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SUMMARY 
The Press-Schechter theory provides a simple analytical description for the evolution 
of gravitational structure in a hierarchical universe. In this paper, we extend the 
original theory in order to focus our attention on the subset of regions that will 
eventually collapse to form clusters of a set mass. The first part of the paper is con- 
cerned with obtaining the conditional multiplicity function of groups at an epoch with 
redshift z, given that they are bound into an object of a particular mass at the present 
epoch. This is combined with the present distribution of group masses in order to 
obtain the joint multiplicity function. The difficulty in obtaining these functions lies in 
determining the cross-corelation between a set of small volumes and the larger 
volume that contains them. We show that this correlation has a simple form. The for- 
mulae we derive are checked for self-consistency, and are compared with the Wbody 
simulations of Efstathiou et al. The numerical results are found to be in extremely 
good agreement. 

These multiplicity functions are applied to study the evolutionary histories of 
groups and clusters. We obtain a number of results relating to the infall of galaxies in 
small groups into large clusters, and to the density of the more massive groups at early 
times. In particular, we illustrate our analysis by making an in-depth comparison of 
the theoretical evolution with the Butcher-Oemler effect observed in rich clusters at 
moderate redshifts. We find that the growth of the infall rate over these look-back 
times is not (by itself) sufficient to explain the rapidly increasing fraction of blue 
galaxies in these clusters, but that a good quantitative fit to the available data can be 
obtained if allowance is made for the increased star burst activity that is seen in the 
spectra of the distant blue galaxies. 

1 INTRODUCTION 

The gravitational structures that are seen in the Universe 
today are widely accepted to have grown out of small 
perturbations in the mean density of the early Universe (e.g. 
Peebles 1980). The fluctuations may result from quantum 
mechanical effects at very early times. In most scenarios, for 
example the standard Cold Dark Matter model (cf. Davis et 
al. 1985, and references therein) an appreciable fraction of 
the power in these fluctuations has a small-scale length. The 
larger structures, such as galaxies, groups of galaxies and rich 
clusters, then grow by the agglomeration of smaller units. 
The merging process acts on all scales so that all the 
condensations are growing with time. At late times, more and 
more of the mass becomes bound into larger and larger 
condensations. Following Peebles, the process is termed 
hierarchical clustering. 

It is of great interest to study the size distribution of the 
condensed masses. In particular, we wish to determine the 

size distribution of the masses combining to form a cluster of 
given size at the present-day. In a strict hierarchical visualiza- 
tion, the merging lumps would all be of similar size. As we 
will show, the merging in fact occurs between lumps covering 
the whole range of available sizes. Our solution also allows us 
to discuss the distribution in present-day mass of condensa- 
tions of a particular size chosen at some previous epoch. 

The evolution of a system of self-gravitating particles is 
best studied using a full A-body computer code. This 
method, however, has two disadvantages. First, the simula- 
tion is limited both by the resolution of the smallest particle 
size, and by the statistical variations in the properties and 
histories of the small numbers of massive groups. Secondly, 
while we would be able to obtain a solution to a particular 
well-defined problem, without an analytic framework we 
would gain neither an understanding of the physical 
processes involved, nor the ability to adapt our solution to a 
change in the cosmological parameters. Fortunately, A-body 
simulations started from scale-free initial conditions by 
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Efstathiou et al. (1988, EFWD) showed that the analytic 
theory developed by Press & Schechter (1974, PS) provides 
a good quantitative statistical description of the evolution of 
the distribution of mass amongst groups and clusters of 
various sizes (this distribution is referred to as the multiplicity 
function). However, the work of PS only predicts the mass 
distribution in the Universe as a whole. In the present work, 
we will extend the theory to follow the multiplicity function 
of the progenitor components of a present-epoch group of 
given size. 

While this paper is principally concerned with providing a 
mathematical description for the evolution of the clustering 
hierarchy, the results are of considerable utility to a number 
of problems in cosmology and extra-galactic astronomy. We 
may apply the results to gain insight into the formation of 
clusters. For example, various astronomical problems lead to 
questions such as: “Is there a particular ‘epoch of cluster 
formation’?”; or “What fraction of the mass of growing 
clusters is gained from the accretion of large groups as 
opposed to individual galaxies?” In addition, it is of con- 
siderable interest to review the spherical collapse model for 
galaxy clusters of Gunn & Gott (1972) in the light of our 
improved understanding of the hierarchical growth. The 
study is also relevant to problems concerning the evolution 
of galaxies in different environments. For example, the 
results we present might be combined with studies of the 
effects of the environment on galaxy evolution in order to 
compare the average star formation histories of galaxies in 
the field with those in rich clusters. At an earlier time, the 
modulation of the growth of galaxy-sized condensations by 
larger scale inhomogeneities may have resulted in the 
differing properties of galaxies in high- and low-density 
regions of the Universe. Such natural biasingm the formation 
of galaxies has been suggested by White et al.(l9%l) in order 
to reconcile the observed mass density of the Universe with 
the critical mass density (i.e. Q = l) suggested by grand 
unified theories of inflation (e.g. Guth 1981). In the present 
paper, we chose to limit our attention to one simple problem. 
We consider whether the increased blue fraction of galaxies 
in rich clustes at moderate redshifts (the Butcher-Oemler 
effect, Butcher & Oemler 1978) might be explained in terms 
of an increased infall rate of field galaxies into rich clusters at 
these redshifts. A detailed consideration of the other issues 
outlined above will be published subsequently. 

An outline of the paper is as follows. In Section 2, we 
outline the principles of the Press-Schechter formalism that 
we will use in the subsequent work. Section 3 describes our 
basic mathematical results. In turn, we derive the conditional 
multiplicity function describing the mass distribution of 
objects under the condition that they will collapse to form an 
object of set size at the present epoch, and the joint multi- 
plicity function of objects of mass M at a specified epoch that 
collapse to form part of a group of total mass M' at the 
present. The behaviour and the component parts of each of 
these functions are discussed in some detail. In Section 4, we 
demonstrate the validity of this work in two ways. First, we 
show that the joint multiplicity function is consistent with the 
universal (i.e. Press-Schechter) multiplicity function both at 
the previous epoch and at the present. Secondly, we compare 
our results with the numerical simulations of EFWD. 
Extremely good quantitative agreement is found. In Section 
5, we apply our results to study the hierarchical growth of 
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groups and clusters. Using the results of the previous 
sections, it is possible to obtain expressions for the infall rate 
into proto-clusters as a function of present-day cluster mass. 
We also consider the density of massive groups formed at 
early times. In Section 6, the results for the redshift evolution 
of the infall rate are compared with the observed increase in 
the fraction of blue galaxies in rich clusters at moderate 
redshifts (the Butcher-Oemler effect). Our basic mathemati- 
cal results are concisely summarized in Section 7. 

2 THE BASIC PRINCIPLES OF THE PS 
THEORY 

For a detailed mathematical description of the PS theory, we 
refer the reader to the original paper and EFWD as the 
workings are a special case of those presented in Section 3. 
Here we briefly outline the basic principles involved. 

At some early epoch, the Universe is imagined to be well- 
described by an isotropic random Gaussian field of small 
density perturbations. The phases of fluctuations are random 
so that the field is entirely defined by its power spectrum (i.e. 
by the amplitudes of its Fourier components). The initial 
density variations are small (i.e. (5 = Ap/p^l) and their 
evolution, in this regime, is described by the linear form of 
Vlasov’s equation. The density perturbations grow with time 
until they become non-linear (i.e. ó - 1), at which point their 
evolution can no longer be followed by simple analytic 
techniques. PS circumvent this difficulty by assuming the 
following. 

(i) The evolution of the density perturbations can be 
traced using linear theory until the clump ‘turns around’ and 
breaks away from the universal expansion. For a spherical 
tophat perturbation (in a Universe of closure density) this 
occurs at a density contrast óc ~ 1.68 (Gunn & Gott 1972). 

(ii) At this density contrast, the region collapses rapidly 
and independently of its surroundings. The internal structure 
of the clump is lost by violent relaxation (Lynden-Bell 1967). 
To the rest of the Universe, the region behaves as if it were a 
single body of large mass. 
At the expense of our knowledge of the internal structure of 
the collapsing clumps, we can therefore continue to apply the 
linear equation to the ‘gas’ of particles to calculate their 
evolving mass distribution. Although this results in a 
considerable simplification of the equations describing the 
evolution of the density field, we must still solve the problem 
of counting the non-linear objects of a given mass. This 
requires that we are able to relate the probability distribution 
of the density fluctuations (averaged over a volume V) to the 
probability that a given region is sufficiently overdense to 
collapse on the scale V but is not absorbed in the collapse of 
a larger volume. This probability can then be used to 
determine the fraction of the mass of the Universe that will 
be contained in clumps of mass pV. PS suggest a plausible 
transformation between the probability distribution function 
of the Gaussian field (smoothed on scale F), P{ôv) and the 
multiplicity function of the condensed groups, 

p(M,z)= -2p0 
d^[ôy>ÔM 

dM 
dM, (1) 

where p0 is the mean density of the Universe, and <5c(z) is the 
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overdensity threshold for collapse at the epoch correspond- 
ing to the redshift z. [Note that we use the symbol & to 
distinguish the (complementary) cumulative probability 
distribution of ôv from its probability density distribution, 
P(ôv) dô y.] The derivation of the above relation is, however, 
flawed by the fact that the factor of 2 must be inserted ‘by 
hand’ in order that the total mass of the Universe remains 
constant. This weak point of the theory has been criticized 
(e.g. Bond et al. 1990; Peacock & Heavens 1990), however, 
the final solution gains credibility from comparison with the 
Af-body simulations of EFWD. We will adopt the 
Press-Schechter transformation on an empirical basis in the 
work presented here. 

In addition to the approximations made in setting up the 
PS formalism, two further assumptions will be made in order 
to simplify the mathematical treatment of this problem. 

(i) The Universe is taken to be flat (i.e. Q = l). This 
ensures that the density fluctuations grow linearly with the 
expansion factor. Note, however, that the growth is still 
approximately linear in an open universe (e.g. Shandarin, 
Doroshkevich & Zel’dovich 1983) and that it is therefore 
simple to adapt the Press-Schechter formalism to work in 
this regime also. The effect is solely to stretch the redshift 
axis of the evolution. 

(ii) The initial power spectrum may be taken to be a 
power law (i.e. \ôk\2<x-kn). Since the variance of the density 
field can be written explicitly as a function of the smoothing 
scale, this simplifies the mathematical form of the formulae. 
The reader should note, however, that the formulae 
presented in this paper may readily be reworked leaving the 
variance of the density field as a general function of the 
smoothing scale. 

With these assumptions there is only one characteristic scale 
in the Universe (the expansion factor). The evolution of the 
mass distribution is therefore self-similar, having the same 
functional form at each epoch and only altering by a magnifi- 
cation factor, M*, that determines the ‘typical’ size of the 
condensed groups. The actual form that is derived for the 
universal multiplicity function is 

Ä ill Ui. 
\{n +3)/6 

(2) 

: exp 
1 M 

2 \M*(z) 

(n +3)/3 dM 
M ’ 

where + z)-6/("+3). 
The original PS theory deals with the evolution of the 

multiplicity function of the Universe as a whole. No attempt 
is made to determine how these masses are distributed in 
space. EFWD started to extend the basic theory in order to 
examine how the multiplicity function was altered in regions 
of large-scale density enhancement. The solution to this 
problem allows the evolution in a region that condenses to 
become a rich cluster at the present epoch to be compared 
with the evolution elsewhere in the Universe. The analytical 
work of EFWD showed that the most massive groups at 
early times were incorporated into the most massive groups 
at the present - a result in qualitative agreement with their N- 
body simulations. However, this method of analysis is only 

valid when the correlations between the fluctuations on 
different scales are negligible. Therefore, the sub- 
components are required to be very much less massive than 
the final cluster. 

In the present work, we show that these cross-correlations 
have a simple dependence, and we develop a more sophisti- 
cated treatment of the problem that is applicable over the full 
range of sub-component masses. We are able to derive a 
conditional multiplicity function for the sub-components (at 
an epoch corresponding to redshift z) of a present-epoch 
group of given mass. This function is demonstrated to have 
the required property that it recovers the universal multi- 
plicity function (at epoch z) when combined appropriately 
with the universal multiplicity distribution of the groups at 
the final epoch. We also demonstrate that it gives an 
extremely good quantitative fit to the numerical results 
obtained by EFWD from TV-body simulations. 

3 THE EVOLUTION OF GROUPS - 
MATHEMATICL RESULTS 

3.1 Conditional probabilities in random Gaussian fields 

In the Universe at an early time, we represent the probability 
distribution of the small variations in the otherwise smooth 
distribution of matter as a three-dimensional Gaussian 
random field. In other words, the probability distribution of 
the density, measured as an average over a randomly selected 
volume V,is 

P(àv)= -==—exp 
fljtOy ' 

where <3;/ is the overdensity of the volume = (pK-p)/yô, and 
Oy is the rms variation of ô v. Even if the random field is not 
truly Gaussian, the Central Limit Theorem usually justifies 
the use of this approximation. The reader should note that 
the volume V contains a mass M~ pQV 

In this section, our aim is to determine the probability 
distribution of the density fluctuations in a volume V that is 
contained within a larger volume V in which the average 
overdensity has a predetermined value. Aside from the 
requirement that it is entirely contained within Vf, V is 
chosen at random. Bayes’ formula allows us to express this 
conditional probability distribution in terms of the joint 
probability distribution of ô,/ and ôv>, 

P(ôv\ôv.) 
P(Ôy, ôy') 

P(Ôy) ’ 
(3) 

where P(ôv) is the probability that we measure the density 
inside the volume V (chosen without reference to F ) to be 
ôy. (For strict mathematical correctness, we should require 
the overdensity to lie between ôv and ôv+ s, where e is an 
arbitrarily small number. We use the looser terminology for 
the sake of clarity.) P(ôv, ôv>) is the probability that we 
measure the overdensities of F' (chosen at random) and V 
(chosen at random from within F') to be ô y and ô v, respec- 
tively; P(ó K| ó */') is the probability that we measure the over- 
density inside F to be ô,/ given that we already know the 
overdensity of the large volume V' (that contains F ) to be 
(V. 
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Abstracting from this problem, we consider a pair of 
Gaussian distributed random variables(x, y) that have a joint 
probability distribution that is also Gaussian. This is 
equivalent to stating that the joint probability distribution 
may be written as 

P(x,y)< 
1 1 

2jt 1er,71 
¡exp -i(Ax, Ay)a~i/(^x,Ay)T (4) 

where Ax = jc — i, Ay = y — ÿ and is the covariance matrix. 
Using Bayes’ formula (equation 3), the conditional prob- 
ability P(x\y) can be rewritten as the product of a normaliza- 
tion factor and the exponential term, 

exp 1 oW, (ax _ Ay a\y \
2 

2 02
x0

2y - o\y \ Gx Oy Ox Oyj 
(5) 

This is a Gaussian distribution with mean 

PX\y = -I Ay, 

and variance 

J*\y " ol- 2 2 OvGv 

2\ 
2 

Oy/ 
2 Oy. 

If the joint probability distribution of ôv and ôv> is 
Gaussian, the above theorem (Adler 1981) can be applied to 
calculate the conditional probability P(ôK| As a conse- 
quence of the Central Limit Theorem, and the over- 
density of a particular volume V have a bivariate Gaussian 
distribution if the Fourier components of the random density 
field have independent phases (Bardeen et al. 1986). The 
density fluctuations that arise from quantum effects in an 
inflationary universe have just this property. The joint 
distribution of <V and the overdensity of a randomly chosen 
volume Fis a weighted sum of the Gaussian distributions for 
each particular V. Since the means and variances of the 
individual distributions are similar, the combined distribu- 
tion is also approximately Gaussian to within a few per cent. 
Therefore, once we have established the variance and co- 
variance terms 

02v=(Ô2y), al' = (Ô2y) 

and 

O vl/> = (Ô y, Ôy) 

the conditional probability distribution of a randomly chosen 
ô v, given ô y, is accurately determined. 

The variances of ôj/ and ôv> are defined by the power 
spectrum that we assume for the density fluctuations. In 
Appendix A, we show that the power spectrum also deter- 
mines the co-variance, o2

vv>. We find that 

G^y^o]/' (6) 

The simplicity of this result is striking. However, it arises 
directly if the mean overdensity of the small volumes V 
contained in F' is assumed to equal the overdensity of region 
F' as a whole: 

((Ôv)vÔv>)v>— 02yf, 
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3.2 The conditional probability distribution of density 
fluctuations 

We now apply the conditional probability derived in Section 
3.1 to the study of the modulation of density fluctuations on 
scale F by a field on scale F'. Rewriting equation 5, 
including the correct normalization factor and using 
equation 6 we obtain 

P(ôy\ôv:)dôv=- 2 2^ exp 
[2jt(Oy- Oy>)\ 2(Oy— Oy) 

(7) 

It can be seen that this probability distribution has the 
anticipated mean (i.e. (ô(/)=ôI/), and that in the case that 
V>V (i.e. oy < Oy), it reproduces the ‘/c-split’ approxima- 
tion used by EFWD (i.e. the distribution of ô >/ has the same 
dispersion everywhere, but the mean level is shifted up or 
down by the ‘background’ overdensity, ô y). 

3.3 The conditional multiplicity function 

Following EFWD, we proceed to determine F(M, óc; M', 
ô'), the fraction of regions of mass M, contained within a 
larger scale region of mass M' and overdensity ô', that are 
more overdense than the critical density, ôc (at which non- 
linear gravitational effects become dominant). Note that we 
are now working in terms of mass, but that this is directly 
proportional to the volume of the region, M~ pQV since the 
overdensities are small. We have 

F(M,ôc\M', ô') = P{ôy=ô\ôy = ô,)dô 
J <5C 

(8) 

^2jt{o o2
m> 

exp 
-(ó-ó'; 

2(cta/ om<) 
dà 

1 

y[jT * 
j2{ol,-olr) 

dy 

These regions rapidly collapse (if they have not already done 
so) to form small dense objects. A large proportion of them 
will, however, be consumed in the collapse of a larger region 
that surrounds them. In Section 4, we will associate these 
objects with individual isolated galaxies, groups of galaxies or 
clusters of galaxies depending on their mass. For con- 
venience, we refer to them collectively as groups. The 
spherical collapse models of Gunn & Gott (1972) suggest 
that the appropriate numerical value for ôc is 1.68. 

As it stands, equation 8 gives the fraction of mass in 
collapsed groups of size greater than M only at the epoch, zt, 
at which the power spectrum has been defined. However, as 
the fluctuations are small, they evolve linearly (i.e. the 
evolution of ôk does not depend on its amplitude). The 
power spectrum therefore retains its initial shape, and 
changes only in its normalization. In a flat universe (i.e. 
Q = 1), the amplitude grows as 1/(1 + z). Therefore we may 
apply equation 8 to calculate F at any arbitrary epoch z by 
determining the fraction of regions which have overdensity 
greater than <5c(z) = <5C(1 + ^)/(1 + £/)at epoch z¿. 
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Continuing to follow the derivation of the original 
Press-Schechter theory, we related F to the distribution of 
the total mass, M', among collapsed groups of given size by 
the ansatz ( cf equation 1 ) 

/(M, óc(z)|M', ô')dM= -2 
dF{M, ôc(z)\M', ô' 

dM 
dM, (9) 

where the multiplicity fraction, /is defined as the fraction of 
the total mass of M' that is contained in collapsed groups 
with masses between M and M + dM. As the integral in 
equation 8 has been expressed in terms of the dummy 
variable y, the partial differentiation may be performed expli- 
citly: 

Note that M*(0) = (ô0/A )-6A« + 3) determines the typical mass 
(averaging over the whole Universe) that has just collapsed 
at the present epoch, and that M*(z~ô'/ô0) = [{l +z~ ô'/ 
ô0)ô0/A]_6/(,î+3) determines the typical size scale that 
collapses in this region at the epoch z (the constant A is 
determined by the normalization of the power spectrum). 
There is an obvious restriction that 1+ z — ô'lô0>0, or else 
the larger region M' would have collapsed before the epoch 
z, so that its division into sub-units at this epoch is impos- 
sible. The conditional multiplicity fraction can be simplified 
by using these variables to scale the solution 

= (12) 
Jlñ 3 A 

f(M, ôc(z)\M', ô')dM= 2 2 \3/2 
' -Om>) 

(<3C (10) M 
M^z-ô'/ôo 

+ 3)/6 

x exp -(<3c-<n2 

2(om — oM') 
dOfo 
dM 

dM. vCXp 
2A 

M 
M*(z~ô /ô0) 

(n+3)/3 

As described in Section 2.2, we assume that the initial 
spectrum of the density fluctuations is a power law with 
spectral index n (i.e. | <5J2 °c kn). From Appendix A, we obtain 
the variance of the fluctuations as 

oM = AM ~(n+3)l6, 

where the normalization constant A is determined by the 
amplitude of the density fluctuations at some initia epoch z„ 
by the spectral index and by the form of the window 
function. Inserting this into equation 10 we obtain 

/(M, óc(z)|M', 0r)dM = 
1 (w+3) g2(M) 
^ 3 (ID 

x(ôc- ô )exp 
(¿c-¿')2 I dM 

2[ct2(M)-ct2(M')]J M ’ 

where we have changed the notation used for the variances in 
order to emphasize that most of the functional dependence 
of/on the scale Mis contained in the variance a2(M). 

Equation (11) can be simplified and rewritten to make the 
scaling of the masses with the amplitude of the initial power 
spectrum more explicit. We define 

A = 
o2{M) - o2(M' 

o (M) 

1/2 
■ M 

‘-'v 

\(n+3)/3 1/2 

and write ô0 for the critical overdensity that a structure must 
have at the initial epoch, zh in order to have just collapsed at 
the present day [i.e. ó0 = óc(z¿)/(l+ z¿)= 1.68/(1+ Z/)]. A 
region which just collapses at epoch z must have an over- 
density at zt of óc(z) = (l+z)ó0. (We are here making the 
assumption that the Universe is flat.) In this notation, 

f(M,ôc\M',ô')dM = 
1 (n + 3) 1 

■Jlñ 3 a3 

j^{n+3)/6 (1 + Z Ô/ÔQ)Ô0 

A 

x exp 
M

(,+3)/3
ó2(i + z-ó7óo)

2 

2 A2 A2 

dM 
M ' 

dM 
x —. 

M 

In the case that Mr> M, À « 1 (i.e. the correlation between 
the scales is negligible) and we recover the ‘Ä:-split’ approxi- 
mation used by EFWD. In the limit M'-^ °o (i.e. the large- 
scale region grows to include the entire Universe), by 
definition ô'->0, and the conditional multiplicity fraction 
reduces to the universal multiplicity fraction, equation (2) 
(divided by p0). 

As is explained in the following section, we will only apply 
this formula to present-day regions which are just sufficiently 
overdense to collapse on the scale M', but are not dense 
enough to collapse on a slightly larger scale. This requires 
that ó'= <50. Adopting this value, we have plotted, in Figs 
1-3,/(M) for a selection of parameters covering the range of 
interest. In each diagram, we show four curves correspond- 
ing to the spectral indices 1,0, - 1 and - 2. Three of the set 
of four diagrams at each epoch show the effect of altering the 
mass of the present-day group, M', between 32,1.0 and 0.13 
M*(0). In the remaining figure, we show the Press-Schechter 
universal multiplicity function at this epoch. In order to 
compare the evolution of the groups, the diagrams are 
repeated at redshifts of 0.5, 1.0 and 2.0. In order to be 
consistent with EFWD, we have plotted the multiplicity 
fraction as a function of multiplicity scaled to the present-day 
peak in the universal multiplicity function, i.e. as a function of 
m = log2[M/M*(0)]. 

Careful study of these diagrams allows us to quahtatively 
understand the behaviour of /. First, the fact that the region 
M' is overdense has the effect of accelerating the evolution of 
the groups inside its boundary. Thus the peak in the 
multiplicity function (i.e. the typical size of a group) for the 
M' = 32 case is always shifted to higher masses than the peak 
in the universal distribution. The degree of ‘acceleration’ is 
greater for flatter (i.e. more negative) power spectra. The 
factor M* in the exponential of equation (12) is always 
advanced above the M* of the universal distribution 
(equation 2) in any region which is collapsing at the present 
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scaled multiplicty 

the multiplicity function 

scaled multiplicty 

Figure 1. The conditional multiplicity fraction (the fraction of the present-day group mass, M', bound into groups of mass M at redshift z) 
plotted for z = 2.0. The group mass Mis presented as multiplicity scaled to the typical mass of a present-day group, i.e. m = log2[M/M*(0)]. The 
four curves in each plot correspond to spectral indices, n, of 1, 0, — 1 and — 2 (most to least peaked respectively). Plot (a) shows the universal 
multiplicity function (equation 2) scaled to p0 = l; (b) shows the conditional multiplicity fraction, f, in a region which collapses to form a single 
group of scaled multiplicity ra' = 5.0 at the present epoch; (c) and (d) show / for m' = 0.0 and - 3.0, respectively. 

day, irrespective of its mass. However, there is clearly an 
upper limit to the masses of the groups that can be contained 
within M' (i.e. M' itself). This cut-off is introduced by the 
factor À in the exponent that has arisen from the cross- 
correlation between the mass scales. The sharpness of the 
truncation changes with the spectral index, and the epoch at 
which the groups are ‘observed’. It is this factor that 
distinguishes our formula from the /c-split approximation 
derived by EFWD; for steep power spectra, e.g. n = + 1, the 
cut-off is very sudden, and the A:-split is a good approxima- 
tion over almost the full range of masses below M' provided 
no attempt is made to renormalize the distribution. In the 
formula presented here (we will show later that it appears to 
be the exact solution), the normalization of the multiplicity 
fraction (i.e. the requirement that jofdM = 1) is maintained 
by the 1/Ä3 factor. It has the effect of piling up the ‘extra’ 
groups, which would have masses larger than M1 in the 

absence of the cut-off, just below M'. If the power spectrum 
is steep, and the peak of the distribution in larger regions has 
advanced beyond M', a very sharp spike is produced. For flat 
initial power spectra (e.g. n = -2), the distributions are 
always very broad, a wide range of group sizes contributing 
significantly to the final mass. The effect of the cut-off at M' 
is felt in the multiplicity fraction of group masses significantly 
smaller than M'. 

We may now understand the time evolution of the multi- 
plicity fraction displayed in Figs 1-3. At large redshifts, there 
is little tendency for groups inside M' to have masses that 
approch M'. The distribution is therefore very similar to the 
universal distribution at this epoch, but advanced to a some- 
what larger mean mass (cf. Fig. lb). At later times, groups in 
the high-mass tail of the multiplicity function show some 
tendency to grow to masses approaching M'. This causes a 
distortion in the shape of the multiplicity fraction (c/ Figs 1c 
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scoied multiplicty 

the multiplicity function 

scaled multiplicty scaled multiplicty 

Figure 2. The multiplicity functions shown in Fig. 1 reproduced at z = 1.0. 

and 2b) which grows as the fraction of mass that would 
otherwise be bound into groups larger than M’ increases (e.g. 
Fig. 2c). At late times, almost all the mass is bound into 
groups that are only slightly less massive than M' (e.g. Fig. 
3c). Note that while the qualitative explanation of the evolu- 
tion of / is the same for all spectral indices and present-day 
masses (M'), the time-scale is strongly dependent on n and 
M'. 

3.4 The joint multiplicity function 

The conditional multiplicity fraction derived in the previous 
section is not the ultimate goal of this paper. In order to study 
the evolutionary history of groups and clusters of galaxies, we 
also require the joint multiplicity function, i.e. the mass 
density of groups with masses in the range M to M + dM at 
epoch z that are incorporated into groups with masses M' to 
M' + dM' at the present epoch. 

Before proceeding, it is helpful to review the reasoning 
behind the PS ansatz (equation 1) in greater detail. We 
consider a volume V chosen at random. The probability that 

is volume has overdensity greater than the threshold for 
collapse, <5C, is 

&(ôv>ôc)= 
■M 

i 7ZO y 
exp( - ô'2I2o2

v) dô ' 

However, we wish only to count objects which collapse on 
the scale of V but do not collapse on a slightly larger scale, 
V + dV. The probability that this is true of region V is 

P(V) dV=&{ôV> Óc)¿? (ôV+dy< óc| ôy> ôc), 

or, if we introduce the short-hand notation^ ( V)=^> (ôv> 
ôc) and &(VTdV\V) for the conditional probability that 
V + dV has not collapsed, ^ (ôv+dv< ôc\ôv> ôc), 

p(V) dV=& {V)&(V+dV\ V) =^(V){1 -^[V+dV\ V}), 

(13) 

with the obvious extension to the notation. Applying Bayes’ 
formula to write the conditional probability, ¿?{V+ dV\ V ), 
in terms of the joint probability that both V and V + dV are 
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the multiplicity function the multiplicity function 

Figure 3. The multiplicity functions shown in Fig. 1 reproduced at z - 0.5. 

above the critical density, we have: In order that all the mass of the Universe is bound into 
collapsed objects (even if their size is very small), the 
constant of proportionality must be 2.0 [=1/^(0)]. This 
brings us to equation ( 1 ). 

Following the same technique, we can write the joint multi- 
= ^ ( F ) -¿P (V+dV,V) plicity function as the product of probabilities 

p{V)dV=#>{V)\l 
&(V+dV, V) 

The next step is to note that if V+dV collapses, then so must 
V. We can therefore set^ ( V+ dV, V) =.9> ( V + dV), giving 

d&lV) 
p( V) dV=& {V)-&(V+dV)= ^ dV. 

The total number of possible collapsed volumes of size V is 
proportional to 1/U but the mass of each group is pro- 
portional to V. The mass density (or multiplicity function) of 
groups of mass M( «: p0 F ) is therefore taken to be propor- 
tional to 

a^(M) 
Po dM 

dM. 

p[M, z, M') dM dM' = ap^ {M') 

x ^ (M' + dM'| M')â? (M| V = <50) 

x&(MTJM\M,ôm. = ô0), 

where we make use of the short-hand notation adopted in 
equation (13). a is a numerical constant of order unity. In 
addition, we have made use of the differentiability of the 
fluctuations in the density field (when smoothed on scale M) 
to note that the requirement that the region M' have mean 
overdensity greater than ô0, but that the immediately 
surrounding region M'+ dM' have àM' + dM><ÔQ, forces 

= (V Expanding the probabilities as done previously, and^ 
using the definition of the conditional multiplicity fraction, f 
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(equation 9), gives 

p(M,z,M')dMdM'= - 2pJ(M, ÔC\M', 00) dM 

dM 

where the numerical factor of 2 (corresponding to a = 4) has 
been chosen in accordance with the original hypothesis of 
PS. The expression is then simplified following the original 
derivation of PS to give 

p(M, z, M') dM dM' = 2p0/(M, (5C|M\ 00) 

dM 
1 (n+3) ô{) 

y[2jt o(Mr) 
' exp -<3 

2a (M 
dM 

(14) 

2jz \ 3 
Po "+3 1 M 

M*{z -1) 

>+3)/6 

^ exp] 
2À 

M 
M*(z-1) 

n +3)/3 I M 

M*(0) 

[n+3)/6 

v exp] 
M 

M*(0) 

(/?+3)/3] dM dM' 
M M' 

4 SELF-CONSISTENCY AND NUMERICAL 
ACCURACY 

4.1 Recovering the universal Press-Schechter distribution 

Since we have made no assumptions regarding the relative 
sizes of Mand M', we should expect to be able to recover the 
universal (PS) multiplicity functions of Mand Mr from their 
joint distribution function. To recover the distribution of M' 
from p(M, z, M') dM dM' is trivial (given the PS factor of 2). 
The integral of p(M, z, M') dM dM' over Mmay be split into 
the integral of /[M, ôc(z)|M', ô^dM over M, and the 
function 

Po I ft + 3 

JIp 

l m' Y+3)l6 

exp 
M 

\M*(0) 

(n+3)/3' dM' 
M' 

(which is exactly the universal multiplicity function at the 
present-day, equation 2). From the way in which we have 
defined /as a fraction (equation 9), its integral over Mmust 
be unity. 

It is not, however, obvious that we can recover the 
universal distribution of M, as we require a seeminly unlikely 
conspiracy that allows the suppression factor A to exactly 
compensate for the acceleration of the clustering hierarchy 
caused by the overdensity of the final region. The 
dependence of the joint multiplicity function on M' is of such 
a form that the integration cannot be performed analytically 
by standard techniques. However, we show in Appendix B, 
using an unusual analytical technique, that the integral 

p(M, z, M') dM dM' 
J M’ = M 

(15) 

does indeed exactly recover the universal multiplicity 
function p(M, z). We emphasize that this is an extremely 
striking result. It assures us of the mathematical self- 
consistency of the Press-Schechter formalism that we have 
applied in the derivation of the joint multiplicity function 
(equation 14). 

In addition to the result described above, White & Frenk 
(1990), have noted that the conditional multiplicity functions 
obey the relation 

/(M,, z, IM2, z2)f(M2, z2\ M3, z3) dM2 
J M2 

=f(Ml,zi I M3,z3), 

where This result is unexpected as it is not 
required for the self-consistency of the theory. 

4.2 Comparison with A-body simulations 

Comparison with the A-body simulations of EFWD 
provides a second test of the validity of the joint multiplicity 
function. These authors plot the fraction of groups of mass M 
(at five different epochs) which are incorporated into massive 
groups at the end of the simulation (massive groups are 
defined so as to contain 18 per cent of the total mass at the 
final output time). This fraction is readily calculated from the 
joint multiplicity function, 

_ Jac, p{M, z, M') dM dM' 
mg p{M,z)dM 

The parameters z and M*(0) are defined by the output times 
and initial perturbation amplitudes of the simulations. Table 
1 lists relevant values. The epoch is calculated from the 
expansion factors given by EFWD (1 +z =afla). A formula 
is also given for M* at the final epoch time, but note that (i) 
the definition of M* used by EFWD differs from ours by a 
factor of 23/(,/+3); (Ü) the initial amplitude of the n = -2 
simulations is defined at an expansion factor a = 2. There are 
no free parameters in our calculation of Fmg. 

Table 1. Parameters used to form comparison with the A-body 
simulations of EFWD. 

+i 
o 

-i 
-2 

M.(0) 
260 
194 
103 
82.4 

Zf-l 
0.848 
0.585 
0.359 
0.166 

Zf-2 
2.415 
1.512 
0.847 
0.360 

~f — 3 
5.311 
2.982 
1.510 
0.585 

Zf-4 
10.66 
5.311 
2.411 
0.848 

Zf-5 
20.55 

9.00 
3.636 
1.155 

The PS predictions are superposed on the plots of EFWD 
in Figs 4-7. The fits can be seen not only to match the 
qualitative behaviour of the A-body result, but also, with a 
few exceptions, to give good numerical agreement. Where 
the fit is poor, it is not clear whether it is the PS theory or the 
A-body approach that is inaccurate - e.g. in the ft = - 2 case, 
the discrepancy can be understood in terms of saturation and 
transient effects in the simulations. We conclude that the joint 
multiplicity function, that we have derived using the 
principles of PS, provides an accurate description for the 
evolution of gravitational structure in the expanding universe. 
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Figure 4. Comparison of the mass fraction (i.e. the fraction of the 
mass contained today in the most massive groups that is bound into 
groups more massive than M at a previous epoch) calculated from 
the joint multiplicity function (smooth solid lines) with that 
measured in the simulations of EFWD. The last five output times 
from the simulations are shown as dashed lines. This plot shows the 
case of n = l. The parameters used to define the theoretical curves 
are given in Table 1. 
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divide groups into two types above and below a mass-scale 
Ms. We apply the multiplicity fractions derived previously 
(equations 12 and 14) to address problems relating to the 
mass flux of groups through the mass-scale Ms. 

5.1 The growth of proto-clusters 

At epoch z, the fraction of the final mass of a cluster that is 
contained in high-mass groups (i.e. M> Ms) is related to the 
conditional multiplicity fraction (equation 12) by 

Fs(z, M'\ Ms) = 
J Ms 

(16) 

where/(M, z|M')=/[M, <5c(z)|M', ôc(0)] in the notation of 
equation (12), 

du 

in the notation of Appendix B. After some working this can 
be rewritten in terms of the complementary error function 

Fs(z, M'; Ms) = erfc 
42As 

(n + 3)/6 

M*(0) 

where the final cluster mass enters through 

1/2 

Multiplicity 
Figure 5. As for Fig. 4, but for the case of « = 0. 

5 APPLICATION TO THE EVOLUTION OF 
GROUPS OF GALAXIES 

In order to illustrate the manner in which a cluster of galaxies 
builds up from the infall of smaller groups, it is convenient to 

We apply this formula directly to calculate the epoch at 
which half of the present-day mass of a cluster is bound into 
higher mass groups (i.e. M> Ms). Setting Fs(zs, M'\ Ms)= 1/2 
gives 

zs(M’;Ms) = 
0.97 

[Ms/M*(0)]("+3)/6 1-ñ 'm 

(n + 3)/3 1/2 
(17) 

For the case Ms = M*(0), zs is plotted for each of the spectral 
indices in Fig. 8. Its behaviour may be readily understood as 
follows. In the limit zs-+0, and as 
zs Zoo = 0.97 (0)] +3)/6; however, the transition 
between the two extremes is sensitive to the spectral index. 
For n= + 1, zs reaches 90 per cent of its final value at 5.6 Ms, 
i.e. other than the small range of groups that have only 
recently grown through Ms, all large present-day groups 
assembled half their mass into groups more massive than Ms 

at very similar epochs. On the other hand, zs varies more 
slowly with M' for a flat initial power spectrum (n<-2). 
This leads to a somewhat stronger correlation between the 
present-day mass of a cluster and the history of its evolution. 

5.2 Infall into clusters of galaxies 

We have not yet exploited the full information contained in 
the function Fs. The growth of Fs with time gives us informa- 
tion on the rate at which the mass contained in groups 
smaller than Ms is being accumulated into groups more 
massive than Ms. It is helpful to distinguish the two ways in 
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Multiplicity 

Figure 6. As for Fig. 4, but for the case of « = - 1. 

which this growth may occur: (i) small groups (M<MS) are 
accreted on to (a few) much larger condensations (M> Ms); (ii) 
a few small groups, all having mass less than Ms, coalesce to 
produce a new massive condensation, this condensation later 
merging with other proto-cluster cores of similar size. Which 
of these mechanisms is dominant depends on the scale mass 
(Ms), the typical group mass (M*), the present-day cluster 
mass (M') and the spectral index (n), and cannot readily be 
determined without recourse to numerical simulations. We 
will refer to dFjdt as the inf all rate - visualizing it as the rate 
at which matter is infalling into the proto-cluster, either 
directly by accretion on to pre-existing proto-cluster cores, 
or by the creation of new proto-cluster cores which subse- 
quently coalesce with their longer established counter-parts. 
It is important to note that we do not mean to imply that the 
proto-cluster is dominated by a single very massive conden- 
sation. 

Up until this point it has not been necessary to distinguish 
between redshift (or the expansion of the Universe) and time. 
However, as we will wish to apply the present results to 
systems in which the natural time-scale is set by the clock of 
stellar evolution, it is necessary to derive the growth rate of Fs 

per unit proper time: 

R infall 
dF* 
dt 

dFs dz 
dz dt 

(18) 

2 [Ms/M«(0)r+3>/6 2 5/2 

Jin 3 

: exp 
2A, 

{n +3)/3 

M*(0) 

The infall rate is plotted in Figs 9 and 10 for initial power 
spectra with « = 0 and -2, respectively. We have set 
Ms = M*(0); and different line styles show final masses 
Mr/M*(0) = 1.5, 3.0, 10 and 1000. First, we note that ‘infall’ 
for a given final mass peaks at a well-defined time. The 
occurrence of this peak is purely a result of the compression 
of the relationship between redshift and time - the infall rate 
per unit redshift increases monotonically to the present day. 
The epoch at which the peak infall rate occurs depends on 
final mass in the same manner as zs. Secondly, we note that 
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Figure 8. This figure shows the redshift at which half the present- 
day mass of a group is bound into groups more massive than the 
‘scale mass’, Ms. It is plotted as a function of the log (to base 10) of 
the present-day mass [in units of M*(0)] for the case Ms = M*(0). 
The four curves show the effect of altering the spectral index of the 
initial perturbations. The solid line corresponds to n=+l; the 
dashed line to rc = 0; the dot-dashed line to n = - 1; and the dotted 
line to n= - 2. All the curves tend to an asymptotic redshift of 0.97. 

although there is a well-defined peak to the infall rate, the 
fall-off is very slow so that the peak rate is enhanced over 
that at the present day by a factor of only ~ 3, i.e. in this 
model the infall of small groups into rich clusters is very 
much an on-going process. 

It is interesting to apply this equation to compare the 
present-day infall rates of clusters of various masses, 

Onfall (0) 
4 [Ms/M*(0)](,,+3)/6 

3^/27^ 
(19) 

Comparison with equation (17) shows that the present infall 
rate is intimately connected with the epoch at which half the 
mass of the present-day cluster became bound into groups 
more massive than Ms, i.e. zs: 

(20) 

5.3 The density of large groups at early times 

Yet further information on the evolution of groups may be 
extracted from the joint multiplicity function, equation (14). 
We address the question of the density of the groups that are 
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Time (fraction of age of the universe) 

Figure 9. This figure shows the time dependence of the infall rate 
of small groups into larger ones for a steep (n = 0) initial power 
spectrum. Time, expressed as a fraction of the total age of the 
Universe, advances from left to right, i.e. the present is at 1.0. The 
rate of infall is expressed as the fraction of the present-day mass of 
the group infalling per unit time. The four curves show the infall in 
regions which collapse to form present-day groups of masses 1.5 
(solid line), 3.0 (dashed line), 10.0 (dot-dashed line) and 1000.0 
(dotted line). All masses have been expressed in terms of the typical 
present-day mass, M*(0), and we have divided small and large 
groups at Ms = M*{0). 

more massive than Ms (an arbitrary mass-scale) at an early 
epoch. The fraction of these groups that become bound into 
groups of mass M' at the present epoch is 

Ms,z)dM' = 
\Zsp{M,z)dM 

^ J”(4/2 jt)( 1 /A3)z exp[ - (z2w2/2A2)]exp[ - (i/2/2)] du du 

J” (2/^2jr) (1 +z) exp[-(l +z)2w2/2)] du 

in the notation of Appendix B. The integrals in this equation 
can be written as complimentary error functions 

f(M’\ > Ms, z) dM' = exp 
J2tc 

; erfc[(zA/2As)Ms] 

erfc{[(l +z)A/2]ws 

1 /«+3ÏÏ M' 

du (21) 

(/! +3)/6 

Ai*(0) 

:exp 
M 

M*(0) 

n + 3)/3 

erfc{(lA/2As)[Ms/M*(z -1)](,,+3)/6} dM' 

erfc{(l/72)[Ms/M*(z)](n+3)/6} M" 

Time (fraction of age of the universe) 

Figure 10. The time dependence of the infall rate for a flat 
(«= -2) power spectrum. The different curves show the effect of 
varying the present-day mass as described in Fig. 9. 

This equation is plotted for « = 0 and n = -2 spectral 
indices in Figs 11 and 12, respectively. Its form can be 
qualitatively understood as follows. Apart from the factor 
formed by the ratio of the two error functions, the distribu- 
tion follows that of the universal multiplicity function at the 
present epoch. However, the relationship between the mass- 
scale, Ms and the present-day mass enters through the factor 
As in the argument of the upper error function. At values of 
M' close to Ms, As is small, forcing the value of the comple- 
mentary error function towards zero. The effect is to cut-off 

O ^ ■ ' ' 1 ' •   • 1  , 1 , , , .  
0 0.5 1 1.5 2 

log(Present—Day Mass) 
Figure 11. A group which is more massive than Ms at epoch z will 
evolve to become bound into a group of mass M' at the present 
epoch. This figure shows the distribution of M' for groups that 
become more massive than at redshifts z = 0.5 (solid 
line), 1.0 (dashed line) and 2.0 (dotted line). These groups contain 
respectively 13 per cent, 5 per cent and 0.3 per cent of the total 
mass of the Universe. In this figure we illustrate the case n = 0. 
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Figure 12. This figure presents the same information as Fig. 11, 
but for the case of a flat (/? = - 2) power spectrum. Because we have 
chosen the special case of Ms = M*(0), the groups we distinguish in 
each of the curves contain the same fraction of the total mass of the 
Universe. 

the distribution from zero to slightly above Ms. For values of 
M' considerably larger than Ms, A->1 and the ratio of the 
error functions reaches a constant value. This factor re- 
normalizes the distribution so that the total area under each 
of the curves remains at unity. From the study of the figures, 
it can be seen that the cut-off imposed by As becomes less 
sharp as the redshift at which the high-mass groups are 
selected increases. Therefore, the groups that become 
massive at early times tend to evolve to become the most 
massive groups later on. Very few of the massive groups that 
we identify at epoch z will fail to grow significantly in their 
subsequent evolution. This effect is closely related to the 
natural mechanism discussed by White et al.{\9%l). 

In the previous sections, we showed that the more massive 
present-day clusters do not have significantly different 
average evolutionary histories (on group and galaxy mass- 
scales) from their less massive counter parts. The present 
result shows that there is a strong tendency for the most 
massive groups at early times to be incorporated into the 
most massive clusters at the present-day. These two results 
may appear contradictory, but they are not. Confusion has 
arisen because we have not been particular to distinguish 
between masses that have been specified as a fraction of the 
present-day cluster mass (e.g. in our calculation of zs, 
equation 17), and those that have been specified in absolute 
value (e.g. in equation 21). 

For example, following the derivation of (17), we may 
calculate the epoch at which 1 per cent of the present-day 
cluster mass is bound into massive groups, 

3.65 
Zl% [Ms/M*(0)](,,+3)/6 s' 

Figure 13. The redshift at which the first massive group (i.e. M> Ms) 
is formed in a region that collapses to become a present-day cluster 
of mass M'. The curves shown illustrate the dependence on cluster 
mass for a flat power spectrum (n= -2), the distinction between 
high- and low-mass groups being made at masses of Ms = 1.0 (solid 
line) and 5.0 (dashed line). Dotted lines show, for each value of Ms, 
the epoch at which a group larger than Ms forms in 20 per cent of 
regions destined to collapse to become a cluster of mass M'. It can 
be seen that this epoch is not much different from zlyw . 

in a present-day group of mass 10 Ms the mass in large 
(>MS) groups at z1o/o is implied to be 0.1 Ms. Clearly, this 
must be interpreted in a statistical sense, i.e. approximately 1 
in 10 of these present-day groups contained one group more 
massive than Ms at z^. We may now ask a subtly different 
question: At what epoch does the region that collapsed to 
form a typical present-day cluster of mass M' contain a single 
group of mass > Ms?’ From equation ( 16), by setting Fs = MJ 
M' (i.e. we require a mass of 1 Ms to be bound into a group of 
mass > Ms) we obtain 

J2Ä, 
[Ms/M*(0)]<',+3)/6 erfc_1[Ms/M'], 

where erfc-1 denotes the inverese of the complementary 
error function. This function is plotted for n = -2 and 
Ms = 1.0 and 5.0 in Fig. 13. It can be seen that this epoch is 
strongly correlated with M ' - the same effect as that seen in 
Figs 11 and 12. We emphasize again that this is not in 
conflict with the effect seen in z10/o (and zs) as the contribution 
to the final mass of the cluster made by this early group 
becomes progressively smaller with increasing M'. The 
different abundances of high- and low-mass groups are 
unable to remove the strong correlation seen in Fig. 13 from 
/(M'|>MS, z) (cf. dotted lines in Fig. 13). The dominant 
component of the final mass is, however, made up from 
groups with average properties. 

This function defines a series of curves similar to those 
displayed in Fig. 8, but with the redshift axis rescaled. z1o/o 

grows rapidly above Ms, but turns over so that there is little 
variation for M' > ~ 10 Ms. It should, however, be noted that 

6 APPLICATION TO THE 
BUTCHER-OEMLER EFFECT 

We now focus our attention on the evolution of the galaxy 
populations of rich clusters. This serves not only as an 
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interesting investigation in its own right, but also to illustrate 
the power of the analytic theory that we have developed. 

6.1 Quantifying the Butcher-Oemler effect 

Relatively recently, it has become possible to study the 
colours and spectra of galaxies in rich clusters at redshifts 
corresponding to cosmologically interesting look-back times. 
The first study of this type, Butcher & Oemler (1978), was 
based on broad-band photometry. A highly significant trend 
was found in the sense that z > 0.3 rich clusters appeared to 
contain a much higher fraction of blue galaxies than similar 
clusters nearby. Subsequently, many analogous studies have 
been carried out [e.g. Couch & Newell 1984; Butcher & 
Oemler 1984 (B084), and references therein]. 

While these studies generally confirm the original results, 
it is apparent that the photometric method may suffer from 
residual contamination of the cluster by foreground field 
galaxies. In order to quantify this problem, a number of 
spectroscopic studies have been made (e.g. Dressier & Gunn 
1982, 1983 (DG83), 1987 (DG87); Dressier, Gunn & 
Schneider 1985 (DGS); Lavery & Henry 1986; Couch & 
Sharpies 1987 (CS); Mellier et al 1988). The primary 
purpose of these studies is to determined redshifts for the 
blue galaxies in the field of the cluster, and hence to deter- 
mine whether they are bona fide cluster members. The 
results vary from cluster to cluster. For example, many of the 
blue galaxies in the cluster 3C 295 were found to belong to 
foreground groups (DG83). On the other hand, the large 
excess of blue galaxies in the cluster Cl 0024 + 1654 is fully 
confirmed (DGS). Therefore, while in a few clusters 
spectroscopy has reduced the significance of the photometric 
Butcher-Oemler effect, the widespread trend of an increas- 
ing blue galaxy fraction remains. 

In addition to their employment in determining redshifts, 
these spectra are also able to give some rudimentary infor- 
mation on the stellar populations of the galaxies. The most 
comprehensive studies at sufficiently high signal-to-noise 
ratio and spectral resolution have been made by CS and 
DG87. Contrary to expectation, only a few of the blue 
galaxies exhibited spectra corresponding to normal spiral 
types. The majority of the spectra corresponded to galaxies 
seen during, or shortly after an intense burst of star forma- 
tion. Comparable spectra are very rare in present-day 
clusters. We will refer to the increasing fraction of star 
burst galaxies as the spectroscopic Butcher-Oemler effect. 
Examples of a third class of blue spectrum, corresponding to 
galaxies with active nuclei, were also found. However, 
because of the small numbers of these systems, it is difficult 
to determine whether this galaxy fraction is also increasing 
with redshift. 

The rate of evolution of the blue galaxy or star burst 

fraction is best quantified by the ‘dimensionless’ gradient 
(1//0)(A//Az), where /0 is the galaxy fraction at z~0. In 
Table 2 we present values for this gradient derived from a 
selection of sources. For each entry, we present: (i) the 
redshift range of the distant clusters used to determine the 
effect; (ii) the type of galaxies that have been compared; (iii) 
the author’s determination of/0; (iv) and the inferred value of 
the gradient. We do not present the formal errors in these 
determinations as cluster-to-cluster variations and 
differences in the authors’ definition of the galaxy types are 
of greater importance. It can be seen that the evolution is 
extremely strong. In all of the sources, we obtain (1//0)(A// 
Az)> 10. If the evolution is parameterized as some power of 
look-back time, /=/0(l + z)m, then we require m>4.0 in 
order to account for the observed effect. 

Before proceeding to make a comparison with our 
theoretical work, a note of caution is required. Although the 
clusters at high and low redshift have been selected to have 
similar richness and concentration, Newbury, Kirshner & 
Boroson (1988) have noted that there is a tendency for the 
clusters’ velocity dispersions and surface densities to 
increase with redshift. While this suggests that the clusters in 
the high- and low-density samples may not be directly 
c imparable, these changes in cluster properties probably 
lesult from an increase in apparent substructure. Such 
behaviour is to be expected of rich clusters that are being 
formed in a hierarchical collapse (i.e. the rich galaxy 
concentrations identified at higher redshift are likely to result 
from the line-of-sight superposition of smaller clusters that 
are associated but have not yet coalesced). We therefore find 
no contractiction in associating the distant clusters in the 
studies reviewed above with the progenitors of today’s rich 
clusters. 

6.2 An infall model for the Butcher-Oemler effect 

Several models have been proposed to account for the sharp 
rise seen in the fraction of blue, or starburst, galaxies in rich 
clusters at moderate redshifts. Lavery & Henry (1988) have 
proposed that galaxy-galaxy collisions are responsible. 
Although the high-velocity dispersion of the cluster makes 
such interactions ineffective, Lavery & Henry suggest that 
the effect occurs in small galaxy groups that are compressed 
as they infall into the cluster potential. Alternatively, 
Dressier & Gunn (1983) (cfi Gunn 1989, for a more compre- 
hensive review) have suggested that the infalling galaxies are 
triggered into star burst activity by the ram pressure of the 
intracluster medium. In either case, it is necessary to 
determine how this infall evolves with redshift. This problem 
may be addressed using the extension of the Press-Schechter 
theory that we have presented in the previous sections of this 
paper. 

Table 2. Quantitative estimates of the Butcher-Oemler effect. 

Source 

Butcher & Oemler (1984) 
Lavery & Henry (1986) 
Couch &: Sharpies (1987) 
Dressier k Gunn (1987) 

Redshift Type of Galaxy fo 
Range Fraction 

0.0-0.5 blue galaxies 3% 
0.2 blue cluster members 3% 
0.31 blue cluster members 5% 
0.4-0.5 on-going/recent star formation 5% 

fo 

14. 
28. 
16. 
11. 

Comments 

based on photometry only: 29 clusters with C > 0.35 
based on spectroscopy of 43 galaxies in 3 clusters 
based on spectroscopy of 152 galaxies in 3 clusters 
based on spectroscopy of 236 galaxies in 7 clusters 
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We argue that fh can be directly related to the infall rate. 
The environment of a rich cluster is hostile to star formation 
due to the ram pressure of the intra-cluster medium (c/. 
Gisler 1979). Therefore, we argue that the blue galaxies must 
have only recently arrived, and that the number of these 
galaxies is proportional to the infall rate. Since the gas 
stripping time-scale, and the time-scale for the galaxy colour 
to become red after the termination of star formation are of 
order 1 Gyr, we should expect fh and the infall rate per Gyr 
to be of a similar order of magnitude. This is indeed the case: 
in near-by rich, condensed clusters B084 obtain /b«0.03; 
assuming an age for the Universe of 14 Gyr, the infall rate 
into a typical cluster (per unit cluster mass, per Gyr) is 
~ 0.04. 

We now determine how the blue galaxy fraction should be 
expected to vary in this simple dynamical model. Com- 
parison with the observed Butcher-Oemler effect allows us 
to assess the relative importance of the internal evolution of 
the galaxies. If the evolution of the infall rate were sufficiently 
rapid that rich clusters were effectively ‘formed’ at a redshift 
of 0.3-0.5, and had subsequently reached a quiescent state at 
the present-day, then this model would provide an adequate 
explanation for the observed evolution of /b. Our study 
shows, however, that the infall rate does not vary sufficiently 
quickly. Inspection of equation (18) reveals that the infall of 
small groups per unit time initially increases with redshift as 
( 1 + z)5/2. This growth is not long sustained, the infall peaking 
at z ~As[Ms/M}:(0)]_(n+3)/6 due to the sharp decline of the 
Gaussian term. 

In order to make a more quantitative comparison with the 
observational results, we must determine reasonable values 
for the parameters n, M*(0) and Ms. Bahcall (1979) and 
Moore, Frenk & White (1990) have used the CfA redshift 
survey to determine the combined luminosity function of 
galaxies, groups and clusters (we refer to this as the All 
Galaxy Systems, AGS, luminosity function). If the mass-to- 
light ratio of galaxies is universal, then L<FAGS(L) may be 
directly compared with the universal (Press-Schechter) 
multiplicity function in order to determine values for the 
parameters 44(0) (given a value for M/L) and the density 
field spectral index, n. Moore et al. (1990) find that the best 
fit is given with n=-\.5 and L* AGS = 3.9 x 1010 LQ~5 

galaxy (using //0 = 100 km s'1 Mpc-1). A large cluster 
today, for example Coma, has total luminosity (Moore et al. 
1990) of about 60 L* AGS. Ms, the group mass at which ram 
pressure and/or galaxy collisions become an important 
driving force in galaxy evolution, is much more difficult to 
determine directly. However, as a typical group at the present 
epoch contains five average galaxies, it seems reasonable to 
set Ms = M*(0). Our results are not sensitive the choice of 
this, or any other, parameter. 

In Fig. 14, we have plotted the photometrically deter- 
mined blue fractions of B084. For comparison, our theoreti- 
cal infall rate, equation (18), is drawn with the choice of 
parameters outlined in the previous paragraph (solid line). 
The infall rate peaks at z « 1, well above the observed range 
of clusters. However, the predicted increase in the infall rate 
is clearly insufficient to fully account for the 
Butcher-Oemler effect that is observed. The insensitivity of 
this result to our choice of model parameters is illustrated by 
the dotted lines. These show the effect of altering 
between 0.1 and 5.0. 
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We conclude that the Butcher-Oemler effect cannot be 
explained in terms of a ‘formation epoch’ for rich clusters: 
the increased rate at which field galaxies infall into rich 
clusters at moderate redshifts makes only a small contribu- 
tion to the observed change in /b. This result agrees with the 
conclusions that have been drawn from spectroscopic 
studies. As we have previously described, these studies 
suggest that galaxies at moderate redshifts are much more 
susceptible to strong bursts of starformation activity than 
galaxies of similar magnitude today. This leads to a higher 
proportion of infalling galaxies being identified as having 
‘blue’ colours. Below we make an estimate of the importance 
of this effect. 

At the present time, field galaxies have a mean blue 
fraction of only 41 ± 10 per cent. Therefore, only 40 per cent 
of infalling galaxies need contribute to the cluster /b at the 
present epoch. Given the increased responsiveness of 
galaxies at higher redshift, it is possible that all infalling 
galaxies contribute to the cluster /b at, say, z = 0.5. A 
dramatic increase in /b is obtained, /b being increased by a 
factor of 1/0.4 = 2.6 at z = 0.5. The theoretical gradient, 
(l//0)/(A//Az), is increased to 10.6 - a value in acceptable 
aggreement, given that various subtle systematic effects may 
be at work [cf. Koo 1987), with the values quoted in Table 2. 
To further aid comparison of this theoretical evolution with 
the data, we have illustrated the growth of /b by a dotted line 
in Fig. 14. 

0 0.2 0.4 0.6 
Redshift 

Figure 14. Comparison between the evolution of the infall rate and 
the evolution of the blue fraction of galaxies in rich clusters. Data 
points are taken from Butcher & Oemler 1984. The solid curve 
shows the infall rate, normalized to match the observations at z ~ 0. 
The parameters used in equation (18) are : rc = -1.5; M'= 100 
44(0); Ms = 44(0). The dotted lines show the effect of setting 
Ms = 0.1 44(0) and 5.0 44(0). It can be seen that the increase in the 
infall rate considerably underestimates the Butcher-Oemler effect 
seen in the blue galaxy fraction. The dashed line illustrates the 
growth in /5 that may be anticipated if allowance is made for the 
increased star formation activity of galaxies at higher redshifts. 
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348 R. Bower 

7 DISCUSSION 

In the previous sections, we have presented several basic 
mathematical results that describe the evolution of the galaxy 
clustering hierarchy. As the results have been interspersed 
with complex mathematical derivations, it is convenient to 
collect them together here. 

We start by parameterizing the initial conditions in the 
Universe in terms of a power law of density fluctuations with 
spectral index n. The first of these parameters is directly 
related to the typical mass of collapsed objects at the present 
time [M*(0)], and it is convenient to make this substitution in 
all subsequent formulae. In terms of the parameters M*(0) 
and n, the Press-Schechter theory predicts the form of the 
Universal Multiplicity Function of groups at epoch z to be 

p{M, z) dM = pQ—U 
J2ñ\ 3 

M 

M*(z) 

n +3)/6 
(2) 

< exp j 
M 

M*(z) 

(n +3)/3 dM 
M ’ 

where M*(z) = (l + z)-6/{n+3)M*(0). The evolution of this 
distribution is self-similar; i.e. its shape remains unchanged, 
the distribution only altering in its scale [defined by M*(z)]. 
The evolution is more rapid for smaller, or more negative, 
values of n. 

In Section 3.3, we have extended the PS formalism to 
calculate the multiplicity fraction of groups given the added 
constraint that they must merge to form a cluster of size M' 
at the present epoch. We refer to this as the Conditional 
Multiplicity Fraction 

f{M,z\M’)dM = 
J2jc 

n+3\ 1 M (n + 3)/6 

M*(z-1) 
(12) 

M ("+3)/3j dM 
M*(z-l)J Jm’ 

where A = [l-(M/M')("+3)/3]1/2. This differs from the 
previous function in two respects: (i) the evolution in a region 
of large final mass {M'> M) is ‘accelerated’ over that in the 
Universe as a whole; (ii) the correlation between density 
fluctuations on different scales suppresses the formation of 
subclumps close to M' before the final epoch. The interplay 
between these two effects is sensitive to the spectral index n. 

Combining the Conditional Multiplicity Fraction 
(equation 12) with the distribution of the masses of present- 
day clusters (Mr) specified by the Universal Multiplicity 
Function (equation 2) as is described in Section 3.4, we 
obtain the multiplicity function of masses M at epoch z that 
combine to form a group of mass M1 at the present epoch. 
We refer to this as the Joint Multiplicity Function, 

It is important to note that this multiplicity function is 
consistent with the universal distributions of M and M' - in 
Section 4.1 we demonstrate that integration of equation (14) 
over M' gives the Universal Multiplicity Function of M at 
epoch z, and vice versa. 

There is an important and fundamental difference 
between equation (14) and any similar equation suggested by 
the A:-split approach. In the formulae presented here, the 
enhancement in the hierarchy of group masses (caused by the 
presence of the long-wavelength perturbation that will 
eventually collapse to form M') is independent of M'; M' 
enters only through the cross-correlation between the mass- 
scales of M and M' (e.g. through the factor denoted A in the 
formulae). If these correlations were taken to be negligible (as 
in the /c-split approximation), then it is tempting to allow for 
the total mass of the larger scale region by varying the over- 
density of the long-wavelength perturbation as a function of 
M'. This procedure is invalid - if the overdensity is averaged 
over the whole of M', it must be found to be <5C(0) (i.e. the 
critical overdensity for collapse at the present epoch); if it 
were found to be larger then the region would be absorbed 
into the collapse of an even larger object. As a result of the 
manner in which M' enters our formulae, the distribution of 
M is largely independent of M' if the scales are sufficiently 
widely separated that cross-correlation effects are un- 
important (i.e. in the region where the /c-split is a good 
approximation). This has important consequences when we 
come to compare the evolutionary histories of groups of 
differenting M'. 

In order to illustrate the evolution of groups by a simple 
example, we divide groups into two mass regimes at Ms. In 
doing this we have in mind a simple model for the environ- 
mentally driven evolution of galaxies. We calculate the 
following. 

(i) The average epoch, zs, at which galaxies make the 
transition between groups above and below Ms (given that at 
z = 0 they become bound into a group of mass M'), 

0.97 
[Ms/M*(0)](,,+3)/6 (17) 

where the dependence of zs on the mass M1 enters through 

1/2 

(ii) The rate (in units of the age of the Universe, and 
scaled to the mass of the present-day cluster) at which 
galaxies from low-mass groups infall into the growing proto- 
cluster, 

p{M,z,M')dMdM' =^- 
Lit 

'n+A2 1 M (->+3)/6 2 [Mjmvtyy 2 (l | _)5;2 

■¡2rc 3 
(18) 

xexp 

x exp 

1 
2A2 

M 

M*(z -1) 

[n +3)/31 m' 
M*(0) 

(n +3)/6 

1 
2 

M' { 

M*(0)_ 
dM dM' 
M M' ' 

(14) : exp 
2A M*(0) 

(n+3)/3 

(iii) The rate at which galaxies from low-mass groups 
infall into a cluster at the present time [this is a special case of 
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equation (2)], 

^infall(O) 
4 

3j2n 
(19) 

(iv) The present-day distribution (in group mass Mr) of 
the mas contained in groups that exceed the mass-scale Ms 

at, or before, redshift z, 

f(M'\ > Ms, z) dM* = 
V2jt 

n + 3 

3 
M 

M*(0) 

(n+3)/6 
(21) 

: exp 
M 

M*(0) 

(n=3)/3 

erfc{l/N/2As[Ms/Mit(z-l)](,,+3)/6}c;M' 

erfc{l/Æ[MsM*(z)]1 i(n+3)/6i M 

Inspection of results ( 1 )-(3) above shows that the history of a 
group of present-day mass M' (on the scale set by Ms) is 
strongly dependent on M' only if M' is close to Ms. As we 
have discussed above, this effect arises because the mass of 
the large-scale overdense region only modulates the smaller 
scale fluctuations through the cross-correlation of the density 
fluctuations (when averaged throughout the entire region). If 
M' is significantly larger than Ms, the effect is very weak. 
Study of the equations also shows that the modulation is 
stronger for flatter power spectra (i.e. more negative n). 
However, it should be remembered that the rate of universal 
evolution is also more rapid in this case. 

While we have shown that the more massive present-day 
clusters do not have significantly different average 
evolutionary histories (on group and galaxy mass-scales) 
from their less massive counter parts, there is a strong 
tendency for the most massive groups at early times to be 
incorporated into the most massive clusters at the present- 
day (result 4). These two statements may appear contradic- 
tory, but they are not. Confusion has arisen because we have 
not been particular to distinguish between masses that have 
been specified as a fraction of the present-day cluster mass 
(e.g. in our calculation of zs, equation 17), and those that 
have been specified in absolute value (e.g. in equation 21 ). 

In Section 7 of this paper, we have illustrated the utility of 
our results by considering the Butcher-Oemler effect. We 
have examined whether the increasing blue fraction of 
galaxies in rich clusters at moderate redshifts can be 
explained solely by the evolution of infall rate into these 
clusters. Our analysis shows that while the infall rate of field 
galaxies does increase over these look-back times, the effect 
is not, by itself, sufficient to account for the rapid rise in blue 
fraction that is observed. If, however, allowance is made for 
the increased star formation activity seen in the spectra of the 
galaxies, it is possible to bring the model into good quantita- 
tive agreement with observation. 

It is readily possible to apply the mathematical results 
presented in this paper to further problems in modern 
cosmology. Such applications will be considered in subse- 
quent papers. 
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APPENDIX A: COMPUTATION OF THE 
CROSS-CORRELATION BETWEEN SCALES 

In order to establish the method by which we will determine 
the co-variance of the density within V and V'{o2

vv>), we 
review the technique (Peebles 1980) by which the variance of 
the fluctuations on scale V can be determined. Initially, we 
adopt the notion that the Universe is periodic on some scale 
much larger than V. This allows us to decompose the density 
field into discrete Fourier components. The overdensity at 
some point, x, may then be written as 

volume V is contained in V' (as we discuss later, there is also 
an independence criterion that limits the choice of a:0). We 
continue by separating x() into two components {x{) =y0 + ii0): 

2 ôke~'k'yoe,~ik'“° d3x' Wk{V) 
.k 

2 <5 -ik.yo dx'WAV': 
_ I u0: V*= V'j 

We are now free to swap the order in which the averages are 
taken. Continuing as previously, we obtain 

<5W = 2ó*e-itjr. 
k a2(VV') = lô/Wk(V)W*k(V’)(e-i,‘"'Xd3k- (23) 

The average density inside a volume V (‘centred’ at jc0) is 

<5, 
l 
F 

2 <5*e ~ik'{x°+x') d
}x. 

V k 

The variance of the density inside V is the mean square 
value of ô v; the average of ô y itself being zero by definition. 
Writing this explicitly we have 

a(V) = - 
V¿ ZÔ;-~ikiXo+x' 

V k 
*e   d x 

where the average, denoted by the angle brackets, is taken 
over all possible positions, jc0, of the volume, V (i.e. the entire 
Universe). Expansion of the square produces terms of the 
form Only if kl = k2 the term make a net 
contribution to o2(V) when the average is taken over x0. We 
can therefore simplify the expression to 

o2(V)=—2ï\ôk\2 
v k 

-ikx' »3 ' e d x 

In the continuous limit, this becomes 

a2(V) ôk\2\Wk\
2d3k, (22) 

where the window function, Wk
:= ¡ve~lk x d3x /¡vd3x, is 

the Fourier transform of the top-hat function that defines the 
volume V. (The term ‘top-hat function’ is used loosely here - 
we do not mean to imply that the volume V needs to be 
spherical.) 

The cross-correlation between the overdensities in two 
volumes, one contained inside the other, is calculated in a 
similar manner. Starting from the definition of the co- 
variance as o2(VV,) = {ôvôv>) (the average being taken over 
all admissible pairs of volumes V and V1) we have 

o2{ VV') = 
1 

vv' 
II 2<5*e-i‘(*0+y)rfY 

X 2 ôkc-,k{y°+yl 

J V k J I x0l y0 

where the average over y0 is taken over all space, and the 
average over x0 is taken over values of x0 for which the 

Care is required at this point to define the meaning of the 
‘average’ over ii0 more exactly. i#0 is a randomly chosen point 
for which the volume V that surrounds it is entirely enclosed 
in the volume V. However, it is not clear whether we should: 
(i) choose a point at random, test to see if V is contained in 
V\ then reselect another random point if this is not the case; 
or (ii) select a random set of points uQ for which all the 
volumes V are independent and enclosed in F', then choose 
a point at random from this set. The practical difference is 
that if method (i) is adopted, the overdensity at a point near 
the outer edge of F ' is less likely to contribute to the mean 
overdensity of F than a point that is close to the centre; with 
method (ii) all points in F' have an equal chance to 
contribute to the mean overdensity of F Later, when we 
come to extend the Press-Schechter theory, we will wish to 
apply the present calculation to determine the probability of 
collapse of a region (e.g. the volume F). On collapse, the 
matter in this region is not available to be included in an 
adjacent region (unless both regions collapse to form a single 
object on a larger scale, this circumstance being taken into 
account explicitly in the theory). We therefore argue that the 
volumes F in the averaging process must also be given this 
property of independence, and use method (ii) to define the 
process by which we average over ii0. The important conse- 
quence of this decision is that close to the edge of F (the 
volume covered by the points u0 for which Flies inside F') 
there are more independent choices for F per volume 
element, d3u0, as part of Flies outside F and therefore does 
not exclude other possible values of ii0. 

The averaged term, (e ,k u°)Uo, can be written to appear 
like another window function, 

W*(F) = w^iOe '*'“0</3u0 

f 
w(h0) d

3u0, 
J V 

where F is the volume covered by the points ii0 for which F 
lies inside V; w(u0) is a weight function that gives increased 
weight to outer values of u0 to account for the fact that the 
selection has been made as described in method (ii). 

It is possible for us to express Wk{V) in terms of the 
window functions of F and V. We introduce the functions 
0 (x; K *o )> that we define as 

{1 / F if jr is contained in the volume F ‘centred’ on x0 

0 otherwise. 
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The Â;-space window functions Wk are the Fourier trans- 
forms of these real-space window functions 

Wk(V) = - ik x’ ,3 ' e ax 0(2; K0)erfV, 

where we have arbitrarily chosen to ‘centre’ the volume V at 
the origin. By analogy, we also introduce the function 
©(*; K *o)> which we define as 

©(*;K*o) = 

(w(x)l\ yw(x) d3x if or is contained in the volume V 
‘centred’on jr0; 

0 otherwise. 

Note that the normalization of these functions is such that 
/^©(jF; V,xQ)d3x, = l,Sind similarly for ©(jc; K*o)- 

We have defined the weighting function, w(jc), of V so that 
every point in the large volume V' has an equal chance of 
contributing to the average density measured in V. This is 
equivalent to stating that we can write the function ©(jr; V, 
jr0) as the convolution of © {x; V, x’ ) and 0 (jF; V, .i:0): 

©(*; F',0) = S(x; K0)©(jr-y; V,0)d3x. 
J OO 

Then in Fourier space 

Wk(V')=Wk(V)Wk(V). (24) 

In the general case, however, it is not possible to find a real 
bounded weighting function w(x) that has this property. For 
example, if V and V are of comparable size, all volumes V 
will include points near the centre of V1. Nevertheless, it is 
possible to define w(x) so that the convolution of ©(at; V, x') 
and ©(*'; V, x0) closely approximates &{x; V, jr0) in all but 
its high-A: components. For spherical top-hat functions, the 
approximation is accurate up to ¿m>4.5/Æ'. Such high-A; 
waves make negligible contribution to the integral in 
equation (23). 

Returning to our expression for the co-variance of the 
volumes V and V, equation (23), and using the relation 
between the window functions that we have derived above 
(equation 24), we obtain 

az(VV') = I àk\2\ WJ V')\2 d3k= o2( V'\ (6) 

As is illustrated in the main text, this strikingly simple result 
is trivial to derive if the mean overdensity of the small 
volumes V contained in V is assumed to equal the over- 
density of region V as a whole. 

APPENDIX B: INVERSION OF THE JOINT 
MULTIPLICITY FUNCTION 

In order to demonstrate the self-consistency of this work, we 
are required to show that integration of the joint multiplicity 
function over all possible final masses, M', recovers the 
universal multiplicity function, p(M, z). The required integral 
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may be written explicitly as 

1= 
*00 

p{M,z,M')dMdM' = 
J M' = M 

Po 
2p 

(n+3) 2 

3 
dM 
M 

(25) 

4' = ^ A 
M 

' exp 

M*(z-1) 

M 
2À 

(«+3)/6 

{n + 3)/3 

M*(z-1) 
M’ {n 

M*(0)_ 

+ 3)/6 

x exp 
1 
2 

M' (' 
M*(0) 

dAÏ 
M' ' 

While it is not possible to solve this integral by standard 
analytic techniques, numerical integration shows that it is at 
least a very close approximation to p(M, z) dM. Below, we 
are able to demonstrate, by unusual analytic reasoning, that 
the inversion is indeed exact. 

As a first two, we simplify the expression for the joint 
multiplicity function by making the transformations 

u' = [M' lMM][n=3)l\ 

and 

u =[M/M*(0)](/i+3)/6 

= z -1)]("+3)/6 (26) 

= (1 +z)_1[M/M^(z)](/,+3)/6. 

In these variables, 

/ ^ \ » i i 4po 1 i p(u, z, u ) du du = ^ z exp - 
2jt A 

z2u2 

2A2 

x exp 

with A = Jl — u2/u 2. Our aim is to integrate this expression 
over u'= u to °o. Progress can be made by noting that in 
these variables the universal multiplicity function (equation 
2) becomes 

p{u, z) du =- 1 (1 +z) exp 
(1 +z)2u2 

du. (27) 

This suggests that we attempt to simplify the exponent of the 
integrand by the substitution 

2 2 z u 
(1 - u^/u ) 

Ml \2 2 . '2 [1+ Z) U + U . 

This expression reduces to 

- 
u'2 — ( 1 +z) w2 

fu1 
(28) 

Differentiating, we obtain 

dx 
du / >2 2\3/2 (u —u) l+-ä(z-l) i+4u-i) u 
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This is close to the A-3 factor in the integrand. For the 
special case z = 1 the agreement is exact and the integral, re- 
written in terms x, is of standard form. 

We have not yet considered the limits to the integral in x- 
space. As z/ ^ w, x- °o ; at the other limit X-+ + oo. Also, 
jt = 0 at u = (l + z)112u, but note that z/2 is not a single-val- 
ued function of x2, so that it is best to proceed by splitting the 
integral into two parts corresponding to the two branches of 
u’\ 

Combining the separate integrals in equation (29) we have 

:)2w2/2 (30) 
4 

I= — ze 
2jz 

, - x2/2 1 1 

[l+(u¿/uí)(z-l)} [l+(uz/uf)(z~l\ 
dx 

(30) 

-0+z)V/2 

-x2/2 

0, w'2>(l +2) 1 + Z),,[1+(W/M )(Z-1)] 
dx 

The bracketed part of the integrand may be rewritten by 
expressing the fractions in terms of a common denominator 
and using the expressions for the sums and products of 
z/+and z/_2 to eliminate z/: 

2 + (z -1 )[x2 -H 2( 1 + z) u2/x2 + ( 1 + z)2u2] 

^ e _*2/2 ] 
+ .0.1,-<!1+Z),21+(M2/M'2)(z-I)]n' 

For z= 1, both parts integrate to j2jz/2, and since, in this 
case, 2z = z + 1, we recover the universal distribution of M 
exactly. For other values of z, we note that the major contri- 
bution to the integral comes from x ~ 0. 

We continue by combining the two integrals, using the 
notation u2 and u'2 to distinguish the two values of zT2 [one 
greater than (1 +z)zF, the other less] corresponding to each 
value of x. Squaring and expanding equation (28) we obtain 
the quadratic equation for which u + and u _ are the roots, 

u’4 — [2(l + z)u2 +x2] u'2 + [( 1 +z)2w2 +x2]u2 = 0. 

The roots of this equation (i.e. u2 and u2) satisfy the 
relations 

'2 12 r/1 . \2 2 . 2-, 2 U+U-=l(l+z)u +x\u, 

and, 

u2 + u2 = [2(1 + z) zz2 + x2] 

1 +(z — 1 )[x2 +2(1 +z)u2lx2 +(1 +z)2zz2] + 
[u2(z — 1 )2/x2 + ( 1 + z)2 u2] 

After considerable manipulation, this expression can be 
reduced to 

(1+z)x2 + 4z(l+ z)zz2 _ 1 + z 
zx2 + 4z2zz2 z ’ 

i.e. this term is in fact independent of x. 
Replacing the bracketed term in equation (30) we obtain 

1= — ze 
2jt 

-(1 +z)2u2/2 
r =0 £ 

+ z)exp 
(f+z)V 

2 

Comparison with equation (27) shows that we have exactly 
recovered the universal multiplicity function for the masses 
M. We emphasize that this is an extremely striking result. 
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