger than the seed scale, the gas 
should have essentially no memory of its initial scale, 

and the condensation process should approach a self- 
similar solution, where the functional form of the mass 
distribution is maintained even as the characteristic 
scale of condensations gets larger and larger. The main 
content of this paper consists of linearized analytic 
estimates of the self-similar distribution as a func- 
tion of time (§ III), together with the results of 
nonlinear numerical A-body experiments (§ IV) 
which show some features of a self-similar conden- 
sation process which cannot be treated in a linearized 
framework. 

Neither the analytic treatment nor the numerical 
treatment given here is a fully satisfactory treatment 
of the problem. However, in spite of their rather 
different biases, they give very similar results. We take 
the attitude that in the absence of a more rigorous 
treatment, it is reasonable to suppose that these over- 
lapping results are genuine predictions of the model, 
and—even at this stage—they can be reasonably com- 
pared with observation. 

The model makes a number of predictions that are 
directly testable: namely, the masses and densities of 
condensed structures of various scales, e.g., the scales 
of galaxies and clusters of galaxies. In § V we compare 
these predictions with the data and find some striking 
agreements, despite the relative crudeness of our 
treatment. There is effectively only one adjustable 
parameter in the model, the characteristic mass of 
seed condensations soon after recombination (which, 
however, comes out uncomfortably large). 

In § VI we discuss this and other shortcomings of 
the model, and speculate on how it might be fitted into 
a cosmological picture valid before recombination. 
Even if galaxies are really formed by some other 
process, clusters of galaxies can easily be formed by 
statistical condensation; the size and spacing of 
clusters gives in this instance a direct measure of the 
deceleration parameter qQ. We discuss the value that is 
deduced. 

Some of our results involve only a slight change in 
point of view from previous work, e.g., that of Peebles 
(1965) and Saslaw (1968). Other authors have con- 
sidered hierarchical models which do not seem to be 
related to this paper; see, e.g., Layzer (1969) and 
Wertz (1971). 

II. COLD “GAS” IN A FRIEDMANN COSMOLOGY 

The problem considered here is rather more idealized 
than is cosmologically plausible in the real Universe. 
In idealizing the model we hope to make it well-posed 
mathematically, and to sharpen its observational 
predictions. A justification of the idealization is that the 
agreement of these predictions with the data is quite 
remarkable in some particulars. 

The problem is this : What is the evolution in time 
of a self-gravitating “gas” of point particles in Fried- 
mann cosmology ? We may take the gas as characterized, 
by a number density of particles «*, or equivalently by 
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a typical interparticle distance l ~ n* 1/3. On some 
scale L » i, the gas is supposed to be statistically 
uniform; by hypothesis, uniformity is reached well 
inside the light horizon Lh where general-relativistic 
effects become important, so 

Lh» L» l. (1) 

As long as the gas does not condense to a highly 
relativistic object (e.g., local collapse to a black hole), 
its dynamics on scales less than is effectively 
Newtonian. (We will show below that if condition [1] 
is satisfied at some initial time, it remains satisfied at 
all later times.) 

Particles in the gas have some characteristic mass 
ra*. The gas is expanding cosmologically, and we can 
identify a Hubble constant h by measuring recession 
velocities over varying distances. The particles have 
some typical peculiar velocity v with respect to the 
expansion, v « c. The dimensional parameters 
h, v (and we should include G, the gravitational con- 
stant) define the characteristic state of the gas. The 
velocity of light c, or Lh (~c/Ii) does not enter since 
equation (1) is satisfied. 

The dimensional parameters having been identified, 
it is possible to identify dimensionless combinations 
of them. The gas has two such, which we take to be 

q - &Tm*n*G/h2 , Nj = n(v/h)3 . (2) 

These parameters are measures of competing phenom- 
ena in the gravitational condensation of the gas. The 
first, q, a deceleration parameter, describes the 
Universe’s ability to impede local condensation by its 
own expansion. The second, Nj, measures a quantity 
related to the number of particles in a Jeans mass. For 
reasonable values of q, aggregates with fewer than 
about Nj particles are stabilized against gravitational 
condensation by the peculiar velocities (“tempera- 
ture”) of the masses. 

Proceeding from some initial time, the details of the 
condensation process will depend on q and TVj. Two 
systems with the same q and Nj ought to condense 
similarly, regardless of differences in the scale of their 
dimensional parameters. If q and Nj are functions of 
time, then condensation in a single system proceeds 
differently at different epochs. Correspondingly, if q 
and Nj are constant in time, one might hope for a 
self-similar condensation, which looks the same at all 
times except for a change of scale. 

We focus our attention on this latter possibility. 
Whatever the value of q0 at present, q approaches 
asymptotically at earlier times; present limits suggest 
that its value was very nearly constant at ^ for some 
period following recombination. Further, drag forces 
prior to recombination are likely to have made the 
peculiar velocities of any condensations small in com- 
parison with the Hubble expansion, so Nj << 1 (“cold” 
gas of particles). Our dynamical calculations below 
suggest that starting small, Nj also remains small. If we 

take the current observational value of Nj from galaxies 
not in clusters, and from clusters of galaxies, we find 
that it is indeed small: 

w'- 0008(ïra^)”i(iôôi^F-*)' 

/ ^ \"3 /"3\ 
X \50kms-1 Mpc-1/ * ^ 

Thus, there is a natural possibility for a self-similar 
condensation, with the constant values ¿7 = ^, Aj # 0. 

This argument does not prove that a self-similar 
condensation must occur. The reason is that identifying 
a “characteristic” mass ra* and number density 
does not completely determine the microstatistical 
properties of the gas. First, the gas has a distribution 
of particle masses n(m), where n(m)dm is the number 
density of particles with mass between m and m + dm. 
This can be related to the old parameters and m* 
by the definitions 

J. 00 
n(m)dm, (4) 

0 
/» 00 

w* = n*-1 mn(m)dm = p/n* (5) 
Jo 

(but see discussion follow eq. [25] below). 
Second, the gas will have (or will develop) correla- 

tions in space, described (e.g.) by the A-point correla- 
tions for all A. Two gases can in principle have the 
same “characteristic” parameters but nevertheless be 
microscopically different—and they might condense 
differently. This is the main point which must be 
investigated in the balance of this paper. However, we 
can state here the physical reasons for our hope that 
the details of condensation do not depend on micro- 
statistical initial properties: Since the gravitational 
force is long-range and attractive, it acts primarily to 
develop positive A-body correlations, i.e., to form 
bound clusters of masses which do not subsequently 
participate in the universal expansion. Naïvely, this 
would seem to rule out the possibility of self-similarity, 
because the degree of clumping will measure how far 
the system has evolved from a “random” initial state. 
Further reflection shows the loophole : the high correla- 
tions of a bound lump are not physically relevant to 
the further condensation; they only restate the obvious 
fact that highly bound clusters act roughly like point 
masses to larger scales. The large correlations in the 
gas must be interpreted as changes in «(m), by treating 
highly correlated groups of particles as single more 
massive particles. In this case, the relevant question is 
to determine the statistical properties of the current 
scale of large lumps, not the initial small particles 
which have long since coagulated into bound groups. 

It is well known that the self-gravitating A-body 
problem is formally unstable (in the sense that an 
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infinitesimal perturbation in initial conditions leads 
to an arbitrarily large difference at later times). The 
problem is also highly nonlinear. If as we expect, 
the evolution at any stage is determined only by the 
statistics of the current scale, it is not unreasonable to 
expect that the evolution is dominated by the stochastic 
properties of the unstable nonlinear dynamical equa- 
tions, rather than by any memory of its. previous 
history. In this case, a self-similar development seems 
rather likely. 

It will be useful to introduce a statistical measure of 
correlation which is invariant under the identification 
of bound clumps as single particles. An obvious choice 
is the mass variance 22 in a volume V, 

£2(F) = <M>2 - <M2> , (6) 

where angular brackets denote ensemble averaging 
over different volumes V, and M = f j mn(m)dmdV. 
(The definition is slightly fuzzy because we have not 
specified the shape of V; this is discussed below.) 

The information that we choose to express in n(m) 
and S2(F) can also be expressed, as is more conven- 
tionally done, in terms of the Fourier spectrum of the 
mass density function, p(k). However, all of the infor- 
mation is not in the power spectrum | p(k) |2, since phase 
information cannot be neglected on the scale of the 
inverse interparticle (or interclump) distance. For this 
reason, it is quite unwieldy to translate our model into 
the Fourier-spectrum formalism, and we do not do so. 

At the initial time, we want to require that E2(F) 
should arise only from the inherent randomness of the 
point-mass density, and not from any larger-scale 
superposition of an a priori perturbation spectrum. 
This gives upper and lower bounds on the behavior of 
22(F) as F becomes large. 

The lower bound is obtained by imagining the gas 
particles to be as ordered as they can be, so that the 
mass variance on larger scales is maximally sup- 
pressed. It is not plausible for the mass points to be in 
a regular crystal lattice; such a gravitational structure 
is unstable against randomization in the order of one 
expansion time (or Kepler time). We can assume, how- 
ever, that every particle “belongs” to some regular 
lattice site, and is no more distant from the site than a 
typical lattice dimension for particles of comparable 
mass, ~|>wz(m)]_1/3. A particle is random in its own 
cell, then, but there is never more or less than one 
particle per cell. 

The upper bound on the variance stems from the 
requirement that the gas be statistically homogeneous. 
The lumpiest gas allowed is one in which the positions 
of all masses are independently random, so that the 
variance is linear in the volume of a region, and inde- 
pendent of the shape of the volume. 

The function n{m) is initially arbitrary, subject only 
to the requirement that the total mass density be finite. 
As the gas expands and develops condensations, which 
are identified as new point particles, the mass spectrum 

n{m) changes. The task facing us is to calculate the 
evolution of n{m) as a function of time or expansion 
parameter. Further, we want to substantiate our physi- 
cal guess, that at large times the details of n(m) do not 
depend on its original functional form; rather, that 
n(m) develops to a self-similar solution which generates 
itself on all subsequent scales. 

III. A LINEAR ANALYSIS OF THE GROWING MODE 

The problem of statistical condensation is funda- 
mentally nonlinear, because the statistically random 
properties of the smallest scales arise in the first 
instance from their (nonlinear) A-body interactions as 
point particles. These randomizing interactions are a 
source for perturbations on all larger scales. Given this 
source, however, one might in principle compute the 
evolution of a much larger scale by the standard 
linearized theory. This is not an easy calculation, 
because the “discreteness” perturbation projects into 
all of the linearized modes (e.g., a growing and dying 
radial mode, and two rotational modes). Furthermore, 
the calculation is not guaranteed to give correct 
results, because it is quite possible (see § IV) that the 
nonlinear effects on small scales “bootstrap” their 
way up in scale faster than the linear effects grow on 
large scales. For these reasons, we give here only a 
semiquantitative analysis, with the following assump- 
tions: (i) only the growing radial mode is treated; and 
(ii) its behavior is assumed to be predicted accurately 
by an energy argument (see note added in proof). 

a) Case of Maximum Variance 
Here we assume that the positions of all particles 

in the gas are independently random, at least on scales 
larger than the typical interparticle distance. In this 
case, the variance of mass in a given volume varies 
linearly with the volume F, so that the variance per 
volume is 

a2 = 22(F)/F, (7) 

a constant. The relation of <j2 to n{m) is easily shown 
to be 

/» 00 
a2 = m2n(m)dm. (8) 

Jo 

Let p(S, V) be the probability that a given volume F 
contains a mass whose fractional deviation from the 
ensemble average is between S and 8 + d8. Then for 
reasonably large volumes and small S’s, p(8, V) is 
approximately Gaussian: 

p(8, V) = (27t)-1'2V1 exp [-i82/3*2], (9) 

where 8* is the standard deviation 

s = =, f.1/2 . 
* M pV p v ' 

(The mean density p is defined by eq. [5].) Since the 
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cosmology is parabolic (q0 # £), a large volume which 
is overdense by a fraction 8 at expansion scale Rx will 
expand only a finite amount, and reach its maximal 
size at an expansion parameter of about R2 = Riß- 
After this, the lump recollapses, violently relaxes 
(Lynden-Bell 1967), virializes. For our purpose we 
can consider it as a self-bound “point mass” from 
expansion scale R2 on. The Appendix describes quan- 
titative details of all this for the case of spherical 
lumps. 

The probability P that a given volume will already 
be self-bound at expansion scale R2 is thus 

p-C,„'’(8'r>¿8-ierfc(§0’(ii) 

where equations (9) and (10) have been used, and erfc 
is the complementary error function. Since for the 
volume V, 8 is small at scale Rl9 the mass in all volumes 
Vis very nearly piV. (Here and henceforth, a subscript 
1 denotes a quantity evaluated at scale similarly 
for subscript 2, etc.) The fact that a volume has con- 
densed before scale R2 does not prejudice it against 
being part of a larger volume which has also con- 
densed. Thus the fraction of independent volumes (or 
of mass) which have become self-bound in lumps with 
mass between M and M + dM is the derivative of P, 

dP _ o-3/2 -1/2 P°112 

dM R2 aQ 

The initial mass distribution n^m) enters only through 
its moments px and It is straightforward to calculate 
p2 and g2 from equation (13). The results are 

p2 = J mn2(m)dm = /°i^j ’ (^a) 

<j2
2 = j m2n2(m)dm = • (14b) 

Notice that if Ri = R29 equations (14) say that the 
form of the distribution (13) “reproduces its own 
parameters” p-^ and Also notice that formal sub- 
stitution of equations (14) into the distribution (13)— 
eliminating g-^2 and px in favor of g2

2 and p2—gives 
the same result as setting R± = R2 and relabeling the 
dummy subscripts. This shows that the distribution 
(13) depends only on the current values of its moments 
p2 and g2

2
9 which scale by equation (14). The choice of 

initial scale Rx is quite arbitrary: the distribution n(m) 
reproduces itself and the condensation is self-similar. 

To sum up: Starting with an arbitrary initial spec- 
trum riiim) we considered large volumes of small over- 
density and derived a new spectrum n2(m) valid at a 
much later time, expansion scale R2 » Pi ; extrapolat- 
ing the functional form back to the original scale Pi, 
we have two seemingly independent miracles, (i) self- 
consistency of p1 and o-!2, and (ii) self-similarity, where 
the distribution n2(m) does not actually depend on Pi. 

xM-exp(-IgÄM). 02) 

The mass density due to lumps of this mass is obtained 
by multiplying this fraction by the total density at 
scale P2, pi(Pi/P2)

3; converting mass density to 
number density brings in an M-1. We have not yet 
accounted for half of the total mass—that which is in 
initially underdense regions. It eventually accretes onto 
neighboring lumps in overdense regions. A spherical 
calculation (see Appendix) suggests that the net effect 
is to double the mass of condensed lumps without 
changing their mass spectrum. We have not rigorously 
accounted for the fact that condensations may occur 
on the border of two adjacent volumes. Here we as- 
sume that this introduces an error of only order unity; 
see Schechter (1974) for another point of view. 

We have now obtained the number density of lumps 
(new point particles) at scale P2, 

«aW = 
ARA3 — 

W dM 

x Af"3/2 exp 
"2\P2/ ai2 M (13) 

b) Case of Minimum Variance: Intermediate Cases 

What happens when we assume that each initial 
particle belongs to a regular lattice site, and its position 
is randomly only on a scale less than a lattice dimen- 
sion ~ [ra«(ra)]-1/3? The variance of mass is now no 
longer a sum over the entire volume, since the interior 
of a volume contains a predictable number of cells. 
Only cells intersecting the surface, where the particle 
might be inside or outside, contribute to the variance 
sum. The thickness of the surface area varies as the 
lattice dimension with m. The variance of a volume V 
much larger than a lattice cell is readily seen to be 

£2(F) = ? 
f Jo 

m5,3n2,3(m)dm y2/3 (15) 

where £ is a number of order unity which characterizes 
details of the shape of V, precise definition of lattice 
cells, etc. (We will see below that £ takes on a canonical 
value.) The dependence S2(F) cc V213 represents a 
lower bound on the variance, as S2(F) ce F repre- 
sented an upper bound. It is mathematically convenient 
to derive a whole family of intermediate self-similar 
distributions at the same time as we obtain the lower- 
bounding case, although only the two bounding cases 
have physical interpretations. Suppose that 22(F) oc 
V2a, so that the bounded range of a is ^ < a < -|. On 
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dimensional grounds, E2(F) must be related to «(»/) by 

S2(F) = m1+2an(m)2adm y2a (16a) 

= <t2F2“, (16b) 

which includes equations (7)-(8) and (15) as special 
cases; here again £ is a constant of order unity. The 
derivation now goes almost exactly as in § lia, equa- 
tions (10)-(13). We have 

* _ P2(F)]1/2 (a2 v2a)112 (7 
6* “ M - pV - Pa 

whence 

and 

P = i erfc 
2ll2R*o J 

n2(M) = 
2_ /Ri)2 dP 

Mpl\R2) dM 

(17) 

(18) 

(p \ 4 n 1 + a 
£i—M-1-“ 

^2/ al 

"“"Hdrs"“""]'(i,) 

Calculating p2 and or2 from definitions in equations 
(14a) and (16b) gives 

P2 = pMRz)3 , (20a) 

°22 = , w 

where 

f(a) = *(27r)"*a[2(l - a)]2*-1«-^^! + a) . (21) 

We now see that in a self-similar distribution, the 
constant f takes on a canonical value £ = [/(a)]_1/2, 
so that equation (20b) reads 

<j2
2 = o^Ri/Rz)*3«-» . (22) 

(subscript R now denotes the expansion scale). The 
parameter a is determined by the degree of order at 
some initial scale, the dependence of mass variance on 
volume. 

The exponential gives a “typical” mass at any 
expansion scale, 

M *.«>»-« (24) 

(cf. Peebles 1965). Below the exponential cutoff the 
number density varies as a power law, The 
total number of particles diverges at the low mass end, 
but the cumulative total mass 2tt(Af) below a given 
mass M is quite finite, 

2tt(M) oc mn(m)dm oc M1~a , M < Mcutoff. (25) 
Jo 

The case of minimal variance a = ^ thus gives a 
cumulative spectrum which is slightly more concen- 
trated near the cutoff mass than does the maximum 
variance case a = -J. The “median” mass [9tt(M) = 
O.5221(oo)] is in both cases roughly a quarter the cutoff 
value. (The “mean” mass is not well defined due to 
the low mass number divergence; equations [4] and 
[5] are not literally applicable.) 

How does the linear size / of a condensation vary 
with its mass—or equivalently, how does the binding 
energy U vary? We must distinguish two different 
cases: First, condensations which were formed at the 
same expansion scale form with the same density, 
roughly the average density of the Universe at that 
epoch. For these “synchronic” condensations we have 

/ oc M1/3 , U = GM/lc2 oc /2 . (26) 

Second, if the comparison is between typical condensa- 
tions of different expansion scales (i.e., between a 
current condensation and its older constituent sub- 
units), we have for these “diachronic” condensations 
M oc R1«1-“) and p cc R~3 whence 

In this case £ varies smoothly from 3.1370 to 1.0 in the 
range J < a < ^. We have not found a physical inter- 
pretation for the constant £. 

It is easily verified that the distribution (19) has the 
same self-similar properties that we found in the 
previous special case a = ^;2itR1 — i^2 the parameters 
p2 and cr2 reproduce themselves; and substitution of 
equations (20a) and (22) into (19) show that the choice 
of initial scale R1 is totally arbitrary. 

c) Properties of the Distributions 

The functional form (19) of the linear analytic 
candidate for a self-similar distribution distills to 

nR(M) oc M~1~a exp —const, x (23) 

/ oc (Mlp)113 oc M(4-3a>'3 oc a = i 
« = i; 

U oc Ma~113 oc 
(const. 

I1'5, \ 
(27) 

A final point is to verify that the condensation re- 
mains Newtonian, i.e., that the scale of dumpiness 
does not overtake the light horizon: From equation 
(27) we have / oc p^-^ia-co Lhoc et oc R312. 
Thus, if initially / « Lh9 the relation continues to hold 
for any choice of a > -J-. 

IV. NUMERICAL TV-BODY EXPERIMENTS 

How reliable are the linearized model predictions of 
the previous section ? This is not an easy question, since 
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the assumptions which went into the calculation are 
not easily justified, especially the use of energy argu- 
ments to predict the formation of large clusters at 
distant times.1 

The most testable predictions of the model are those 
of equations (24) and (25), how the typical—or cutoff— 
mass increases with expansion factor, and at a given 
expansion factor what the detailed shape of the mass 
spectrum is below the cutoff. The detailed functional 
form above the cutoff is not readily testable because 
the amount of mass there is negligible. Both of the 
testable predictions are dependent on the value of a, 
and one caveat should be introduced here : The value 
of a was defined by the variance on asymptotically 
large volumes V; but a given scale does “most” of its 
condensing when it is the “next” scale to condense, 
and its statistical properties at this time are dominated 
by the nonlinear effects of a scale only slightly smaller 
than its own. Thus, in the full nonlinear problem, the 
effective value of a might not be tied to the large-scale 
statistics. It is an artifact of the linear approach which 
does so tie it in the results of § III. 

Our attitude toward the analytic results is this, then: 
A reasonable working hypothesis is that the condensa- 
tion process proceeds with some effective a between J 
and but we should turn to numerical experiments 
to see what this effective value is, or indeed if any value 
of a gives viable results, qualitatively consistent with 
the analysis predictions. 

A physical interpretation of the “effective a” is 
this : On dimensional grounds one expects the peculiar 
velocities of condensation to remain of order 
GAf4/3n(M)1/3 (crossing time to nearest neighbor a 
dynamical Kepler time). However, the dimensionless 
number in front of this quantity is crucial : a value sub- 
stantially greater than 1 will tend to randomize posi- 
tions on larger than the next condensation scale, and 
might favor a change in a toward a value substan- 
tially less than 1 would decrease randomization and 
might favor a 

We have done several numerical 300-body experi- 
ments, and two experiments with 1000 bodies which 
are described here. At an initial time (which, like all 
quantities, can be scaled arbitrarily since there are no 
free dimensionless parameters) the bodies, all of equal 
mass, are distributed in a unit sphere. Initial velocities 
are taken to be linearly related to position by a perfect 
Hubble law, so that initial peculiar velocities vanish. 
Gravitational forces are obtained by summing over 
pairs of particles (however, large-angle scatters are 
eliminated by cutting off the force at small radii). 
Positions and velocities are updated alternately, so 
that the differencing is effectively second order. The 
spherical boundary is expanded as if in a homogeneous 
Friedmann cosmology. Particles encountering the 
boundary are specularly reflected; however, the 

1 See note added in proof, below. 

resulting edge effects introduced seem to be unimpor- 
tant. 

Condensations are defined as roughly spherical 
regions whose mass density exceeds the smooth average 
by a factor of 10 (see Appendix for a “derivation” of 
this criterion). Specifically, the following algorithm 
produces the list of condensations: (1) For the /th 
mass point a list of radii to all particles is produced 
and ordered by radius. (2) The largest radius contain- 
ing the required overdensity is the radius of the zth 
“candidate.” The radius may be zero. (3) The list of 
candidates is sorted by radius. (4) Any candidates 
whose centers lie within the radius of a larger-radius 
candidate is eliminated. (5) The surviving candidates 
are the identified condensations. They are sorted by 
mass into the final list. 

The algorithm will not correctly identify condensa- 
tions which are too aspherical. However, its “carving 
up” of these into overlapping spheres will count many 
mass points twice. Thus the ratio of summed condensa- 
tion masses to total mass is a measure of the algorithm’s 
consistency; this ratio is typically less than 1.1, and the 
calculations is halted if it exceeds 1.2. A condensation 
analysis takes ~200A2 operations and is a major 
contribution to running time. 

The two 1000-body experiments differed only in the 
initial positions of the mass points. In Experiment A, 
the points were distributed randomly and indepen- 
dently in the unit sphere. According to the calculation 
of §111, this should bias the system toward a self- 
similar distribution with a = %. For Experiment B, 
a cube enclosing the unit sphere was divided into 
cubic cells. Each cell received one mass point, whose 
position was randomized within the cell; particles 
outside the unit sphere were then deleted. This initial 
condition favors the slowest possible development of 
condensations. 

Figures \a and \b show the computed evolution of 
the two experiments, the cumulative mass distribution 
2tt(M) as determined by the condensation-finding 
algorithm at subsequent expansion scales. In both 
experiments, the sharp corner of the initial mass 
distribution (all points of same mass) quickly erodes 
away to a more or less straight line on a log-log plot. 
The line subsequently evolves parallel to itself as the 
distribution moves to larger and larger clusters. 
(Attention should be focused on the mass range 

< M < ~50; smaller masses continue to be 
influenced by the discrete points of fixed unit mass, 
while larger masses start to encroach on the A = 1000 
limit.) 

The overall behavior seems to indicate that some 
kind of self-similar distribution is evolved quite rapidly 
in both experiments. But it is of the predicted func- 
tional form ? Figures 2a and 2b show how the typical 
mass of condensations increases with expansion 
factor. Shown is the mass M such that 2K(M)/921(oo) 
takes on one of the three values 0.3, 0.5, 0.8. In figure 
2a, straight lines are drawn with the slope 2 predicted 
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Fig. 1.—Numerical experiments: Mass spectrum of condensed clusters as a function of cosmological expansion factor R. 
Starting with 1000 particles of unit mass in an expanding Friedmann cosmology, both experiments develop a spectrum of larger 
condensations. At large expansion factors, the shape of the spectra seems to become fixed, and the curves move in parallel to the 
right (increasing cluster mass); this indicates that a self-similar condensation process has set in. The two experiments shown differ 
in the initial statistical distribution of masses. Experiment A has all points randomly in the volume; Experiment B starts in a more 
highly ordered state. (See text for details.) 

by the theory (eq. [24]). It is fairly clear that the 
asymptotic evolution is consistent with the a = % 
analytic theory. The case of Experiment B (fig. 2b) is 
not so clear. The initial evolution is clearly slower than 
in A; however, for late times and large clusters, the 
curve appears to have turned up to a slope of about 2, 
corresponding to an “effective” a of 

What about the predicted power-law behavior of 
below the exponential cutoff? Here we have 

computed power-law fits of the form oc Mv at 
the four largest expansion factors of each experiment 
(and for 6 < M < 80). The average values of y, rms 

deviation of one fit from the mean of four, and pre- 
dicted values are shown in table 1. 

We cannot be certain that our numerical calcula- 
tions are free from systematic error. Nevertheless, we 
draw the following tentative conclusions: 

i) Experiment A seems to have developed con- 
sistently with the linearized analytic prediction. In 
particular, the increase of typical cluster mass with 
expansion factor M ce R2 seems quite accurately 
determined (fig. 2a), and the shape of the mass 
spectrum below the cutoff is at least qualitatively 
right. 
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Fig. 2.—Numerical experiments : Growth of the mean, 80th percentile and 30th percentile cluster with expansion factor. Experi- 
ment A appears consistent with the relation M oc R2 which is predicted by the linear perturbation theory. Experiment B does not 
follow its slower linear prediction; rather, it appears to evolve toward Moc R2. If correct, this shows that nonlinear interactions 
on the current condensation scale can “bootstrap” the condensation scale up in mass faster than the linear perturbation theory 
predicts. (See text for details.) 

ii) Experiment B, which was biased initially toward 
the slower-developing case a = ^, clearly seems to 
have bootstrapped itself to a larger 6t effective ” value, 
consistent with a -> +. This is most clearly evident in 
figure 2b. If true, this indicates that the growth of the 
“current” scale by nonlinear clumping effects domin- 
ated the linear growth of density perturbations of 
larger scales: a given region condensed when the 
current scale had bootstrapped its way up to it in 
size, rather than when the density contrast in the linear 
theory would have been order unity (which would have 
been much later). This is a startling result, and requires 
careful further investigation. 

Unfortunately we cannot push the evolution farther 
in expansion scale in these experiments, because the 
largest clusters are not negligibly small compared with 
the total of 1000 points. In the future, we hope to 
pursue a more definitive program of related numerical 
work. 

V. COMPARISON WITH OBSERVED FEATURES OF 
GALAXIES AND CLUSTERS 

What observed condensations might be part of a 
self-similar hierarchy like the one of our model? 
Equations (26) and (27) make it possible to say some- 
thing about this question, but they also point out a 
shortcoming of the model. In comparing the sizes and 
binding energies of condensations we must know 
whether the condensations formed at the same time or 
at different times. Here we must make a rather dan- 
gerous assumption: We assume that the different 
observed classes of condensations (globular clusters, 
galaxies, clusters of galaxies) are suitable for diachronic 
comparisons, but that the objects within a single class 
formed synchronically. This assumption is dangerous 
largely because it is outside the framework of the 
model that is to be tested. The model does not explain 
why the different classes should be as distinct as they 

TABLE 1 
Fitted Parameters from Figures 1 and 2 

Linearized Model Numerical Experiment 

a y a y 

Experiment A  1/2 1/2 #1/2 0.44 ± 0.02 
Experiment B  1/3 2/3 ä!/2 0.52 ± 0.04 
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Fig. 3.—Measured velocity dispersions for condensed objects as a function of their radius. The predictions of the self-similar 
condensation model are shown. Steep lines have slope 1, indicating the constant density characteristic of synchronic condensations. 
The flat line has a slope of 1/10, and should connect the upper cutoff masses characteristic of condensations at different epochs 
(assuming a = 1/2; see text for details). Data have been taken from Oemler (1973), Rood et al. (1972), Robinson and Wampler 
(1973), Fish (1964), Minkowski (1962), Morton and Chevalier (1973), Richstone and Sargent (1972), Griffin (1972), Wilson and 
Coffeen (1954), and Allen (1963). The velocity dispersion for globular clusters marked by x ’s was computed assuming the same 
mass-to-luminosity ratio as M92 and Ml3. The globular clusters in any case do not fit the model, but the fit for galaxies and clusters 
of galaxies seems satisfactory. 

are observed to be. Our point of view is to suppose 
that physical processes beyond the scope of the model 
prevented or disrupted condensations on scales 
between the observed classes, but that the observed 
classes fossilize at least some epochs of a self-similar 
development. 

Figure 3 tests the model against observed radii and 
velocity dispersions (equivalent to binding energies or 
to masses) of globular clusters, elliptical galaxies, and 
clusters of galaxies. The line through each class has 
the slope predicted by equation (26). In the case of 
galaxies, the existence of a power law relating size to 
mass was first pointed out by Fish (1964). Fish’s sug- 
gested relation is M ce l2 corresponding to U cc l. 
The model here predicts a constant density relation 
M oc l3 or U cc l2. The present data do not seem to 
exclude either possibility. 

The line connecting the classes in figure 3 has the 
slope predicted by equation (27) with a = £, and is 
drawn through the most massive galaxy, M87. The 
line passes rather well through the most massive 
clusters of galaxies, and we count this as a success for 
the model. 

The globular clusters do not fit the model; they are 
not massive enough. An alternative hypothesis—that 
they have evolved in size—is not plausible for two 
reasons : (i) They would have had either smaller radii or 
much larger velocity dispersions in the past, and (ii) 
the epoch of their condensation would have to be before 
recombination, which is probably impossible. 

Next, we look at the detailed mass spectrum pre- 
dicted by the model. For galaxies we compare this 
with the observed luminosity distribution of galaxies 
in the central region of the Coma cluster. (The assump- 

tion of a constant mass-to-luminosity ratio is not 
strictly correct, but this should not introduce a large 
systematic error in a system composed primarily of 
elliptical galaxies.) Figure 4 shows results of recent 
measurements by Oemler (1974) along with best fits 
to the self-similar functional form (23) for the extreme 
values a = % and a = ^. The two values of a fit about 

Fig. 4.—Luminosity distribution of galaxies in the central 
90' square of the Coma cluster. The data (Oemler 1973) plots 
the number of galaxies per 0.2-mag interval, corrected for 
background, against red (F) magnitude to 23.0-mag isophotes. 
The solid and dashed lines are the predictions of the self- 
similar condensation model for the two extreme values of the 
parameter a, as derived from the linearized treatment of § III. 
The predictions are normalized in total number, and in mass- 
to-luminosity ratio, to obtain the best fit, but have no other 
free parameters. Both data and model show a sharp cutoff. 
See text. 
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equally well: the value a = i accounts better for the 
slope at faint magnitudes, while the value a = ^ fits 
better at brighter magnitudes. The sharp exponential 
cutoff which is characteristic of the self-similar distri- 
bution can explain Abell’s (1965) observation of a 
characteristic cutoff magnitude for rich clusters of 
galaxies. It also supports the statistical explanations of 
Peebles (1969) and Peterson (1970) regarding the 
narrow magnitude distribution of the brightest cluster 
members. 

A similar comparison with J;he distribution of 
clusters of galaxies would be desirable, but greater care 
must be taken to ensure a complete sample free from 
systematic errors, and a consistent definition of cluster 
mass. Very recent data on rich clusters by Oemler 
(private communication) are consistent with luminosity 
varying as /3. 

VI. SHORTCOMINGS OF THE MODEL, 
COSMOLOGICAL IMPLICATIONS, DISCUSSION 

A notable omission in the predictions of the self- 
similar model (already mentioned above) is an explana- 
tion of the distinctness of observed condensation 
scales. One would expect to observe only the initial 
seed condensations and clusters of them. Galaxies 
should be composed of smaller subunits. However, 
there is an obvious loophole, the appeal to more 
realistic astrophysics : gas dynamics, radiative cooling, 
etc. It is possible that one does not see the subunits of 
galaxies because star formation had not yet occurred 
in them and—once condensed to galactic volumes— 
they collided and dissipated themselves. One then does 
not see single condensations of a mass between 
galaxies and clusters of galaxies for the same reason: 
these scales were collisionless and preserved the iden- 
tity of their subunits, which we observe as galaxies. 
This raises one interesting observational question: 
Are there bound subclusters within rich cluster of 
galaxies? (Projection onto the sky would tend to hide 
such subclustering, and it does not seem to be ruled 
out at present.) These matters are rather clearly beyond 
the scope of this paper. The suggestion that the mass 
scale of galaxies is marked by a cooling process is not 
new: Fish (1964) (and see Lynden-Bell 1969) first 
pointed out that typical sizes / and densities p of 
satisfy pi ^ 2 g cm-2, suggestive of a process involving 
free particle opacity. 

We turn now to the most serious flaw in the model. 
Since recombination at z ~ 1500, a self-similar distri- 
bution can have increased its typical mass only by 
6 x 104 (a = y) to 2 x 106 (a = i). If we take the 
current fully condensed scale to be clusters of ~ 100 to 
~300 galaxies, the “seeds” at recombination must 
have been in the range of 3 x 107to3 x 109Afo, with 
our numerical experiments favoring the smaller value. 
These masses are unpleasantly large. The seeds must 
have been isothermal, rather than adiabatic, since 
adiabatic perturbations smaller than ~ 1012 Af0 will 
have damped out before recombination (Silk 1968; 

Peebles and Yu 1970). The large seeds are therefore 
probably not ruled out by the isotropy of the cosmic 
microwave background. (In any case the angular size 
of the seeds, seen at redshift ~ 1500 from the present, 
will be of order seconds of arc to ^ T.) 

How are these seeds to have formed? It is tempting 
to invoke the (largely unknown) properties of an early 
chaotic universe. Strong shocks could have generated 
isothermal perturbations; perhaps large-scale gravita- 
tional waves can be important (Rees 1971). If we take 
seriously another suggestion by Rees (1972) that the 
observed radiation entropy might have been created 
by chaotic processes at rather late epochs, we might 
go so far as to imagine that self-similar condensation 
was possible at an earlier epoch; early condensations 
would subsequently become frozen into the developing 
photon-dominated gas; if not attenuated (e.g., if 
isothermal), they would be available as seed masses 
at later recombination. Another possibility is suggested 
by the work of Kundt (1970), Carlitz (1972), and others 
on the condensation properties of a gas with the very 
soft Hagedorn equation of state, for which pressures 
might be unimportant at the earliest epochs and self- 
similar condensation might be possible. 

The point is that, other than their necessary large 
characteristic mass, there are no restrictions on the 
details of the mass spectrum of seed masses: any 
spectrum will generate the self-similar mass distribu- 
tion which (we suggest) agrees rather well with the 
observed mass distribution of galaxies. This decoupling 
of early processes (which make seeds) from late pro- 
cesses (which make galaxies and clusters) is an im- 
portant feature of the model. 

We can also apply this argument at later epochs: 
Suppose that the seeming self-similarity of the galactic 
mass spectrum is coincidental, and that galaxies are 
actually formed by an entirely different process (but at 
redshifts ~20). In this case, a self-similar development 
would start from the galaxies; since the seeds have 
roughly the correct spectrum to start with, the develop- 
ment would be indistinguishable from one which had 
already condensed through several scales. The predic- 
tions of the model about clusters of galaxies, therefore, 
depend only on the existence of dynamically inde- 
pendent protogalaxies at z ~ 20, not on the process of 
their formation. 

Thus far we have assumed that the constant q de- 
fined by equation (2) is #0.5, as it would be early 
enough in any Friedmann cosmology. In concluding, 
we examine briefly the effects that would accompany 
the transition to a Æ = 1 (# -> oo) ork= — 1 (# -> 0) 
cosmology. Qualitatively, a value of # < 0.5 tends to 
retard the current scale of condensation and subse- 
quent scales. This is because the expansion time A-1 

becomes shorter with respect to the Keplerian collapse 
time (Gm*n*) ~112. Likewise, a value q > 0.5 accelerates 
the condensation of the largest scales. This interaction 
of q with the condensation of the largest current scale 
leads to a means, in principle, of determining qQ, the 
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present value of q: comparison of the size of the largest 
(“fully condensed”) objects with the distance between 
them is essentially a measure of q0. (This method is 
somewhat related to that of Gunn and Gott 1972, where 
the infall of matter onto a single cluster of galaxies was 
considered.) 

If q0 > 0.5, fully then condensed (e.g., virialized) 
objects should be almost space-filling. Although the 
extent of superclustering is controversial (de Vaucou- 
leurs 1971), it seems observationally unlikely that this 
scale can be fully condensed in our sense; we turn our 
attention to the case #0 < 0.5. 

Let Rc be the maximum radius of expansion of the 
largest condensed scale, and let tc be the epoch of the 
maximum. If t0 is the present epoch, we have < 
tjto < 1 ; if the lower limit were violated, a larger scale 
would have had time to condense. If R is the current 
radius of the condensation, we have 

R ~ Rc, for tjto ^ 1 ; 

R ^ RJ2 > for tc/t0 ä i. (28) 

In the first case the condensation is just now at 
maximum expansion; the second case approximates 
the subsequent effects of virialization, violent relaxa- 
tion, etc. (Gott 1972). The characteristic distance 
between condensations is twice the radius to which 
the cluster lump would have expanded in a perfect 
Friedmann universe. For the universe we have (e.g., 
Weinberg 1972) 

where 

f(qo) = (1 - Iqo)-1 

- <7o(l - 2<7o)-3/2 cosh"1 (IM, - 1) - (30) 

The condensation evolves by 

t = const. x J ^ — 

The constant is determined by the requirement that the 
cluster be comoving with the universe at the earliest 
times. One easily obtains 

Now from equations (32) and (29), we have 

R, = J Ago) 
Rq _(to/tc)7T 

2/3 
go 

1/3. (33) 

This equation is applied as follows: the largest fully 
condensed scale in the universe is roughly that of 
clusters of galaxies, which may or may not have had 
time to virialize. If a typical cluster has a diameter of 
3 Mpc, and a typical distance between clusters is 
10 Mpc, we have (using eq. [28]) 

[ 0.3 for tjto ä 1 
Ro ~ \0.6 for tc/t0 = i. 

Substitution of equation (34) into (33), and solving 
for q0, gives 

~ 0.03 < ?o < ~ 0.5. (35) 

Unfortunately the lower limit is quite sensitive to the 
ratio 3 Mpc/10 Mpc; if we used 2 Mpc/15 Mpc, it 
would have come out ~ 0.003. Clearly one needs a 
rather more precise model to obtain good limits on 
q0. Nevertheless, it is interesting that our lower limits 
lie in the range of the observed matter content—there 
was no input to the model which would have guaran- 
teed even order-of-magnitude agreement a priori. With 
precise definitions of what a cluster is and how clusters 
are separated, and with better understanding of 
statistical condensation, it may be possible to obtain 
qQ with some useful precision. 

In essentially all aspects, this paper is more a 
prospectus for future work than a report of work in 
final form. The condensation behavior of a perfect 
gravitating gas is an interesting theoretical problem in 
its own right. The fact that a number of features of the 
self-similar condensation process seem to mimic the 
real world may indicate that the problem is astro- 
physically interesting as well. The model makes a lot 
of predictions with very little input; this makes it 
testable; this should also make it improvable (by 
including more realistic physical processes) without an 
impossible increase in the number of free parameters. 
Our main point is that once fully condensed objects 
have formed, their statistical properties and their N- 
body influence on larger scales cannot be ignored. 

We have benefited from discussions with D. Eardley, 
J. Gunn, J. Kwan, D. Lee, and S. Teukolsky, and we 
especially thank A. Oemler for making his unpublished 
data available to us. We thank J. M. Bardeen and 
P. J. E. Peebles for comments on the manuscript. 

APPENDIX 

For the special case of spherical symmetry, it is 
possible to derive exactly some results which were used 
above as estimates for the more complicated general 
case. A spherical mass M within an expanding cos- 

mology evolves according to the Newtonian relation 

r . ,12M 2M\-uz 

0 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
74

A
pJ

. 
. .

18
7.

 .
42

5P
 

No. 3, 1974 GALAXY FORMATION BY SELF-SIMILAR CONDENSATION 437 

(see, e.g., Weinberg 1972). Here t(r) is the time at 
which the mass has radius r, and R is the maximum 
radius that it attains in its evolution; we have chosen 
units with G — The average universe evolves by 
equation (Al) also, by hypothesis with R = oo. 

If a comoving lump is overdense by a small fraction 
S at expansion scale ru we can compute how much the 
average universe has expanded, and how much the 
lump has expanded, when the latter is at its maximum 
size: For the lump we have 

t(ri) = 
2M\ 

R ) 

-1/2 
dr 

V2 
3 \m) 

(A2) 

(since S is small and r± « R)\ similarly, 

t{R) = 
fAf 

/_R3\l/2 

U; 
• (A3) 

For the average universe we have 

r(i) = (Wot2)113 ■ 
Thus, 

/•[/(Æ)] /377-\2/3 R 
r [t(ri)] _ \ 4 ) rx ’ 

(A4) 

(A5) 

(A6) 

Since the lump is comoving with the universe at early 
times, we know that = i'(r1)anlverse, or 

2Mp 2M 
r\ r1 

which gives 

- 2-§ - 2M0(1 + 8)(i - i) , 

1 = (1 + 0)(1 - rjR) 

(A7) 

(A8) 

and 
rJRxS. (A9) 

From equations (A9) and (A6) we conclude that a 
lump of overdensity 6 reaches a maximum of expan- 
sion R/r1 = â-1; at that time the average universe has 
expanded by a factor greater by (3tt/4)2 ^5.5 in 
volume, so the lump is overdense by this amount. In 
the text, equation (A9) was used to obtain a lower 
limit of integration for equation (11). The factor 
(3t7/4)2/3 was neglected, since the “characteristic” time 
of a lump’s condensation is defined only up to order 
unity in any case. The overdensity factor 5.5, rounded 
conservatively up to 10.0, is used as a criterion for 
cluster formation in the numerical work of § III. 

Next suppose that a lump of radius r± contains an 
overdensity 8 and is surrounded by an equally under- 
dense spherical region. We want to know how much 
of the underdense region accretes onto the overdense 
lump at late expansion scales. Considering the mass 
out to a radius r2, analogy with equation (A7) gives, 

2M0 _ 2M 2M 
ri r2 R 

-2M„(l-8)(l + 28^)(I-I), (AID) 

whence 

1 = (1 -â)(l + 2S^(l -g) (All) 

and 
^ 2/(1 + RijR). (A 12) 

Here R1 = r¡8 is the expansion scale at which the 
overdense lump condenses. Equation (A 12) says that 
at large expansion scales R» R1 the condensation 
which originated in an overdense lump of radius ty 
has precisely doubled its original mass by accreting 
surrounding material out to radius r2. This result was 
used in the text in equation (13). 
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This correction of our analytic error, for which we 
are grateful, makes the numerical results of § IV above 
(which do not depend on § III in any case) even more 
striking. In figure 2b we note that the leftmost points 
of each percentile sequence actually do fit a shallower 
slope (such as 6/7 or, with different physical assump- 
tions, 6/5) fairly well. The “sudden” change in slope 
to M ce R2, then, seems to mark the onset of a non- 
linear “bootstrap” with effective a ^ we continue 
to favor this value for comparison with observation 
(as in figs. 3 and 4). 
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