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Abstract

This review discusses smoothed particle hydrodynamics (SPH) in the astro-
physical context, with a focus on inviscid gas dynamics. The particle-based
SPH technique allows an intuitive and simple formulation of hydrodynamics
that has excellent conservation properties and can be coupled to self-gravity
with high accuracy. The Lagrangian character of SPH allows it to automat-
ically adjust its resolution to the clumping of matter, a property that makes
the scheme ideal for many application areas in astrophysics, where often a
large dynamic range in density is encountered. We discuss the derivation of
the basic SPH equations in their modern formulation, and give an overview
about extensions of SPH developed to treat physics such as radiative trans-
fer, thermal conduction, relativistic dynamics, or magnetic fields. We also
briefly describe some of the most important applications areas of SPH in as-
trophysical research. Finally, we provide a critical discussion of the accuracy
of SPH for different hydrodynamical problems, including measurements of
its convergence rate for important classes of problems.
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1. INTRODUCTION

Smoothed particle hydrodynamics (SPH) is a technique for approximating the continuum dynam-
ics of fluids through the use of particles, which may also be viewed as interpolation points. SPH
was originally developed in astrophysics, as introduced by Lucy (1977) and Gingold & Monaghan
(1977) some 30 years ago. Since then it has also found widespread use in other areas of science and
engineering. In this review, I discuss SPH in its modern form, based on a formulation derived from
variational principals, giving SPH very good conservation properties and making its derivation
largely free of ad hoc choices that needed to be made in older versions of SPH.

A few excellent reviews have discussed SPH previously (e.g., Monaghan 1992, 2005; Dolag et al.
2008; Rosswog 2009); hence, we concentrate primarily on recent developments and on a critical
discussion of SPH’s advantages and disadvantages, rather than on giving a full historical account of
the most important literature on SPH. Also, we generally restrict the discussion of SPH to inviscid
ideal gases, which is the relevant case for the most common applications in astrophysics, especially
in cosmology. Only in passing we comment on some other important uses of SPH in astronomy,
where fluids quite different from an ideal gas are modeled, e.g., in planet formation. Fully outside
the scope of this review are the many successful applications of SPH-based techniques in fields
such as geophysics and engineering. For example, free-surface flows tend to be very difficult to
model with Eulerian methods, whereas this is comparatively easy with SPH. As a result, there are
many applications of SPH to problems such as dam-braking, avalanches, and the like, which we
however do not discuss here.

Numerical simulations have become an important tool in astrophysical research. For example,
cosmological simulations of structure formation within the �CDM model have been instrumental
to understanding the nonlinear outcome of the initial conditions predicted by the theory of infla-
tion. By now, techniques to simulate collisionless dark matter through the particle-based N-body
method (Hockney & Eastwood 1981) have fully matured and are comparatively well understood.
However, to represent the collisional baryons as well, the hydrodynamical fluid equations need
to be solved, which represents a much harder problem than the dark matter dynamics. On top
of the more complicated gas dynamics, additional physics, like radiation fields, magnetic fields,
or nonthermal particle components need to be numerically followed as well to produce realistic
models of the formation and evolution of galaxies, stars, or planets. There is therefore ample need
for robust, accurate, and efficient hydrodynamical discretization techniques in astrophysics.

The principal idea of SPH is to treat hydrodynamics in a completely mesh-free fashion, in
terms of a set of sampling particles. Hydrodynamical equations of motion are then derived for
these particles, yielding a quite simple and intuitive formulation of gas dynamics. Moreover, it
turns out that the particle representation of SPH has excellent conservation properties. Energy,
linear momentum, angular momentum, mass, and entropy (if no artificial viscosity operates) are
simultaneously conserved. In addition, there are no advection errors in SPH, and the scheme is
fully Galilean invariant, unlike alternative mesh-based Eulerian techniques. Due to its Lagrangian
character, the local resolution of SPH follows the mass flow automatically, a property that is ex-
tremely convenient in representing the large density contrasts often encountered in astrophysical
problems. Together with the ease with which SPH can be combined with accurate treatments of
self-gravity (suitable and efficient gravity solvers for particles can be conveniently taken from a cos-
mological N-body code developed for the representation of dark matter), this has made the method
very popular for studying a wide array of problems in astrophysics, ranging from cosmological
structure growth driven by gravitational instability to studies of the collisions of protoplanets.
Furthermore, additional subresolution treatments of unresolved physical processes (such as star
formation in galaxy-scale simulations) can be intuitively added at the particle level in SPH.
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In this review, we first give, in Section 2, a derivation of what has become the standard for-
mulation of SPH for ideal gases, including also a description of the role of artificial viscosity. We
then summarize some extensions of SPH to include additional physics such as magnetic fields
or thermal conduction in Section 3, followed by a brief description of the different application
areas of SPH in astronomy in Section 4. Despite the popularity of SPH, there have been few sys-
tematic studies of the accuracy of SPH when compared with the traditional Eulerian approaches.
We therefore include a discussion of the convergence, consistency, and stability of standard SPH
in Section 5, based on some of our own tests. Finally, we give a discussion of potential future
directions of SPH development in Section 6 and our conclusions in Section 7.

2. BASIC FORMULATION OF SMOOTHED PARTICLE
HYDRODYNAMICS FOR IDEAL GASES

2.1. Kernel Interpolants

At the heart of SPH lie so-called kernel interpolants, which are discussed in detail by Gingold &
Monaghan (1982). In particular, we use a kernel summation interpolant for estimating the density,
which then determines the rest of the basic SPH equations through the variational formalism.

For any field F(r), we may define a smoothed interpolated version, Fs(r), through a convolution
with a kernel W(r, h):

Fs (r) =
∫

F (r)W (r − r′, h)dr′. (1)

Here, h describes the characteristic width of the kernel, which is normalized to unity and approx-
imates a Dirac δ-function in the limit h → 0. We further require that the kernel be symmetric
and sufficiently smooth to make it differentiable at least twice. One possibility for W is a Gaussian,
which was in fact used by Gingold & Monaghan (1977). However, most current SPH imple-
mentations are based on kernels with a finite support. Usually a cubic spline is adopted with
W (r, h) = w( |r|

2h ), and

w3D(q ) = 8
π

⎧⎪⎨
⎪⎩

1 − 6q 2 + 6q 3, 0 ≤ q ≤ 1
2 ,

2(1 − q )3, 1
2 < q ≤ 1,

0, q > 1,

(2)

in 3D normalization. This kernel belongs to a broader class of interpolation and smoothing kernels
(Schoenberg 1969, Hockney & Eastwood 1981, Monaghan 1985). Note that in the above most
commonly used definition of the smoothing length h, the kernel drops to zero at a distance of
r = 2h. Through Taylor expansion, it is easy to see that the kernel interpolant is at least second-
order accurate due to the symmetry of the kernel.

Suppose now we know the field at a set of points ri; that is, Fi = F (ri ). The points have an
associated mass mi and density ρ i, such that �ri ∼ mi/ρi is their associated finite volume element.
Provided the points sufficiently densely sample the kernel volume, we can approximate the integral
in Equation 1 with the sum

Fs (r) �
∑

j

m j

ρ j
Fj W (r − r j , h). (3)

This is effectively a Monte-Carlo integration, except that thanks to the comparatively regular
distribution of points encountered in practice, the accuracy is considerably better than for a
random distribution of the sampling points. In particular, for points in one dimension with equal
spacing d, one can show that for h = d the sum of Equation 3 provides a second-order accurate

www.annualreviews.org • Smoothed Particle Hydrodynamics 393

A
nn

u.
 R

ev
. A

st
ro

n.
 A

st
ro

ph
ys

. 2
01

0.
48

:3
91

-4
30

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
O

ss
er

va
to

ri
o 

A
st

ro
fi

si
co

 d
i A

rc
et

ri
-I

N
A

F 
on

 1
0/

11
/1

6.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



AA48CH11-Springel ARI 23 July 2010 15:52

approximation to the real underlying function. Unfortunately, for the irregular yet somewhat
ordered particle configurations encountered in real applications, a formal error analysis is not
straightforward. It is clear, however, that at the very least one should have h ≥ d , which translates
to a minimum of ∼33 neighbors in three dimensions.

Importantly, we see that the estimate for Fs (r) is defined everywhere (not only at the underlying
points) and is differentiable thanks to the differentiability of the kernel, albeit with a considerably
higher interpolation error for the derivative. Moreover, if we set F (r) = ρ(r), we obtain

ρs (r) �
∑

j

m j W (r − r j , h), (4)

yielding a density estimate based just on the particle coordinates and their masses. In general,
the smoothing length can be made variable in space, h = h(r, t), to account for variations in the
sampling density. This adaptivity is one of the key advantages of SPH and is essentially always
used in practice. There are two options to introduce the variability of h into Equation 4. One is
by adopting W [r − r j , h(r)] as kernel, which corresponds to the scatter approach (Hernquist &
Katz 1989). It has the advantage that the volume integral of the smoothed field recovers the total
mass,

∫
ρs (r)dr = ∑

i mi . However, the so-called gather approach, where we use W [r − r j , h(ri )]
as kernel in Equation 4, requires only knowledge of the smoothing length hi for estimating the
density of particle i, which leads to computationally convenient expressions when the variation
of the smoothing length is consistently included in the SPH equations of motion. Because the
density is only needed at the coordinates of the particles and the total mass is conserved anyway
(because it is tied to the particles), it is not important that the volume integral of the gather form
of ρs (r) exactly equals the total mass.

In the following, we drop the subscript s for indicating the smoothed field, and adopt as the
SPH estimate of the density of particle i the expression

ρi =
N∑

j=1

m j W (ri − r j , hi ). (5)

It is clear now why kernels with a finite support are preferred. They allow the summation to be
restricted to the Nngb neighbors that lie within the spherical region of radius 2h around the target
point ri, corresponding to a computational cost of order O(N ngb N ) for the full density estimate.
Normally this number Nngb of neighbors within the support of the kernel is approximately (or
exactly) kept constant by choosing the hi appropriately. Nngb, hence, represents an important
parameter of the SPH method and needs to be made large enough to provide sufficient sampling
of the kernel volumes. Kernels like the Gaussian, however, would require a summation over all
particles N for every target particle, resulting in an O(N 2) scaling of the computational cost.

If SPH were really a Monte-Carlo method, the accuracy expected from the interpolation errors
of the density estimate would be rather problematic. But the errors are much smaller because the
particles do not sample the fluid in a Poissonian fashion. Instead, their distances tend to equilibrate
due to the pressure forces, which makes the interpolation errors much smaller. Yet, they remain
a significant source of error in SPH and are ultimately the primary origin of the noise inherent in
SPH results.

Even though we have based most of the above discussion on the density, the general kernel
interpolation technique can also be applied to other fields and to the construction of differential
operators. For example, we may write down a smoothed velocity field and take its derivative to
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estimate the local velocity divergence, yielding the following:

(∇ · v)i =
∑

j

m j

ρ j
v j · ∇i W (ri − r j , h). (6)

However, an alternative estimate can be obtained by considering the identity ρ∇·v = ∇(ρv)−v·∇ρ

and computing kernel estimates for the two terms on the right-hand side independently. Their
difference then yields

(∇ · v)i = 1
ρi

∑
j

m j (v j − vi ) · ∇i W (ri − r j , h). (7)

This pair-wise formulation turns out to be more accurate in practice. In particular, it has the
advantage of always providing a vanishing velocity divergence if all particle velocities are equal.

2.2. Variational Derivation

The Euler equations for inviscid gas dynamics in Lagrangian (comoving) form are given by

dρ

dt
+ ρ∇ · v = 0, (8)

dv
dt

+ ∇ P
ρ

= 0, (9)

du
dt

+ P∇ · v = 0, (10)

where d/dt = ∂/∂t +v ·∇ is the convective derivative. This system of partial differential equations
expresses conservation of mass, momentum, and energy. Eckart (1960) has shown that the Euler
equations for an inviscid ideal gas follow from the Lagrangian

L =
∫

ρ

(
v2

2
− u

)
dV . (11)

This opens up an interesting route for obtaining discretized equations of motion for gas dynamics.
Instead of working with the continuum equations directly and trying to heuristically work out
a set of accurate difference formulas, one can discretize the Lagrangian and then derive SPH
equations of motion by applying the variational principles of classical mechanics, an approach
first proposed by Gingold & Monaghan (1982). Using a Lagrangian also immediately guarantees
certain conservation laws and retains the geometric structure imposed by Hamiltonian dynamics
on phase space.

We here follow this elegant idea, which was first worked out by Springel & Hernquist (2002),
with a consistent accounting of variable smoothing lengths. We start by discretizing the Lagrangian
in terms of fluid particles of mass mi, yielding

LSPH =
∑

i

(
1
2

mi v2
i − mi ui

)
, (12)

where it has been assumed that the thermal energy per unit mass of a particle can be expressed
through an entropic function Ai of the particle, which simply labels its specific thermodynamic
entropy. The pressure of the particles is

Pi = Aiρ
γ

i = (γ − 1)ρi ui , (13)
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where γ is the adiabatic index. Note that for isentropic flow (that is, in the absence of shocks, and
without mixing or thermal conduction), we expect the Ai to be constant. We, hence, define ui, the
thermal energy per unit mass, in terms of the density estimate as

ui (ρi ) = Ai
ρ

γ−1
i

γ − 1
. (14)

This raises the question of how the smoothing lengths hi needed for estimating ρ i should be
determined. As we discussed above, we would like to ensure adaptive kernel sizes, meaning that
the number of points in the kernel should be approximately constant. In much of the older SPH
literature, the number of neighbors was allowed to vary within some (small) range around a target
number. Sometimes the smoothing length itself was evolved with a differential equation in time,
exploiting the continuity relation and the expectation that ρh3 should be approximately constant
(e.g., Steinmetz & Mueller 1993). In case the number of neighbors inside the kernel happened to
fall outside the allowed range, h was suitably readjusted. However, Nelson & Papaloizou (1994)
pointed out that for smoothing lengths varied in this way, the energy is not conserved correctly.
They showed that the errors could be made smaller by keeping the number of neighbors exactly
constant, and they also derived leading order correction terms (which became known as ∇h terms)
for the classic SPH equations of motion that could reduce them still further. In the modern
formulation discussed below, these ∇h terms do not occur; they are implicitly included at all
orders.

The central trick making this possible is to require that the mass in the kernel volume should
be constant, e.g.,

ρi h3
i = const (15)

for three dimensions. Because ρi = ρi (r1, r2, . . . rN , hi ) is only a function of the particle coordinates
and of hi, this equation implicitly defines the function hi = hi (r1, r2, . . . rN ) in terms of the particle
coordinates.

We can then proceed to derive the equations of motion from

d
dt

∂L
∂ ṙi

− ∂L
∂ri

= 0. (16)

This first gives

mi
dvi

dt
= −

N∑
j=1

m j
Pj

ρ2
j

∂ρ j

∂ri
, (17)

where the derivative ∂ρ j /∂ri stands for the total variation of the density with respect to the
coordinate ri, including any variation of hj this may entail. We can then write

∂ρ j

∂ri
= ∇iρ j + ∂ρ j

∂h j

∂h j

∂ri
, (18)

where the smoothing length is kept constant in the first derivative on the right-hand side (in
our notation, the Nabla operator ∇i = ∂/∂ri means differentiation with respect to ri holding the
smoothing lengths constant). However, differentiation of ρ j h3

j = const with respect to ri yields

∂ρ j

∂h j

∂h j

∂ri

[
1 + 3ρ j

h j

(
∂ρ j

∂h j

)−1
]

= −∇iρ j . (19)

Combining Equations 18 and 19, we then find

∂ρ j

∂ri
=

(
1 + h j

3ρ j

∂ρ j

∂h j

)−1

∇iρ j . (20)
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Using

∇iρ j = mi∇i Wi j (h j ) + δi j

N∑
k=1

mk∇i Wki (hi ), (21)

we finally obtain the equations of motion

dvi

dt
= −

N∑
j=1

m j

[
fi

Pi

ρ2
i
∇i Wi j (hi ) + f j

Pj

ρ2
j
∇i Wi j (h j )

]
, (22)

where the fi are defined by

fi =
[

1 + hi

3ρi

∂ρi

∂hi

]−1

, (23)

and the abbreviation Wi j (h) = W (|ri −r j |, h) has been used. Note that the correction factors fi can
be easily calculated alongside the density estimate; all that is required is an additional summation
to get ∂ρi/∂ri for each particle. This quantity is in fact also useful to get the correct smoothing
radii by iteratively solving ρi h3

i = const with a Newton-Raphson iteration.
The equations of motion (Equation 22) for inviscid hydrodynamics are remarkably simple. In

essence, we have transformed a complicated system of partial differential equations into a much
simpler set of ordinary differential equations. Furthermore, we only have to solve the momentum
equation explicitly. The mass conservation equation as well as the total energy equation (and,
hence, the thermal energy equation) are already taken care of, because the particle masses and
their specific entropies stay constant for reversible gas dynamics. However, later we introduce an
artificial viscosity that is needed to allow a treatment of shocks. This introduces additional terms
in the equations of motion and requires the time integration of one thermodynamic quantity per
particle, which can be chosen as either entropy or thermal energy. Indeed, Monaghan (2002)
pointed out that the above formulation can also be equivalently expressed in terms of thermal
energy instead of entropy. This follows by taking the time derivative of Equation 14, which first
yields

dui

dt
= Pi

ρi

∑
j

v j · ∂ρi

∂r j
. (24)

Using Equations 20 and 21 then gives the evolution of the thermal energy as

dui

dt
= fi

Pi

ρi

∑
j

m j (vi − v j ) · ∇Wi j (hi ), (25)

which needs to be integrated along the equation of motion if one wants to use the thermal energy
as an independent thermodynamic variable. There is no difference, however, between using the
entropy or the energy; the two are completely equivalent in the variational formulation. This
also solves the old problem pointed out by Hernquist (1993): that the classic SPH equations did
not properly conserve energy when the entropy was integrated, and vice versa. Arguably, it is
numerically advantageous to integrate the entropy though, as this is computationally cheaper and
eliminates time integration errors in solving Equation 25.

Note that the above formulation readily fulfills the conservation laws of energy, momentum,
and angular momentum. This can be shown based on the discretized form of the equations, but it is
also manifest due to the symmetries of the Lagrangian that was used as a starting point. The absence
of an explicit time dependence gives the energy conservation, the translational invariance implies
momentum conservation, and the rotational invariance gives angular momentum conservation.

Other derivations of the SPH equations based on constructing kernel interpolated versions of
differential operators and applying them directly to the Euler equations are also possible (see, e.g.,
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Monaghan 1992). However, these derivations of “classic SPH” are not unique in the sense that one
is left with several different possibilities for the equations and certain ad hoc symmetrizations need
to be introduced. The choice for a particular formulation then needs to rely on experimentally
comparing the performance of many different variants (Thacker et al. 2000).

2.3. Artificial Viscosity

Even when starting from perfectly smooth initial conditions, the gas dynamics described by the
Euler equations may readily produce true discontinuities in the form of shock waves and contact
discontinuities (Landau & Lifshitz 1959). At such fronts the differential form of the Euler equations
breaks down, and their integral form (equivalent to the conservation laws) needs to be used. At
a shock front, this yields the Rankine-Hugoniot jump conditions that relate the upstream and
downstream states of the fluid. These relations show that the specific entropy of the gas always
increases at a shock front, implying that in the shock layer itself the gas dynamics can no longer
be described as inviscid. In turn, this also implies that the discretized SPH equations we derived
above cannot correctly describe a shock for the simple reason that they keep the entropy strictly
constant.

One thus must allow for a modification of the dynamics at shocks and somehow introduce the
necessary dissipation. This is usually accomplished in SPH by an artificial viscosity. Its purpose is
to dissipate kinetic energy into heat and to produce entropy in the process. The usual approach is
to parameterize the artificial viscosity in terms of a friction force that damps the relative motion
of particles. Through the viscosity, the shock is broadened into a resolvable layer, something that
makes a description of the dynamics everywhere in terms of the differential form possible. It may
seem a daunting task, though, to somehow tune the strength of the artificial viscosity such that just
the right amount of entropy is generated in a shock. Fortunately, this is relatively unproblematic.
Provided the viscosity is introduced into the dynamics in a conservative fashion, the conservation
laws themselves ensure that the right amount of dissipation occurs at a shock front.

What is more problematic is to devise the viscosity such that it is only active when there is really
a shock present. If it also operates outside of shocks, even if only at a weak level, the dynamics
may begin to deviate from that of an ideal gas.

The viscous force is most often added to the equation of motion as

dvi

dt

∣∣∣∣
visc

= −
N∑

j=1

m j 	i j ∇i W i j , (26)

where

W i j = 1
2

[Wi j (hi ) + Wi j (h j )] (27)

denotes a symmetrized kernel, which some researchers prefer to define as W i j = Wi j ([hi +h j ]/2).
Provided the viscosity factor 	ij is symmetric in i and j, the viscous force between any pair of
interacting particles will be antisymmetric and along the line joining the particles. Hence, linear
momentum and angular momentum are still preserved. In order to conserve total energy, we need
to compensate the work done against the viscous force in the thermal reservoir, described either
in terms of entropy,

dAi

dt

∣∣∣∣
visc

= 1
2

γ − 1

ρ
γ−1
i

N∑
j=1

m j 	i j vi j · ∇i W i j , (28)
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or in terms of thermal energy per unit mass,

dui

dt

∣∣∣∣
visc

= 1
2

N∑
j=1

m j 	i j vi j · ∇i W i j , (29)

where vi j = vi − v j . There is substantial freedom in the detailed parameterization of the viscosity
	ij. The most commonly used formulation is an improved version of the viscosity introduced by
Monaghan & Gingold (1983),

	i j =
{

[−αc i j μi j + βμ2
i j ]/ρi j if vi j · ri j < 0

0 otherwise,
(30)

with

μi j = hi j vi j · ri j

|ri j |2 + εh2
i j

. (31)

Here, hij and ρ ij denote arithmetic means of the corresponding quantities for the two particles
i and j, with cij giving the mean sound speed. The strength of the viscosity is regulated by the
parameters α and β, with typical values in the range of α � 0.5 − 1.0 and the frequent choice
of β = 2α. The parameter ε � 0.01 is introduced to protect against singularities if two particles
happen to get very close.

In this form, the artificial viscosity is basically a combination of a bulk and a von Neumann-
Richtmyer viscosity. Historically, the quadratic term in μij has been added to the original
Monaghan-Gingold form to prevent particle penetration in high Mach number shocks. Note
that the viscosity only acts for particles that rapidly approach each other; hence, the entropy pro-
duction is always positive definite. Also, the viscosity vanishes for solid-body rotation, but not for
pure shear flows. To cure this problem in shear flows, Balsara (1995) suggested adding a correction
factor to the viscosity, reducing its strength when the shear is strong. This can be achieved by
multiplying 	ij with a prefactor ( f AV

i + f AV
j )/2, where the factors

f AV
i = |∇ · v|i

|∇ · v|i + |∇ × v|i (32)

are meant to measure the rate of the local compression in relation to the strength of the local shear
(estimated with formulas such as Equation 7). This Balsara switch has often been successfully used
in multidimensional flows and is enabled as default in many SPH codes. We note, however, that
it may be problematic sometimes in cases where shocks and shear occur together, e.g., in oblique
shocks in differentially rotating disks.

In some studies, alternative forms of viscosity have been tested. For example, Monaghan (1997)
proposed a modified form of the viscosity based on an analogy to the Riemann problem, which
can be written as

	i j = −α

2
v

sig
i j wi j

ρi j
, (33)

where v
sig
i j = c i + c j − 3wi j is an estimate of the signal velocity between two particles i and j,

and wi j = vi j · ri j /|ri j | is the relative velocity projected onto the separation vector. This viscosity
is identical to Equation 30 if one sets β = 3/2 α and replaces wi j with μi j . The main difference
between the two viscosities lies therefore in the additional factor of hi j /ri j that μi j carries with
respect to wi j . In Equations 30 and 31, this factor weights the viscous force toward particle pairs
with small separations. In fact, after multiplying with the kernel derivative, this weighting is strong
enough to make the viscous force in Equation 31 diverge as ∝ 1/ri j for small pair separations up
to the limit set by the εh2

i j term.
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Lombardi et al. (1999) have systematically tested different parameterization of viscosity, but
in general, the standard form was found to work best. Recently, the use of a tensor artificial
viscosity was conjectured by Owen (2004) as part of an attempt to optimize the spatial resolution
of SPH. However, a disadvantage of this scheme is that it breaks the strict conservation of angular
momentum.

In attempting to reduce the numerical viscosity of SPH in regions away from shocks, several
studies have instead advanced the idea of keeping the functional form of the artificial viscosity, but
making the viscosity strength parameter α variable in time. Such a scheme was first suggested by
Morris (1997), and it was successfully applied for studying astrophysical turbulence more faithfully
in SPH (Dolag et al. 2005b) and to follow neutron star mergers (Rosswog et al. 1999, Rosswog
2005). Adopting β = 2α, one may evolve the parameter α individually for each particle with an
equation such as

dαi

dt
= −αi − αmax

τi
+ Si , (34)

where Si is some source function meant to ramp up the viscosity rapidly if a shock is detected, while
the first term lets the viscosity exponentially decay again to a prescribed minimum value αmin on a
timescale τ i. So far, simple source functions like Si = max[−(∇ · v)i , 0] and timescales τi � hi/c i

have been explored, and the viscosity, αi, has often also been prevented from becoming higher
than some prescribed maximum value αmax. It is clear that the success of such a variable α scheme
depends critically on an appropriate source function. The form above can still not distinguish
purely adiabatic compression from that in a shock, so is not completely free of creating unwanted
viscosity.

2.4. Coupling to Self-Gravity

Self-gravity is extremely important in many astrophysical flows, quite in contrast to other areas of
computational fluid dynamics, where only external gravitational fields play a role. It is noteworthy
that Eulerian mesh-based approaches do not manifestly conserve total energy if self-gravity is
included (Müller & Steinmetz 1995, Springel 2010), but it can be easily and accurately incorporated
in SPH.

Arguably the best approach to account for gravity is to include it directly into the discretized
SPH Lagrangian, which has the advantage of also allowing a consistent treatment of variable grav-
itational softening lengths. This was first conducted by Price & Monaghan (2007) in the context of
adaptive resolution N-body methods for collisionless dynamics (see also Bagla & Khandai 2009).

Let �(r) = G
∑

i miφ(r − ri , εi ) be the gravitational field described by the SPH point set,
where εi is the gravitational softening length of particle i. We then define the total gravitational
self-energy of the system of SPH particles as

Epot = 1
2

∑
i

mi�(ri ) = G
2

∑
i j

mi m j φ(ri j , ε j ). (35)

For SPH including self-gravity, the Lagrangian then becomes

LSPH =
∑

i

(
1
2

mi v2
i − mi ui

)
− G

2

∑
i j

mi m j φ(ri j , ε j ). (36)
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As a result, the equation of motion acquires an additional term due to the gravitational forces,
given by:

mi a
grav
i = −∂ Epot

∂ri

= −
∑

j

Gmi m j
ri j

ri j

[φ′(ri j , εi ) + φ′(ri j , ε j )]
2

(37)

−1
2

∑
j k

Gm j mk
∂φ(r jk, ε j )

∂ε

∂ε j

∂ri
,

where φ′(r, ε) = ∂φ/∂r .
The first sum on the right-hand side describes the ordinary gravitational force, where the

interaction is symmetrized by averaging the forces in case the softening lengths between an inter-
acting pair are different. The second sum gives an additional force component that arises when
the gravitational softening lengths are a function of the particle coordinates themselves, that is,
if one invokes adaptive gravitational softening. This term has to be included to make the system
properly conservative when spatially adaptive gravitational softening lengths are used (Price &
Monaghan 2007).

In most cosmological SPH codes of structure formation, this has usually not been done thus
far, and a fixed gravitational softening was used for collisionless dark matter particles and SPH
particles alike. However, especially in the context of gravitational fragmentation problems, it
appears natural, and also indicated by accuracy considerations (Bate & Burkert 1997), to tie the
gravitational softening length to the SPH smoothing length, even though some studies caution
against this strategy (Williams, Churches & Nelson 2004). Adopting εi = hi and determining the
smoothing lengths as described above, we can calculate the ∂ε j /∂ri = ∂h j /∂ri term by means of
Equations 19 and 21. Defining the quantities

η j = h j

3ρ j
f j

∑
k

mk
∂φ(r j k, h j )

∂h
, (38)

where the factors fi are defined as in Equation 23, we can then write the gravitational acceleration
compactly as

dvi

dt

∣∣∣∣
grav

= −G
∑

j

m j
ri j

ri j

[φ′(ri j , hi ) + φ′(ri j , h j )]
2

+ G
2

∑
j

m j [ηi∇i Wi j (hi ) + η j ∇i Wi j (h j )]. (39)

This acceleration has to be added to the ordinary SPH equations of motion (Equation 22) due
to the pressure forces, which arise from the first part of the Lagrangian (Equation 36). Note that
the factors ηj can be conveniently calculated alongside the SPH density estimate. The calculation
of the gravitational correction force, that is, the second sum in Equation 39, can then be done
together with the usual calculation of the SPH pressure forces. Unlike in the primary gravitational
force, here only the nearest neighbors contribute.

We note that it appears natural to relate the functional form of the gravitational softening to
the shape of the SPH smoothing kernel, even though this is not strictly necessary. If this is done,
φ(r, h) is determined as a solution to Poisson’s equation,

∇2φ(r, h) = 4πW (r, h). (40)
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The explicit functional form for φ(r, h) resulting from this identification for the cubic spline kernel
is also often employed in collisionless N-body codes and can be found, for example, in the appendix
of Springel, Yoshida & White (2001).

2.5. Implementation Aspects

The actual use of the discretized SPH equations in simulation models requires a time-integration
scheme. The Hamiltonian character of SPH allows in principle the use of symplectic integration
schemes (Hairer, Lubich & Wanner 2002; Springel 2005), such as the leapfrog, which respects the
geometric phase-space constraints imposed by the conservation laws and can prevent the build-
up of secular integration errors with time. However, because most hydrodynamical problems of
interest are not reversible anyway, this aspect is less important than in dissipation-free collisionless
dynamics. Hence, any second-order accurate time integration scheme, like a simple Runge-Kutta
or predictor-corrector scheme, may equally well be used. It is common practice to use individual
time steps for the SPH particles, often in a block-structured scheme with particles arranged in
a power-of-two hierarchy of time steps (Hernquist & Katz 1989). This greatly increases the
efficiency of calculations in systems with large dynamic range in timescale, but can make the
optimum choice of time steps tricky. For example, the standard Courant time step criterion of the
form

�ti = CCFL
hi

c i
, (41)

usually used in SPH, where CCFL ∼ 0.1 − 0.3 is a dimensionless parameter, may not guarantee
fine enough time-stepping ahead of a blast wave propagating into very cold gas. This problem can
be avoided with an improved method for determining the sizes of individual time steps (Saitoh &
Makino 2009).

If self-gravity is included, one can draw from the algorithms employed in collisionless N-
body dynamics to calculate the gravitational forces efficiently, such as tree-methods (Barnes &
Hut 1986) or mesh-based gravity solvers. The tree approach, which provides for a hierarchical
grouping of the particles, can also be used to address the primary algorithmic requirement to
write an efficient SPH code, namely the need to efficiently find the neighboring particles inside
the smoothing kernel of a particle. If this is done naively, by computing the distance to all other
particles, a prohibitive O(N 2) scaling of the computational cost results. Using a range-searching
technique together with the tree, this cost can be reduced to O(N ngb N log N ), independent of
the particle clustering. To this end, a special walk of the tree is carried out for neighbor searching
in which a tree node is only opened if there is a spatial overlap between the tree node and the
smoothing kernel of the target particle; otherwise the corresponding branch of the tree can be
immediately discarded.

These convenient properties of the tree algorithm have been exploited for the development
of a number of efficient SPH codes in astronomy; several of them are publicly available and
parallelized for distributed memory machines. Among them are TreeSPH (Hernquist & Katz
1989; Katz, Weinberg & Hernquist 1996), HYDRA (Pearce & Couchman 1997), GADGET
(Springel, Yoshida & White 2001; Springel 2005), GASOLINE (Wadsley, Stadel & Quinn 2004),
MAGMA (Rosswog & Price 2007), and VINE (Wetzstein et al. 2009).

3. EXTENSIONS OF SMOOTHED PARTICLE HYDRODYNAMICS

For many astrophysical applications, additional physical processes in the gas phase besides invis-
cid hydrodynamics need to be modeled. This includes, for example, magnetic fields, transport
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processes such as thermal conduction or physical viscosity, or radiative transfer. SPH also needs
to be modified for the treatment of fluids that move at relativistic speeds or in relativistically
deep potentials. Below we give a brief overview of some of the extensions of SPH that have been
developed to study this physics.

3.1. Magnetic Fields

Magnetic fields are ubiquitous in astrophysical plasmas, where the conductivity can often be
approximated as being effectively infinite. In this limit one aims to simulate ideal, nonresistive
magnetohydrodynamics (MHD), which is thought to be potentially very important in many situ-
ations, in particular in star formation, cosmological structure formation, and accretion disks. The
equations of ideal MHD are composed of the induction equation,

dB
dt

= (B · ∇)v − B(∇ · v), (42)

and the magnetic Lorentz force. The latter can be obtained from the Maxwell stress tensor,

Mi j = 1
4π

(
Bi B j − 1

2
B2δi j

)
, (43)

as

Fi = ∂Mi j

∂x j
. (44)

Working with the stress tensor is advantageous for deriving equations of motion that are discretized
in a symmetric fashion. The magnetic force F then has to be added to the usual forces from gas
pressure and the gravitational field.

First implementations of magnetic forces in SPH date back to Gingold & Monaghan (1977),
soon followed by full implementations of MHD in SPH (Phillips & Monaghan 1985). However,
a significant problem with MHD in SPH has become apparent early on. The constraint equation
∇ · B = 0, which is maintained by the continuum form of the ideal MHD equations, is in general
not preserved by discretized versions of the equations. Those tend to build up ∇ ·B 
= 0 errors over
time, corresponding to unphysical magnetic monopole sources. In contrast, in the most modern
mesh-based approaches to MHD, so-called constrained transport schemes (Evans & Hawley 1988)
are able to accurately evolve the discretized magnetic field while keeping a vanishing divergence
of the field.

Much of the recent research on developing improved SPH realizations of MHD has therefore
concentrated on constructing formulations that either eliminate the ∇ ·B 
= 0 error or at least keep
it reasonably small (Dolag, Bartelmann & Lesch 1999; Price & Monaghan 2004a,b, 2005; Dolag
& Stasyszyn 2009; Price 2010). To this extent, different approaches have been investigated in the
literature, involving periodic field cleaning techniques (e.g., Dedner et al. 2002), formulations of
the equations that “diffuse away” the ∇ · B 
= 0 terms if they should arise, or the use of the Euler
potentials or the vector potential. The latter may seem like the most obvious solution, because
deriving the magnetic field as B = ∇ × A from the vector potential A will automatically create a
divergence-free field. However, Price (2010) explored the use of the vector potential in SPH and
concluded that there are substantial instabilities in this approach, rendering it essentially useless
in practice.

Another seemingly clean solution lies in the so-called Euler potentials (also known as Clebsch
variables). One may write the magnetic field as the cross product B = ∇α × ∇β of the gradients
of two scalar fields α and β. In ideal MHD, where the magnetic flux is locked into the flow, one
obtains the correct field evolution by simply advecting these Euler potentials α and β with the
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motion of the gas. This suggests a deceptively simple approach to ideal MHD; just construct the
fields α and β for a given magnetic field, and then move these scalars along with the gas. Although
this has been shown to work reasonably well in a number of simple test problems and also has
been used in some real-world applications (Price & Bate 2007, Kotarba et al. 2009), it likely has
significant problems in general MHD dynamics, as a result of the noise in SPH and the inability of
this scheme to account for any magnetic reconnection. Furthermore, Brandenburg (2010) points
out that the use of Euler potentials does not converge to a proper solution in hydromagnetic
turbulence.

Present formulations of MHD in SPH are, hence, back to discretizing the classic magnetic
induction equation. For example, Dolag & Stasyszyn (2009) give an implementation of SPH in
the GADGET code where the magnetic induction equation is adopted as

dBi

dt
= fi

ρi

∑
j

m j {Bi [vi j · ∇i Wi j (hi )] − vi j [Bi · ∇i Wi j (hi )]} (45)

and the acceleration due to magnetic forces as

dvi

dt
=

∑
j

m j

[
fi
Mi

ρ2
i

· ∇i Wi j (hi ) + f j
M j

ρ2
j

· ∇i Wi j (h j )

]
, (46)

where the fi are the correction factors of Equation 23, and Mi is the stress tensor of particle i.
Combined with field cleaning techniques (Børve, Omang & Trulsen 2001) and artificial mag-
netic dissipation to keep ∇ · B 
= 0 errors under control, this leads to quite accurate results for
many standard tests of MHD, like magnetic shock tubes or the Orszag-Tang vortex. A similar
implementation of MHD in SPH is given in the independent MAGMA code by Rosswog & Price
(2007).

3.2. Thermal Conduction

Diffusion processes governed by variants of the equation

dQ
dt

= D ∇2 Q, (47)

where Q is some conserved scalar field and D is a diffusion constant, require a discretization of the
Laplace operator in SPH. This could be done in principle by differentiating a kernel-interpolated
version of Q twice. However, such a discretization turns out to be quite sensitive to the local
particle distribution, or in other words, it is fairly noisy. It is much better to use an approximation
of the ∇2 operator proposed first by Brookshaw (1985), in the form

∇2 Q
∣∣
i = −2

∑
j

m j

ρ j

Q j − Qi

r2
i j

ri j · ∇i W i j . (48)

Cleary & Monaghan (1999) and Jubelgas, Springel & Dolag (2004) have used this to construct
implementations of thermal conduction in SPH that allow for spatially variable conductivities.
The heat conduction equation,

du
dt

= 1
ρ

∇(κ∇T ), (49)

where κ is the heat conductivity, can then be discretized in SPH as follows:

dui

dt
=

∑
j

m j

ρiρ j

(κi + κ j )(T j − Ti )
r2

i j
ri j · ∇i W i j . (50)
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In this form, the energy exchange between two particles is balanced on a pairwise basis, and
heat always flows from higher to lower temperature. Also, it is easy to see that the total entropy
increases in the process. This formulation has been used, for example, to study the influence of
Spitzer conductivity due to electron transport on the thermal structure of the plasma in massive
galaxy clusters (Dolag et al. 2004).

3.3. Physical Viscosity

If thermal conduction is not strongly suppressed by magnetic fields in hot plasmas, then one also
expects a residual physical viscosity (a pure shear viscosity in this case). In general, real gases
may possess both physical bulk and physical shear viscosity. They are then correctly described by
the Navier-Stokes equations and not the Euler equations of inviscid gas dynamics that we have
discussed thus far. The stress tensor of the gas can be written as

σi j = η

(
∂vi

∂r j
+ ∂v j

∂ri
− 2

3
δi j

∂vk

∂rk

)
+ ζ δi j

∂vk

∂rk
, (51)

where η and ζ are the coefficients of shear and bulk viscosity, respectively. The Navier-Stokes
equation including gravity is then given by

dv
dt

= −∇ P
ρ

− ∇� + 1
ρ

∇σ . (52)

Sijacki & Springel (2006) have suggested an SPH discretization of this equation, which estimates
the shear viscosity of particle i based on

dvα

dt

∣∣∣∣
i, shear

=
∑

j

m j

[
ηiσαβ |i

ρ2
i

[∇i Wi j (hi )]|β + η j σαβ | j

ρ2
j

[∇i Wi j (h j )]|β
]
, (53)

and the bulk viscosity as

dv
dt

∣∣∣∣
i, bulk

=
∑

j

m j

[
ζi∇ · vi

ρ2
i

∇i Wi j (hi ) + ζ j ∇ · v j

ρ2
j

∇i Wi j (h j )

]
. (54)

These viscous forces are antisymmetric, and together with a positive definite entropy evolution,

dAi

dt
= γ − 1

ρ
γ−1
i

[
1
2

ηi

ρi
σ 2

i + ζi

ρi
(∇ · v)2

]
, (55)

they conserve total energy. Here, the derivatives of the velocity can be estimated with pair-wise
formulations as in Equation 7.

In some sense, it is actually simpler for SPH to solve the Navier-Stokes equation than the
Euler equations. As we discuss in more detail in Section 5.4, this is because the inclusion of an
artificial viscosity in SPH makes the scheme problematic for purely inviscid flow, because this
typically introduces a certain level of spurious numerical viscosity also outside of shocks. If the
gas has, however, a sizable amount of intrinsic physical viscosity anyway, it becomes much easier
to correctly represent the fluid, provided the physical viscosity is larger than the unavoidable
numerical viscosity.

3.4. Radiative Transfer

In many astrophysical problems, like the reionization of the Universe or in first star formation,
one would like to self-consistently follow the coupled system of hydrodynamical and radiative
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transfer equations, allowing for a proper treatment of the backreaction of the radiation on the
fluid, and vice versa. Unfortunately, the radiative transfer equation is in itself a high-dimensional
partial differential equation that is extremely challenging to solve in its full generality. The task is
to follow the evolution of the specific intensity field,

1
c

∂ Iν

∂t
+ n · ∇ Iν = −κν Iν + jν, (56)

which is not only a function of spatial coordinates, but also of direction n and of frequency ν.
Here jν is a source function and κν is an absorption coefficient, which provide an implicit coupling
to the hydrodynamics. Despite the formidable challenge to develop efficient numerical schemes
for the approximate solution of the radiation-hydrodynamical set of equations, the development
of such codes based on SPH-based techniques has really flourished in recent years, where several
new schemes have been proposed.

Perhaps the simplest and also oldest approaches are based on flux-limited diffusion approx-
imations to radiative transfer in SPH (Whitehouse & Bate 2004, 2006; Whitehouse, Bate &
Monaghan 2005; Fryer, Rockefeller & Warren 2006; Viau, Bastien & Cha 2006; Forgan et al.
2009). A refinement of this strategy has been proposed by Petkova & Springel (2009), based on
the optically thin variable tensor approximations of Gnedin & Abel (2001). In this approach, the
radiative transfer equation is simplified in moment-based form, allowing the radiative transfer to
be described in terms of the local energy density Jν of the radiation,

Jν = 1
4π

∫
Iν d�. (57)

This radiation energy density is then transported with an anisotropic diffusion equation,

1
c

∂Jν

∂t
= ∂

∂r j

(
1
κν

∂Jνhi j

∂ri

)
− κνJν + jν, (58)

where the matrix hij is the so-called Eddington tensor, which is symmetric and normalized to
unit trace. The Eddington tensor encodes information about the angle dependence of the local
radiation field, and in which direction, if any, it prefers to diffuse in case the local radiation field
is highly anisotropic. In the ansatz of Gnedin & Abel (2001), the Eddington tensors are simply
estimated in an optically thin approximation as a 1/r2-weighted sum over all sources, which can
be calculated efficiently for an arbitrary number of sources with techniques familiar from the
calculation of gravitational fields.

Petkova & Springel (2009) derive an SPH discretization of the transport part of this radiative
transfer approximation (described by the first term on the right-hand side) as

∂ N i

∂t
=

∑
j

wi j (N j − N i ), (59)

where the factors wi j are given by

wi j = 2c mi j

κi j ρi j

rT
i j h̃i j ∇i W i j

r2
i j

, (60)

and N i = c 2Jν/(h4
Planckν

3) is the photon number associated with particle i. The tensor,

h̃ = 5
2

h − 1
2

Tr(h), (61)

is a modified Eddington tensor such that the SPH discretization in Equation 60 corresponds
to the correct anisotropic diffusion operator. The exchange described by Equation 59 is photon
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conserving, and because the matrix wi j is symmetric and positive definite, reasonably fast iterative
conjugate gradient solvers can be used to integrate the diffusion problem implicitly in time in a
stable fashion.

A completely different approach to combine radiative transfer with SPH has been described
by Pawlik & Schaye (2008), who transport the radiation in terms of emission and reception
cones, from particle to particle. This effectively corresponds to a coarse discretization of the solid
angle around each particle. Yet another scheme is given by Nayakshin, Cha & Hobbs (2009),
who implemented a Monte Carlo implementation of photon transport in SPH. Here, the pho-
tons are directly implemented as virtual particles, thereby providing a Monte Carlo sampling of
the transport equation. Although this method suffers from the usual Monte Carlo noise limita-
tions, only few simplifying assumptions in the radiative transfer equation itself have to be made,
and it can therefore be made increasingly more accurate simply by using more Monte-Carlo
photons.

Finally, Altay, Croft & Pelupessy (2008) suggested a ray-tracing scheme within SPH, which
essentially implements ideas that are known from so-called long- and short-characteristics methods
for radiative transfer around point sources in mesh codes. These approaches have the advantage of
being highly accurate, but their efficiency rapidly declines with an increasing number of sources.

3.5. Relativistic Dynamics

It is also possible to derive SPH equations for relativistic dynamics from a variational principle
(Monaghan & Price 2001), both for special and general relativistic dynamics. This is more elegant
than alternative derivations and avoids some problems inherent in other approaches to relativistic
dynamics in SPH (Monaghan 1992; Laguna, Miller & Zurek 1993; Faber & Rasio 2000; Siegler
& Riffert 2000; Ayal et al. 2001).

The variational method requires discretizing the Lagrangian,

L = −
∫

TμνU νU ν dV , (62)

where Uμ is the four-velocity, and Tμν = (P + e)U νU ν + P ημν is the energy momentum tensor
of a perfect fluid with pressure P and rest-frame energy density

e = n m0c 2
(

1 + u
c 2

)
. (63)

Here a (−1, 1, 1, 1) signature for the flat metric tensor ημν is used. n is the rest frame number
density of particles of mean molecular weight m0, and u is the rest-frame thermal energy per unit
mass. In the following, we set c = m0 = 1.

Rosswog (2009) gives a detailed derivation of the resulting equations of motion when the
discretization is done in terms of fluid parcels with a constant number ν i of baryons in SPH-
particle i and when variable smoothing lengths are consistently included. In the special-relativistic
case, he derives the equations of motion as

dsi

dt
= −

∑
j

ν j

[
fi

Pi

N 2
i
∇i Wi j (hi ) + f j

Pj

N 2
j
∇i Wi j (h j )

]
, (64)

where the generalized momentum si of particle i is given by

si = γi vi

(
1 + ui + Pi

ni

)
, (65)
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and γ i is the particle’s Lorentz factor. The baryon number densities Ni in the computing frame
are estimated just as in Equation 4, except for the replacements ρi → N i and m j → ν j . Similarly,
the correction factors fi are defined as in Equation 23 with the same replacements.

One also needs to complement the equation of motion with an energy equation of the form

dεi

dt
= −

∑
j

ν j

[
fi Pi

N 2
i

vi · ∇Wi j (hi ) + f j Pj

N 2
j

v j · ∇Wi j (h j )

]
, (66)

where

εi = vi · si + 1 + ui

γi
(67)

is a suitably defined relativistic energy variable. These equations conserve the total canonical
momentum as well as the angular momentum. A slight technical complication arises for this choice
of variables due to the need to recover the primitive fluid variables after each time step from the
updated integration variables si and εi, which requires finding the root of a nonlinear equation.

4. APPLICATIONS OF SMOOTHED PARTICLE HYDRODYNAMICS

The versatility and simplicity of SPH have led to a wide range of applications in astronomy,
essentially in every field where theoretical research with hydrodynamical simulations is carried
out. We here provide a brief, necessarily incomplete overview of some of the most prominent
topics that have been studied with SPH.

4.1. Cosmological Structure Formation

Among the most important successes of SPH in cosmology are simulations that have clarified the
origin of the Lyman-α forest in the absorption spectra to distant quasars (e.g., Hernquist et al.
1996, Davé et al. 1999), which have been instrumental for testing and interpreting the cold dark
matter cosmology. Modern versions of such calculations use detailed chemical models to study
the enrichment of the intragalactic medium (Oppenheimer & Davé 2006), and the nature of the
so-called warm-hot IGM, which presumably contains a large fraction of all cosmic baryons (Davé
et al. 2001).

Cosmological simulations with hydrodynamics are also used to study galaxy formation in its full
cosmological context, directly from the primordial fluctuation spectrum predicted by inflationary
theory. This requires the inclusion of radiative cooling and subresolution models for the treatment
of star formation and associated energy feedback processes from supernovae explosions or galactic
winds. A large variety of such models have been proposed (e.g., Springel & Hernquist 2003);
some also involve rather substantial changes of SPH, for example, the decoupled version of SPH
by Marri & White (2003) for the treatment of multiphase structure in the ISM. Despite the
uncertainties such modeling involves and the huge challenge to numerical resolution this problem
entails, important theoretical results on the clustering of galaxies, the evolution of the cosmic star-
formation rate, and the efficiency of galaxy formation as a function of halo mass have been reached.

One important goal of such simulations has been the formation of disk galaxies in a cosmological
context, which has however proven to represent a significant challenge. In recent years, substantial
progress in this area has been achieved, however, where some simulated galaxies have become quite
close now to the morphology of real spiral galaxies (Governato et al. 2007, Scannapieco et al. 2008).
Still, the ratio of the stellar bulge to disk components found in simulations is typically much higher
than in observations, and the physical or numerical origin for this discrepancy is debated.
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The situation is better for clusters of galaxies, where the most recent SPH simulations have
been quite successful in reproducing the primary scaling relations that are observed (Borgani et al.
2004; Puchwein, Sijacki & Springel 2008; McCarthy et al. 2010). This comes after a long struggle
in the literature with the cooling-flow problem, namely the fact that simulated clusters tend to
efficiently cool out much of their gas at the center, an effect that is not present in observations in
the predicted strength. The modern solution is to attribute this to a nongravitational heat source
in the center of galaxies, which is thought to arise from active galactic nuclei. This important
feedback channel has recently been incorporated in SPH simulations of galaxy clusters (Sijacki
et al. 2008).

SPH simulations of cosmic large-scale structure and galaxy clusters are also regularly used to
study the Sunyaev-Zel’dovich effect (da Silva et al. 2000), the buildup of magnetic fields (Dolag,
Bartelmann & Lesch 1999, 2002; Dolag et al. 2005a), or even the production of nonthermal
particle populations in the form of cosmic rays (Pfrommer et al. 2007, Jubelgas et al. 2008). The
latter also required the development of a technique to detect shock waves on the fly in SPH and
to measure their Mach number (Pfrommer et al. 2006).

4.2. Galaxy Mergers

The hierarchical theory of galaxy formation predicts frequent mergers of galaxies, leading to the
buildup of ever larger systems. Such galaxy interactions are also prominently observed in many
systems, such as the Antennae Galaxies NGC 4038/4039. The merger hypothesis (Toomre &
Toomre 1972) suggests that the coalescence of two spiral galaxies leads to an elliptical remnant
galaxy, thereby playing a central role in explaining Hubble’s tuning fork diagram for the morphol-
ogy of galaxies. SPH simulations of merging galaxies have been instrumental in understanding
this process.

In pioneering work by Hernquist (1989), Barnes & Hernquist (1991), and Mihos & Hernquist
(1994, 1996), the occurrence of central nuclear starbursts during mergers was studied in detail.
Recently, the growth of supermassive black holes has been added to the simulations (Springel,
Di Matteo & Hernquist 2005), making it possible to study the coevolution of black holes and
stellar bulges in galaxies. Di Matteo, Springel & Hernquist (2005) demonstrated that the energy
output associated with accretion regulates the black hole growth and establishes the tight observed
relation between black hole masses and bulge velocity dispersions. Subsequently, these simulations
have been used to develop comprehensive models of spheroid formation and for interpreting the
evolution and properties of the cosmic quasar population (Hopkins et al. 2005, 2006).

4.3. Star Formation and Stellar Encounters

On smaller scales, many SPH-based simulations have studied the fragmentation of molecular
clouds, star formation, and the initial mass function (Bate 1998; Klessen, Burkert & Bate 1998; Bate
& Bonnell 2005; Smith, Clark & Bonnell 2009). This includes also simulations of the formation of
the first stars in the Universe (Bromm, Coppi & Larson 2002; Yoshida et al. 2006; Clark, Glover
& Klessen 2008), which are thought to be very special objects.

In this area, important numerical issues related to SPH have been examined as well. Bate &
Burkert (1997) show that the Jeans mass needs to be resolved to guarantee reliable results for
gravitational fragmentation, a result that was strengthened by Whitworth (1998), who showed
that, provided h ∼ ε and the Jeans mass is resolved, only physical fragmentation should occur.
Special on-the-fly particle splitting methods have been developed in order to guarantee that the
Jeans mass stays resolved over the course of a simulation (Kitsionas & Whitworth 2002, 2007).
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Also, the ability of SPH to represent driven isothermal turbulence has been studied (Klessen,
Heitsch & Mac Low 2000).

Pioneering work on stellar collisions with SPH has been performed by Benz & Hills (1987) and
Benz et al. (1990). Some of the most recent work in this area studied quite sophisticated problems,
such as relativistic neutron star mergers with an approximate treatment of general relativity and
sophisticated nuclear matter equations of state (Rosswog, Ramirez-Ruiz & Davies 2003; Oechslin,
Janka & Marek 2007), or the triggering of subluminous supernovae type Ia through collisions of
white dwarfs (Pakmor et al. 2010).

4.4. Planet Formation and Accretion Disks

SPH have been successfully employed to study giant planet formation through the fragmentation
of protoplanetary disks (Mayer et al. 2002, 2004) and to explore the interaction of high- and low-
mass planets embedded in protoplanetary discs (Bate et al. 2003, Lufkin et al. 2004). A number
of works have also used SPH to model accretion disks (Simpson 1995), including studies of spiral
shocks in 3D disks (Yukawa, Boffin & Matsuda 1997), accretion of gas onto black holes in viscous
accretion disks (Lanzafame, Molteni & Chakrabarti 1998), or cataclysmic variable systems (Wood
et al. 2005).

Another interesting application of SPH lies in simulations of materials with different equa-
tions of state, corresponding to rocky and icy materials (Benz & Asphaug 1999). This allows the
prediction of the outcome of collisions of bodies with sizes from the scale of centimeters to hun-
dreds of kilometers, which has important implications for the fate of small fragments in the Solar
System or in protoplanetary disks. Finally, such simulation techniques allow calculations of the
collision of protoplanets, culminating in numerical simulations that showed how the Moon might
have formed by an impact between protoearth and an object a tenth of its mass (Benz, Slattery &
Cameron 1986).

5. CONVERGENCE, CONSISTENCY, AND STABILITY OF SMOOTHED
PARTICLE HYDRODYNAMICS

There have been a few code comparisons in the literature between SPH and Eulerian hydrody-
namics (Frenk et al. 1999, O’Shea et al. 2005, Tasker et al. 2008), but very few formal studies of the
accuracy of SPH have been carried out. Even most code papers on SPH report only circumstantial
evidence for SPH’s accuracy. What is especially missing are rigorous studies of the convergence
rate of SPH toward known analytic solutions, which is ultimately one of the most sensitive tests
of the accuracy of a numerical method. For example, this may involve measuring the error in
the result of an SPH calculation in terms of an L1 error norm relative to a known solution, as
is often done in tests of Eulerian hydrodynamics codes. There is no a priori reason why SPH
should not be subjected to equally sensitive tests to establish whether the error becomes smaller
with increasing resolution (convergence) and whether the convergence occurs toward the correct
physical solution (consistency). Such tests can also provide a good basis to compare the efficiency
of different numerical approaches for a particular type of problem with each other.

In this Section, we discuss a number of tests of SPH in one and two dimensions in order to
provide a basic characterization of the accuracy of “standard SPH” as outlined in Section 2. Our
discussion is, in particular, meant to critically address some of the weaknesses of standard SPH,
both to clarify the origin of the inaccuracies and to guide the ongoing search for improvements
in the approach. We note that there is already a large body of literature with suggestions for
improvements of standard SPH, ranging from minor modifications, say in the parameterization
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of the artificial viscosity, to more radical changes, such as outfitting SPH with a Riemann solver
or replacing the kernel-interpolation technique with a density estimate based on a Voronoi tes-
sellation. We shall summarize some of these attempts in Section 6, but refrain from testing them
in detail here.

We note that for all test results reported below, it is well possible that small modifications
in the numerical parameters of the code that was used (GADGET2, Springel 2005) may lead to
slightly improved results. However, we expect that this may only reduce the error by a constant
factor as a function of resolution, but is unlikely to significantly improve the order or convergence.
The former is very helpful of course, but ultimately represents only cosmetic improvements of
the results. What is fundamentally much more important is the latter, the order of convergence
of a numerical scheme.

5.1. One-Dimensional Sound Waves

Based on analytic reasoning, Rasio (2000) argued that convergence of SPH for 1D sound waves
requires increasing both the number of smoothing neighbors and the number of particles, with
the latter increasing faster such that the smoothing length and, hence, the smallest resolved scale
decreases. In fact, he showed that in this limit the dispersion relation of sound waves in one
dimension is correctly reproduced by SPH for all wavelengths. He also pointed out that if the
number of neighbors is kept constant and only the number of particles is increased, then one may
converge to an incorrect physical limit, implying that SPH is inconsistent in this case.

We note that in practice the requirement of consistency may not be crucially important,
provided the numerical result converges to a solution that is close enough to the correct physical
solution. For example, a common error in SPH for a low number of neighbors is that the density
estimate carries a small bias of up to a percent or so. Although this automatically means that the
exact physical value of the density is systematically missed by a small amount, in the majority of
astrophysical applications of SPH, the resulting error will be subdominant compared to other
errors or approximations in the physical modeling, and is therefore not really of concern. In our
convergence tests below, we therefore stick with the common practice of keeping the number
of smoothing neighbors constant. Note that because we compare to known analytic solutions,
possible errors in the dispersion relation will be picked up by the error measures anyway.

We begin with the elementary test of a simple acoustic wave that travels through a periodic
box. To avoid any wave steepening, we consider a very small wave amplitude of �ρ/ρ = 10−6.
The pressure of the gas is set to P = 3/5 at unit density, such that the adiabatic sound speed is
c s = 1 for a gas with γ = 5/3. We let the wave travel once through the box of unit length and
compare the velocity profile of the final result at time t = 1.0 with the initial conditions in terms
of an L1 error norm. We define the latter as

L1 = 1
N

∑
i

|vi − v(xi )|, (68)

where N is the number of SPH particles, vi is the numerical solution for the velocity of particle
i, and v(xi ) is the expected analytic solution for the problem, which is here identical to the initial
conditions. Note that we deliberately pick the velocity as error measure, because the density
estimate can be subject to a bias that would then completely dominate the error norm. The
velocity information on the other hand tells us more faithfully how the wave has moved and
whether it properly returned to its original state.

In Figure 1, we show results for the L1 error norm as a function of the number N of equal-mass
particles used to sample the domain, for different numbers of smoothing neighbors. Interestingly,
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Figure 1
Convergence rate for a
traveling sound wave
in 1D, calculated in
smoothed particle
hydrodynamics
without artificial
viscosity. The solution
(symbols) converges
with second-order
accuracy as L1 ∝ N −2

(this power law is
shown with gray dashed
lines), for different
numbers of neighbors.

the results show second-order convergence of the code, with L1 ∝ N −2, as expected in a second-
order accurate scheme for smooth solutions without discontinuities. This convergence rate is the
same as the one obtained for this problem with standard state-of-the-art second-order Eulerian
methods (e.g., Stone et al. 2008, Springel 2010), which is reassuring. Note that in this test a
larger number of neighbors simply reduces the effective spatial resolution but does not lead to an
advantage in the L1 velocity norm. Nevertheless, the density is more accurately reproduced for a
larger number of neighbors. Because the sound speed depends only on temperature (which is set
as part of the initial conditions), the density error apparently does not appreciably affect the travel
speed of acoustic waves in this test.

5.2. One-Dimensional Riemann Problems

Let us now consider a few Riemann problems in one dimension. Their initial conditions are
characterized by two piece-wise constant states that meet discontinuously at x = 0.5 at time
t = 0. The subsequent evolution then gives rise to a set of self-similar waves containing always
one contact wave, which is sandwiched on the left and the right by either a shock wave or a
rarefaction wave. The ability to correctly reproduce the nonlinear outcome of arbitrary Riemann
problems is the backbone of any hydrodynamical method.

In Figure 2, we show SPH results for three different Riemann-type problems, with initial
conditions characterized by triples of density, pressure, and velocity for either side, as listed in
Table 1. For all these problems (which are taken from Toro 1997), γ = 1.4 has been assumed.
Problem 1 gives rise to a comparatively weak shock, which has been studied in very similar form
(but with a different value of P2 = 0.1795) in a number of previous tests of SPH (Hernquist &
Katz 1989; Rasio & Shapiro 1991; Wadsley, Stadel & Quinn 2004; Springel 2005; among others).
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Figure 2
Different 1D Riemann problems, calculated with a resolution of 100 points in the unit domain, and 7 smoothing neighbors. The three
columns show results for the initial conditions of problems 1, 2, and 3 as specified in Table 1. Symbols represent the smoothed particle
hydrodynamics (SPH) particles, and solid lines show the exact solutions for density, velocity, and pressure, from top to bottom.

Table 1 Parameters of the 1D Riemann problems (for γ = 1.4) examined here

ρ1 P1 ν1 ρ2 P2 ν2

Problem 1 1.0 1.0 0.0 0.125 0.1 0.0
Problem 2 1.0 0.4 −2.0 1.0 0.4 2.0
Problem 3 1.0 1000.0 0.0 1.0 0.01 0.0
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Figure 3
Convergence rate of
1D Riemann problems
(as labeled), calculated
with a resolution of
100 points in the unit
domain, using 7
smoothing neighbors.
The gray dashed lines
indicate a L1 ∝ N −1

scaling of the error.

In the second problem, the gas is suddenly ripped apart with large supersonic velocity, giving rise
to a pair of strong rarefaction waves. Finally, problem 3 is again a Sod shock-type problem but
involves an extremely strong shock.

The results shown in Figure 2 are based on 100 points with initially equal spacing in the unit
domain, 7 smoothing neighbors, and a standard artificial viscosity setting. All problems are treated
qualitatively correctly by SPH, with some inaccuracies at the contact discontinuities. Character-
istically, shocks and contact discontinuities are broadened over 2 to 3 smoothing lengths, and
rarefaction waves show a small over- and underestimate at their high- and low-density sides, re-
spectively. Also, there is a pressure blip seen at the contact discontinuity. However, the properties
of the postshock flow are correct, and the artificial viscosity has successfully suppressed all post-
shock oscillations. Also, the errors become progressively smaller as the resolution is increased.
This is seen explicitly in Figure 3, where we show results of the L1 error norm for the velocity as
a function of resolution. The error declines as L1 ∝ N −1, which is expected due to the reduced
order of the scheme at the discontinuities. The same convergence rate for the shock-problem is
obtained with Eulerian approaches, as they too exhibit only first-order accuracy around disconti-
nuities in the solutions.

Often the discussion of the numerical accuracy of shocks focuses on the sharpness with which
they are represented, and on that basis SPH has frequently been portrayed as being inferior
in comparison with Eulerian methods. However, it should be noted that in both approaches the
numerical shock width is always many orders of magnitude larger than the true width of the physical
shock layer. What is much more relevant than the width is therefore that the properties of the
postshock flow are correct, which is the case in SPH. Also, the numerical thickness of the shocks
may be reduced arbitrarily by using more particles and is, hence, entirely a matter of resolution.
We also point out that contact discontinuities can often become quite broad in Eulerian methods;
in fact, their width increases with growing advection speed, unlike in the Galilean-invariant SPH.
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As far as 1D hydrodynamics is concerned, SPH can hence be characterized as being quite accurate
and, in particular, its convergence rate appears competitive with second-order Eulerian schemes.

5.3. Two-Dimensional Shock Waves

Multidimensional hydrodynamics adds much additional complexity, such as shear flows, fluid
instabilities, and turbulence. We here first briefly examine whether a problem with 1D symmetry,
again a Riemann problem, can be equally well represented with SPH in multiple dimensions. For
definiteness, we study again the strong shock of problem 3 from the previous section, but this time
with the y dimension added to the initial setup. This is taken as a regular Cartesian N × N particle
grid in the unit square, with periodic boundaries in the y direction and reflective boundaries in
the x direction.

In Figure 4a, we show the x velocities of all particles of a run at 100 × 100 resolution and
compare them to the analytic solution. Relative to the corresponding 1D result shown in the
middle-right panel of Figure 2, the primary difference is a considerably increased noise in the
particle velocities. This noise is a generic feature of multidimensional flows simulated with SPH.
It can be reduced by an enlarged artificial viscosity or a larger number of neighbors, but typically
tends to be much larger than in 1D calculations. Presumably, this is just a consequence of the
higher degree of freedom in the particle motion.

Unsurprisingly, the noise has a negative impact on the convergence rate of planar shocks in
multidimensional SPH. This is shown for the same problem in Figure 4, where we measure
L1 ∝ N −0.7 instead of the ideal L1 ∝ N −1.0. It also does not appear to help to first bin the
particles and then to compute the L1 error as a difference between the averaged and the analytical
result. Although this reduces the absolute size of the error substantially and is certainly warranted
to eliminate the intrinsic noise, it does not affect the convergence rate itself (see Figure 4).
Nevertheless, the noise does not destroy the principal correctness of the solution obtained with
SPH for multidimensional planar Riemann problems.

0.0 0.2 0.4 0.6 0.8 1.0
x

0

5

10

15

20 a

10 2 10 3

N

10 –1

L1
 (v

)

v

10 0

SPH particles
Analytic solutions

Ideal N–1 

L1 ∝ N–0.7

Binned L1 error
Individual L1 error

bb

Figure 4
Velocity profile and convergence rate of a 2D strong shock problem. (a) Blue circles show the velocities of all
smoothed particle hydrodynamics (SPH) particles, compared to the analytic result (solid gray line). (b) Open
red circles show the L1 error for a binned result (using N bins in the x direction in each case); filled red circles
give the error when individual particles are considered. In this 2D problem, the ideal N−1 convergence rate
(dotted gray lines) of 1D simulations is reduced to approximately L1 ∝ N −0.7 (dashed gray lines).

www.annualreviews.org • Smoothed Particle Hydrodynamics 415

A
nn

u.
 R

ev
. A

st
ro

n.
 A

st
ro

ph
ys

. 2
01

0.
48

:3
91

-4
30

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
O

ss
er

va
to

ri
o 

A
st

ro
fi

si
co

 d
i A

rc
et

ri
-I

N
A

F 
on

 1
0/

11
/1

6.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



AA48CH11-Springel ARI 23 July 2010 15:52

5.4. Shear Flows

We now a discuss a yet more demanding 2D problem, the vortex test of Gresho (Gresho & Chan
1990, Liska & Wendroff 2003). It consists of a triangular azimuthal velocity profile,

vφ(r) =

⎧⎪⎨
⎪⎩

5r for 0 ≤ r < 0.2
2 − 5r for 0.2 ≤ r < 0.4
0 for r ≥ 0.4

, (69)

in a gas of constant density equal to ρ = 1 and an adiabatic index of γ = 5/3. By adopting the
pressure profile,

P (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5 + 25/2r2 for 0 ≤ r < 0.2
9 + 25/2r2−
20r + 4 ln(r/0.2) for 0.2 ≤ r < 0.4
3 + 4 ln 2 for r ≥ 0.4

, (70)

the centrifugal force is balanced by the pressure gradient, and the vortex becomes independent of
time.

In Figure 5, we compare the results for the azimuthal velocity profiles at time t = 1.0 for
three different runs, carried out with 80 × 80 particles in the unit domain for different settings
of the artificial viscosity. Figure 5a shows the outcome for a standard viscosity of α = 1.0,
Figure 5b shows α = 0.05, and Figure 5c does not use any artificial viscosity at all. We see that
in all three cases, substantial noise in the velocity profile develops, but it is clearly largest in the
simulation without viscosity. However, one can see that the average velocity profile of the run
without viscosity is actually closest to the expected stationary solution (blue lines), whereas the
standard viscosity run already shows a reduced angular frequency in the solid-body part of the
rotation in the inner part of the vortex. Despite the use of the Balsara switch in this problem,
the velocity noise, and as a consequence the noisy estimates of divergence and curl, has produced
enough residual viscosity to lead to appreciable angular momentum transport.

0.0

0.2

0.4

0.6

0.8

1.0

Normal viscosity (α = 1.0)

a b c

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.50.0 0.1 0.2 0.3 0.4 0.5
r

Low viscosity (α = 0.05) No viscosity

vφ

Figure 5
Velocity profile in the Gresho vortex test at time t = 1.0, at a base resolution of 80 × 80, for different viscosity settings. Here, low
viscosity corresponds to α = 0.05, and normal viscosity to α = 1.0, with the Balsara switch enabled in both cases. The small gray dots
are the azimuthal velocities of individual smoothed particle hydrodynamics particles, whereas the filled red circles show binned results.
The blue triangular-shaped profile is the analytic (stationary) solution.
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N
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Normal viscosity

Highest Analytic
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No viscosity

L1 ∝ N –0.7

Figure 6
Convergence rate of
the Gresho problem,
in terms of the
binned azimuthal
velocity, for different
viscosity settings.
Here the open
symbols measure the
L1 error toward the
highest resolution
result, whereas the
filled symbols
measure the
difference with
respect to the
analytic solution.
The dotted line
indicates a
L1 ∝ N −0.7

convergence.

This is corroborated by the results of convergence tests for this problem. In Figure 6, we
consider the L1 error norm of the binned azimuthal velocity profile (based on N/2 bins, linearly
placed in the radial range of 0 to 0.5). Interestingly, the two runs with nonvanishing viscosity do
not converge to the analytic solution with higher resolution. Instead, they converge to a different
solution. If we approximately identify this solution as the highest resolution result in each case,
then we see that the lower resolution calculations converge to it with L1 ∝ N −0.7. What is
important to note is that the effects of the artificial viscosity on the shear flow do not diminish
with higher resolution. Instead, the solutions behave as if one had simulated a fluid with some
residual shear viscosity instead. Only the run without viscosity appears to converge to the correct
physical solution, albeit at a very low rate for high N. In any case, it appears that the convergence
rate of SPH for this problem is considerably worse than the L1 ∝ N −1.4 measured for a moving-
mesh code and Eulerian codes by Springel (2010).

5.5. Contact Discontinuities and Fluid Instabilities

An issue that has created considerable attention recently is the question of whether SPH can prop-
erly resolve fluid instabilities, such as the Kelvin-Helmholtz (KH) instability in shear flows. For a
setup with equal particle masses and a sharp initial density contrast of 1:2 at a contact discontinuity,
Agertz et al. (2007) did not observe any growth of the instability, whereas for a vanishing density
jump the fluids would start to mix. Agertz et al. (2007) attributed these problems to substantial
errors in the pressure gradient estimates at the contact discontinuity. A number of recent studies
have addressed this problem as well, proposing modifications of SPH designed to improve the KH
results. In particular, Price (2008) has suggested adding an artificial heat conduction to smooth
out the phase boundary, which indeed improved the results. A different approach was followed
by Read, Hayfield & Agertz (2009), who employed a different kernel, a much enlarged number of
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neighbors, and a modified density estimation formula to obtain a better representation of mixing
of different phases in shear layers. We do not examine these modifications here but want to shine
more light onto the nature of the inaccuracies of standard SPH for the KH problem.

We adopt the KH test parameters of Springel (2010), that is, a central phase in the region
|y − 0.5| < 0.25 is given density ρ2 = 2 and velocity vx = 0.5, whereas the rest of the gas has
density ρ1 = 1 and velocity vx = −0.5, all at the same pressure of P = 2.5 with γ = 5/3. In
order to soften the transition at the two interfaces, we follow Robertson et al. (2010) and impose a
smooth transition in the vertical profiles of density ρ(y), shear velocity vx(y), and specific entropy
A(y) = P/ρ(y)γ . For example, the initial density structure is adopted as

ρ(y) = ρ1 + ρ2 − ρ1[
1 + exp(−2(y − 0.25)/σ )

] [
1 + exp(2(y − 0.75)/σ )

] , (71)

with σ = 0.025, and similar adoptions are made for the other profiles. The transition removes the
sharp discontinuities from the initial conditions, such that they can in principle be fully resolved by
the numerical scheme. This regularization makes the problem well posed for convergence studies,
which is particularly important for the KH instability, where smallest scales grow fastest.

For simplicity, we consider a Cartesian particle grid in the unit domain with periodic boundaries
and trigger the instability by applying the velocity perturbation throughout the y-domain, as

vy (x) = v0 sin(k x), (72)

with an initial amplitude of v0 = 0.01 and a wave number of k = 2 × (2π )/L. We can easily study
the growth of this velocity mode by measuring its amplitude through a Fourier transform of the
2D vy velocity field.

In Figure 7, we show density maps of the evolved fields at time t = 2.0 for different SPH
simulations, using 27 neighbors and no artificial viscosity. As can be seen, the KH instability

64 × 64 128 × 128

256 × 256 512 × 512

Figure 7
Density fields of the
Kelvin-Helmholtz
instability test at
t = 2.0, simulated with
smoothed particle
hydrodynamics for
different resolutions,
as labeled.
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Figure 8
Growth rate of Kelvin-Helmholtz instabilities in smoothed particle hydrodynamics (SPH) test simulations
for different resolutions as labeled. (a) The amplitude of the initially excited velocity mode, compared to the
expected linear growth rate (dashed line). (b) The velocity dispersion of the SPH particles in the x direction as
a function of time for a thin layer close to the midplane of the box. This dispersion is an indication of the
level of velocity noise in the calculation.

clearly develops and produces the characteristic wave-like features. The density field is visibly
noisy though, as a result of the absence of artificial viscosity. If the latter is added, the noise is
substantially reduced, but the KH billows look much more anemic and have a reduced amplitude.

An interesting question is whether the KH instability actually grows with the right rate in these
SPH calculations. This is examined in Figure 8, where the amplitude of the excited vy mode of the
velocity field is shown as a function of time for the case without viscosity. The growth is compared
to the expected exponential growth rate vy ∝ exp(t/τKH), shown as a dashed line, where

τKH = ρ1 + ρ2

|v2 − v1|k√
ρ1ρ2

(73)

is the KH growth timescale for an inviscid gas. After an initial transient phase (which is expected
because the initial perturbation was not set up self-consistently), the two low-resolution calcula-
tions with 322 and 642 particles do actually reproduce this growth rate quite accurately for some
time, but then the growth rate suddenly slows down considerably. Curiously, the higher resolution
simulations never quite reach the expected growth rate. So what is going on here?

A hint is obtained by the results shown in Figure 8b, where the vx velocity dispersion of
the particles in a narrow strip around y � 0.5 is shown as a function of time. We, in principle,
expect this to remain close to zero until very late in the evolution. However, what we actually
observe is a sudden increase of this dispersion, when the regularity and coherence of the initial
Cartesian particle grid are finally lost. At this moment, SPH develops its velocity noise, which is
characteristic even of smooth flows. Interestingly, we observe that the development of this velocity
noise closely coincides in time with the termination of the correct linear growth rate. The natural
interpretation is that as long as the particles are still quite regularly ordered, the analytic linear
KH growth rate is calculated accurately by SPH, but at late times the developing noise introduces
a substantial degradation of the accuracy that reduces the proper growth rate.
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Figure 9
The same as in Figure 8, but for simulations that include an artificial viscosity of moderate strength with
α = 0.25.

This suggests that perhaps the use of the right amount of artificial viscosity may yield an
accurate growth rate even at late times if it prevents the detrimental noise effects. In Figure 9, the
equivalent results are shown with artificial viscosity included. Here, the behavior is rather similar
initially. As long as the regular order of the particles is still approximately maintained, the artificial
viscosity is not changing anything as it is reduced by the Balsara switch to a very low level. Once
the initial order decays, the velocity dispersion suddenly increases, first to the same level that one
would have without viscosity. Only after some time, the viscosity damps out this noise, but this
comes at the price of also damping the growth rate even further, because the fluid behaves now
in a slightly viscous fashion.

We conclude that whereas KH fluid instabilities do occur in SPH, calculating them with high
accuracy is a challenge due to the significant noise present in the multidimensional velocity field.
Getting rid of this noise with artificial viscosity tends to reduce the KH growth rate below the
analytic expectation, making it hard to achieve truly inviscid behavior. More work on this problem
is therefore clearly warranted in the future.

5.6. Surface Tension

In the standard energy- and entropy-conserving formulation of SPH, two phases of particles with
different specific entropies tend to avoid mixing simply because this is energetically disfavored.
To understand the origin of this effect, let us consider a simple virtual experiment where a box
of volume V is filled in one half with gas of density ρ1 and in the other half with gas of density
ρ2. We assume an equal pressure P, such that the SPH particles in the different phases will have
specific entropies A1 = P/ρ

γ

1 and A2 = P/ρ
γ

2 . Then the total thermal energy in the box will be
Etherm = u1 M 1 + u2 M 2 = PV /(γ − 1). The numerical estimate for a particular SPH realization
may be slightly different from this due to intermediate density values in the transition layer,
but this effect can be made arbitrarily small if a large number of particles is used. Now imagine
that we rearrange the particles by homogeneously spreading them throughout the volume, in
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some regular fashion (say as two interleaved grids), but keeping their initial entropies. Provided
the SPH smoothing lengths are large enough, each particle will then estimate the mean density
ρ̄ = (ρ1+ρ2)/2 as its new density throughout the volume. The new thermal energy per unit mass for
particles of species 1 will then be u′

1 = A1ρ̄
γ−1/(γ −1), and this is similar for particles of species 2. As

a result, the new thermal energy becomes E ′
therm = [PV /(γ − 1)][(ρ1 + ρ2)/2]γ−1(ρ1−γ

1 + ρ
1−γ

2 )/2,
which is larger than the original energy if ρ1 
= ρ2. Clearly then, the mixing of the particle set in
this fashion is energetically forbidden, and an energy conserving code will resist it. This resistance
appears as an artificial surface tension term in SPH.

We note that the mixing can be accomplished at constant thermal energy, but this requires that
the entropies of the particles and, hence, their temperature estimates be made equal. The final
entropy is then Ā = P/ρ̄γ , which corresponds to a total thermodynamic entropy that is larger than
in the unmixed state. Mixing the phases in this irreversible fashion hence requires creating the
relevant amount of mixing entropy, but for this no source is foreseen in the entropy-conserving
formulation of standard SPH. Including artificial thermal conduction (as in Price 2008) is one
interesting approach to address this problem, as this process equilibrates the temperatures while
conserving energy and increasing the entropy.

The presence of some level of surface tension in SPH can be demonstrated experimentally
through simple settling tests (Hess & Springel 2010). For example, one possibility is to set up
an overdense spherical region and let it relax to an equilibrium distribution (this can be done by
keeping the particle entropies fixed and by adding an artificial decay of the velocities). Then the
pressure inside of the sphere in the final relaxed state is found to be slightly higher than outside,
as it needs to be to balance the surface tension. In fact, according to the Young-Laplace equation,
the expected pressure difference is

�P = σ

(
1
R1

+ 1
R2

)
, (74)

where σ is the surface tension, and R1 and R2 are the two principal radii of curvature of the
surface. In Figure 10, we show the outcome of such an experiment in 2D, for densities ρ2 = 2
and ρ1 = 1 realized with equal mass particles, a pressure of P = 2.5, and 13 smoothing neighbors.
Independent of whether the high- or low-density phase is arranged to be inside the sphere, the
inner region shows a small pressure difference relative to the outer region, which is �P ∼ 0.002
at an effective resolution of N 2 = 1282 for the lower density phase. For a radius of R1 = 0.4 of
the sphere, this then implies a surface tension of σ = 0.0025. We have confirmed that this surface
tension varies with 1D resolution as σ ∝ 1/N; that is, it declines with higher spatial resolution.
However, it increases for higher density ratios and for a larger number of smoothing neighbors.

One consequence of this tension is that SPH in principle may support capillary waves at inter-
faces, with dispersion relation ω2 = σk3/(ρ1 + ρ2). In the context of the KH problem considered
above, we note that surface tension may also modify the growth rate of small wavelength pertur-
bations. In the presence of surface tension, the KH growth timescale becomes

tKH =
[

k2ρ1ρ2(v2 − v1)2

(ρ1 + ρ2)2
− σ k3

ρ1 + ρ2

]−1/2

, (75)

and waves with wavelength

λ < λcrit = 2π
ρ1 + ρ2

ρ1ρ2

σ

(v2 − v1)2
(76)

will not grow at all. Using the value measured for σ for the numerical setup we considered
above, we obtain λcrit/d � 3.0/(v2 − v1)2, where d is the mean particle separation. For a shear of
v2 − v1 = 1, we hence expect only waves with wavelengths up to a couple of particle separations

www.annualreviews.org • Smoothed Particle Hydrodynamics 421

A
nn

u.
 R

ev
. A

st
ro

n.
 A

st
ro

ph
ys

. 2
01

0.
48

:3
91

-4
30

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
O

ss
er

va
to

ri
o 

A
st

ro
fi

si
co

 d
i A

rc
et

ri
-I

N
A

F 
on

 1
0/

11
/1

6.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



AA48CH11-Springel ARI 23 July 2010 15:52

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0

Figure 10
Equilibrium configurations of particles in 2D for two phases of different entropy, corresponding to a jump in
density by a factor of 2. Both in the left and in the right cases, the final pressure in the inside of the sphere is
slightly higher than the one on the outside. This pressure difference offsets the spurious surface tension
present at the interface.

to be suppressed. In particular, this effect should not have influenced the KH tests carried out in
the previous section. However, for small shear, the effect can be much more of a problem, and
here may stabilize SPH against the KH instability.

5.7. The Tensile Instability

First described by Swegle (1995), the clumping or tensile instability is a well-known nuisance in
SPH that occurs if a large number of smoothing neighbors is used. In this case, it can happen
that the net force between a close particle pair is not repulsive but attractive simply because the
kernel gradient tends to become shallow for close separations such that the pair may be further
compressed by other surrounding particles. As a result, particles may clump together, thereby
reducing the effective spatial resolution available for the calculation.

Settling tests, in which an initially random distribution of particles with equal and fixed en-
tropies is evolved toward an equilibrium state under the influence of a friction force, are a quite
sensitive tool to reveal the presence of this instability. We show an example of the outcome of
such a test in Figure 11, where 502 particles were randomly placed in a periodic 2D box of unit
length and then evolved until a good equilibrium of the pressure forces was reached, correspond-
ing to a low-energy state of the system. Figure 11a shows the result for 13 smoothing neighbors,
Figure 11b shows the result for 27 neighbors, and Figure 11c shows the result for 55 neigh-
bors. Although for a low number of neighbors a nicely regular, hexagonal particle distribution is
obtained, for a large number of smoothing neighbors many particle clumps are formed, strongly
reducing the number of independent sampling points for the fluid.

Taken at face value, this seems to make attempts to use a large number of neighbors to increase
the accuracy of SPH calculations a futile exercise. However, we note that the clumping instability
is essentially never observed in this extreme form in real applications of SPH. This is because the
dissipation added in the settling test is not present in a real application, and there the dynamics is
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Figure 11
Clumping instability in a 2D settling test, using (a) 13, (b) 27, or (c) 55 smoothing neighbors. In all three cases, the number of particles
used (502) is the same. It is seen that for a large number of smoothing neighbors, particles clump into groups, thereby reducing the
effective spatial resolution of the scheme.

usually also not cold enough to create many artificial SPH particle clumps or string-like configura-
tions. Nevertheless, a number of suggestions have been made to fix the tensile instability through
modifications of the SPH formalism. Steinmetz (1996) simply invokes an artificially steepened first
derivative of the kernel to obtain a larger repulsive pressure force at small separations. Monaghan
(2000) proposes instead an additional artificial pressure, which has the advantage of maintaining
the conservative properties of SPH, but it introduces some small errors in the dispersion relation.
Finally, Read, Hayfield & Agertz (2009) suggest the use of a peaked kernel, thereby ensuring large
repulsive pressure forces at small separations at the price of a lower order of the density estimate.

6. ALTERNATIVE FORMULATIONS OF SMOOTHED PARTICLE
HYDRODYNAMICS AND FUTURE DIRECTIONS

There are many avenues for modifications of the standard SPH method, outlined in Section 2,
even though this usually implies giving up the elegance of the Lagrangian derivation in favor of
a more heuristic construction of the discretization scheme. However, what ultimately matters in
the end is the achieved accuracy, and hence there is certainly a lot of merit in investigating such
alternative schemes. We here briefly mention some of the proposed modifications.

6.1. Modifications of the Kernel Estimation Scheme

Changing the basic SPH kernel shape has been investigated in a number of studies (Monaghan
1985; Fulk 1996; Cabezón, Garcı́a-Senz & Relaño 2008), but generally no kernel has been found
that performed significantly better than the cubic spline. In particular, higher order kernels may
both be positive and negative, which invokes numerous stability problems.

A few studies (Shapiro et al. 1996, Owen et al. 1998) proposed anisotropic kernels that adapt
to local flow features. Together with the use of a tensorial artificial viscosity, this promises an
optimum use of the available spatial resolution and, hence, ultimately higher accuracy for a given
number of particles.
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In the context of galaxy-formation simulations and the so-called overcooling problem, it has
been pointed out that SPH’s density estimate in the vicinity of contact discontinuities may be
problematic (Pearce et al. 1999). This led Ritchie & Thomas (2001) to suggest a modified density
estimate specifically designed to work better across contact discontinuities. To this extent, particles
are weighted with their thermal energies in the density estimate, which works well across contacts.
In particular, this removes the pressure blip that is often found in contact waves that develop in
Riemann problems. This idea has also been recently reactivated by Read, Hayfield & Agertz (2009)
and combined with the suggestion of a much larger number of neighbors and a modified shape of
the smoothing kernel.

A more radical approach has been proposed by Børve, Omang & Trulsen (2001), who intro-
duced the so-called regularized SPH formalism. In it the discretization errors of the ordinary
kernel estimation are reduced by introducing a new concept of intermediate interpolation cells.
They are also used for periodic redefinitions of the whole particle distribution to obtain a better
numerical description of the dynamics, in particular of MHD-related problems.

Another attempt to reduce the errors associated with kernel sums is given by Imaeda & Inutsuka
(2002) in terms of their “consistent velocity method.” The central idea of this scheme is to achieve
consistency between the continuity equation and the density estimate. In some sense, this makes it
reminiscent of the simpler idea of “XSPH,” originally introduced by Monaghan (1989) and later
derived in more accurate form from a Lagrangian (Monaghan 2002). In this scheme, the particles
are moved with a SPH-interpolated version of the velocity and not with the individual particle
velocities. This has been used in some simulations to reduce problems of particle interpenetration.
Finally, a higher order formulation of SPH has also been proposed (Oger et al. 2007). It has been
shown to eliminate the tensile instability, but at the price of somewhat larger errors in the gradient
estimates.

6.2. Improved Artificial Viscosity

The idea to use a time-variable coefficient for the parameterization of the artificial viscosity is in
general very interesting. It can help to restrict the viscosity to regions where it is really needed
(that is, in shocks), though it should be reduced to very small levels everywhere else, ideally to the
lowest level still consistent with keeping the velocity noise of the scheme under control. There
is clearly still room for improvement of the switches used at present to increase or decrease the
viscosity, as discussed in Section 2.3.

Attempts to outfit SPH with a Riemann solver go a step further (e.g., Inutsuka 2002, Cha &
Whitworth 2003), making SPH more similar to the Godunov approach used in Eulerian hydro-
dynamics. If successful, this may in principle eliminate the need for an artificial viscosity entirely,
which would be a very welcome feature. So far, these versions of Godunov-based SPH have not
found widespread application though, presumably an indication that still more work is required
to make them equally robust as the standard SPH formulation in all situations.

6.3. Modeling Mixing

As discussed earlier, the standard form of SPH has no mechanism to equilibrate the specific
entropies of neighboring particles, a property that does not allow different phases to mix into a
perfectly homogeneous phase where all particles have the same thermodynamic properties. As
seen above, this even causes an artificial surface tension effect. It has been suggested that the issue
of mixing is ultimately the primary cause for the differences seen in the central entropy profiles of
galaxy clusters simulated with SPH and mesh-based Eulerian techniques (Mitchell et al. 2009).
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Recently, there have been a few suggestions to treat mixing in SPH by invoking artificial heat
conduction. Price (2008) has shown that this improves the results for KH instability tests when
there are sharp discontinuities in the initial conditions. Also, in a study by Rosswog & Price (2007),
it was found that this improves the accuracy of very strong shocks in Sedov-Taylor blast waves. One
problem is to parameterize the heat conductivity such that it only affects the calculations where it
is really needed and not anywhere else. The parameterization by Price (2008), for example, also
operates for static contact discontinuities, where it is not clear that any mixing should occur in such
a case. A more physical parameterization of the diffusive mixing has been suggested by Wadsley,
Veeravalli & Couchman (2008), who use an estimate of the local velocity shear to parameterize
the mixing rate.

Yet another approach to mixing has been recently proposed by Read, Hayfield & Agertz
(2009), who do not attempt to make the thermodynamic properties of a mixed fluid equal at the
particle level. Instead, the number of smoothing neighbors is drastically enlarged by an order of
magnitude, such that resolution elements of the mixed phases are sampled by a very large number of
particles.

6.4. Alternative Fluid Particle Models

One possibility to substantially modify SPH lies in replacing the kernel interpolation technique
of SPH by a different technique to estimate densities. This idea has been explored in the fluid
particle model of Hess & Springel (2010), where an auxiliary Voronoi tessellation was used to
define a density estimate based on the mass of a particle divided by its associated Voronoi volume.
The latter is simply the region of space that lies closer to the point than to any other particle.
The same Lagrangian as in Equation 12 can then be used to derive the equations of motion of
the new particle-based scheme, where now no smoothing kernel is necessary. This highlights
that the kernel interpolation technique in principle only really enters in the density estimate
of SPH. If the density estimate is replaced with another construction, different particle-based
hydrodynamical schemes can be constructed that are nevertheless similar in spirit to SPH. The
Voronoi-based scheme of Hess & Springel (2010) does not show the surface tension effect and
has the advantage of leading to a consistent partitioning of the volume. It may also be more
amenable to Riemann-solver-based approaches to avoid the need of artificial viscosity, because an
unambiguous interaction area between two particles (namely the area of the facet shared by the
two Voronoi cells) is given. However, it is not clear whether it can significantly reduce the noise
inherent in multidimensional SPH calculations.

A considerable step further is the moving-mesh technique devised by Springel (2010). This
also exploits a Voronoi mesh, but solves the fluid equations with the finite-volume approach of the
traditional Eulerian Godunov approach, where a Riemann solver is used to work out fluxes across
boundaries. This is really a Eulerian scheme, but adjusted to work with particle-based fluid cells.
In fact, as Springel (2010) discusses, this approach is identical to the well-known Eulerian MUSCL
scheme (van Leer 1984) when the mesh-generating points are kept fixed. If they are allowed to
move with the flow, the scheme behaves in a Lagrangian way similarly to SPH. Nevertheless, in
this mode the conceptual differences with respect to SPH also become most apparent. The first
difference is that the errors in the discrete kernel sum are avoided through the use of an explicit
second-order accurate spatial reconstruction. The second difference is that the cells/particles may
exchange not only momentum, but also mass and specific entropy, allowing already for the mixing
that may happen in multidimensional flow.
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7. CONCLUSIONS

Smoothed particle hydrodynamics is a remarkably versatile approach to model gas dynamics in
astrophysical simulations. The ease with which it can provide a large dynamic range in spatial
resolution and density, as well as an automatically adaptive resolution, is unmatched in Eulerian
methods. At the same time, SPH has excellent conservation properties, not only for energy and
linear momentum, but also for angular momentum. The latter is not automatically guaranteed in
Eulerian codes, even though it is usually fulfilled at an acceptable level for well-resolved flows.
When coupled to self-gravity, SPH conserves the total energy exactly, which is again not manifestly
true in mesh-based approaches to hydrodynamics. Finally, SPH is Galilean invariant and free of
any errors from advection alone, which is another significant advantage compared to Eulerian
approaches.

Thanks to its completely mesh-free nature, SPH can easily deal with complicated geometric
settings and large regions of space that are completely devoid of particles. Implementations of
SPH in a numerical code tend to be comparatively simple and transparent. For example, it is
readily possible to include passively advected scalars in SPH (for example, chemical composition)
in a straightforward and simple way. At the same time, the scheme is characterized by remarkable
robustness. For example, negative densities or negative temperatures, sometimes a problem in
mesh-based codes, cannot occur in SPH by construction. Although shock waves are broadened in
SPH, the properties of the postshock flow are correct. Also, contact discontinuities can even be
narrower than in mesh-based codes.

All of these features make SPH a very interesting method for many astrophysical problems.
Indeed, a substantial fraction of the simulation progress made in the past two decades on under-
standing galaxy formation, star formation, and planet formation has become possible thanks to
SPH.

The main disadvantage of SPH is clearly its limited accuracy in multidimensional flows. One
source of noise originates in the approximation of local kernel interpolants through discrete sums
over a small set of nearest neighbors. While in 1D the consequences of this noise tend to be
quite benign, particle motion in multiple dimensions has a much higher degree of freedom. Here
the mutually repulsive forces of pressurized neighboring particle pairs do not easily cancel in all
dimensions simultaneously, especially not given the errors of the discretized kernel interpolants.
As a result, some jitter in the particle motions readily develops, giving rise to velocity noise up
to a few percent of the local sound speed. This noise in SPH is likely also a primary cause for
the mixed results obtained thus far for MHD techniques implemented on top of SPH despite the
considerable effort invested to make them work accurately.

In some sense it may seem surprising that SPH still models acceptable fluid behavior despite
the presence of this comparatively large noise. However, because SPH accurately respects the
conservation laws of fluid dynamics as described by the Lagrangian, the local fluctuations tend
to average out, enforcing the correct large-scale motion of the fluid. Fulfilling the conservation
laws is thus clearly more important than a high order of the underlying scheme. However, as
a consequence of this noise, individual SPH particles cannot be readily interpreted as precise
tracers of the local state of the fluid at their representative location. Instead one needs to carry
out some sort of averaging or binning procedure first. In this sense, SPH then indeed exhibits a
kind of Monte Carlo character, as manifested also in its comparatively slow convergence rate for
multidimensional flow.

The noise inherent in SPH can be reduced by using a larger artificial viscosity and/or a higher
number of smoothing neighbors. Both approaches do work at some level, but they are not without
caveats and, hence, need to be used with caution. The standard artificial viscosity makes the
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simulated gas slightly viscous, which can affect the calculated solutions. The results will then in
fact not converge to the solution expected for an inviscid gas, but to those of a slightly viscous gas,
which is really described by the appropriate Navier-Stokes equations and not the Euler equations.
However, improved schemes for artificial viscosity, such as a time-dependent artificial viscosity
with judiciously chosen viscosity triggers, can improve on this substantially. Simply using a larger
number of smoothing neighbors is computationally more costly and invokes the danger of suffering
from artificial particle clumping. Here, modified kernel shapes and different viscosity prescriptions
may provide a satisfactory solution.

In the future, it will be of primary importance to make further progress in understanding
and improving the accuracy properties of SPH in order to stay competitive with the recently
matured adaptive-mesh-refining and moving-mesh methodologies. If this can be achieved, the
SPH technique is bound to remain one of the primary workhorses in computational astrophysics.
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