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Università degli Studi di Firenze
via delle Pandette 9, 50127, Firenze
e-mail: daniela.bubboloni@unifi.it

Michele Gori
Dipartimento di Scienze per l’Economia e l’Impresa
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Abstract

In the standard arrovian framework and under the assumption that individual preferences and social
outcomes are linear orders on the set of alternatives, we provide necessary and sufficient conditions for
the existence of anonymous and neutral rules and for the existence of anonymous and neutral majority
rules. We also determine a general method for constructing and counting these rules and we explicitly
apply it to some simple cases.
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1 Introduction

Committees are often required to provide a strict ranking of a given family of alternatives, not only to
determine which alternative is top-ranked. It is possible to design many procedures to aggregate committee
members’ preferences on alternatives into a strict ranking of alternatives. Among them, we are interested
to analyse those satisfying certain principles usually invoked by social choice theorists. The first principle
is the requirement that the identities of individuals are not used to determine the social outcome so
that every individual opinion influences equally the collective decision. The second one is instead the
requirement that any two alternatives are equally treated. These two principles, called anonymity and
neutrality respectively, simply say that individual and alternative names are immaterial. Finally, we
assume that the decision process also obeys a majority principle, that is, each time a precisely specified
and large enough amount of committee members ranks an alternative over another, that ranking has to
be maintained in the final decision. The paper investigates under which conditions such special collective
decision procedures can be really designed.

Before starting our inquiry, we need to clarify how committee members express their preferences.
Usually the format for expressing preferences are voting for one alternative or strict ranking all alternatives
(being these two methods equivalent when the alternatives are two). Of course, as we decided to deal
with anonymous aggregation rules, the way preferences can be expressed has to be the same for each
member in the committee. Moreover, as also neutrality is required, we are forced to focus only on the
strict ranking format for preferences. Indeed, when alternatives are at least three, if all members of the
committee unanimously voted the same alternative, they could not strict rank the not voted alternatives
without treating them impartially. In other words, neutrality is not consistent with voting an alternative
only, or more generally, with each way to express preferences leaving room for indifference between two
or more alternatives.

∗We wish to thank Domenico Menicucci for reading and commenting a preliminary draft. We are also grateful to two
anonymous referees for providing useful suggestions allowing to improve the readability of the paper. In particular, one of
the referees contributed to simplify the structure of the proof of Proposition 2 and proposed a more direct approach to the
proof of Proposition 18. Daniela Bubboloni was supported by the MIUR project “Teoria dei gruppi ed applicazioni (2009)”.
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Thanks to the observations above, the considered aggregation rules can be now easily formalized within
the well known arrovian framework. We consider h individuals in a committee and n alternatives to be
ranked, and we assume that individual preferences and decision outcomes (or social preferences) are linear
orders on the set of alternatives, that is, indifference between any pair of distinct alternatives is not
allowed. A preference profile is a list of h linear orders each of them associated with the name of a specific
committee member and representing her preferences. A rule is a function from the set of preference profiles
to the set of social preferences: it represents a particular decision process which determines a ranking of
alternatives whatever individual preferences the committee members express. A rule is anonymous if it
has the same value over any pair of preference profiles such that we can get one from the other by figuring
to permute individual names. A rule is instead neutral if, for every pair of preference profiles such that we
can get one from the other by figuring to permute alternative names, the social preferences associated with
them coincide up to the considered permutation. Finally, given an integer ν not exceeding the number
of members in the committee but exceeding half of it, a ν-majority rule is a rule ranking an alternative
over another one if that alternative is preferred to the other by at least ν individuals. Of course, each
anonymous and neutral majority rule cannot be independent on the irrelevant alternatives due to Arrow’s
impossibility theorem.

Anonymity and neutrality are principles often used in social choice literature as they are usually
considered criteria able to guarantee some extent of equity and fairness. They are also two of the main
properties leading to characterizations of relative and absolute majority rules. In the specific case of
two alternatives and when indifference is allowed both for individual and social preferences, May (1952)
characterizes the relative majority in terms of anonymity, neutrality and positive responsiveness; Asan and
Sanver (2006) characterize absolute qualified majority rules in terms of anonymity, neutrality and Maskin
monotonicity; Sanver (2009) presents a unified exposition of the separate characterizations of relative and
absolute majority rules, all of them involving anonymity and neutrality. Anonymity and neutrality are
also properties used by Asan and Sanver (2002), Woeginger (2003) and Miroiu (2004) to characterize
the relative majority when the structure of society is variable, that is, the number of individuals is not
fixed. In the general case for the number of alternatives and when individual preferences are linear orders,
Maskin (1995) characterizes the majority rule using anonymity, neutrality, and some maximal transitivity
condition; Can and Storcken (2012) characterize the ν-majority correspondences (that is, set-valued rules)
in terms, among other things, of anonymity and neutrality.

In the framework of social choice functions, that is, functions which associate a unique alternative
with a preference profile, Moulin proves that anonymous and neutral social choice functions exist if and
only if the number of alternatives n cannot be written as sum of non-trivial divisors of the number h
of individuals (Moulin, 1983, Problem 1, p.25), and also that anonymous and neutral h-majority social
choice functions exist if and only if

gcd(h, n!) = 1, (1)

where gcd(h, n!) denotes the greatest common divisor between h and n! (Moulin, 1983, Theorem 1, p.23).
Note that the coprimality condition (1), being equivalent to the requirement that each prime divisor of
h must be greater than n, is quite rarely satisfied: while for two alternatives just h odd is asked, if
alternatives are three or four, then h has to be odd and not divisible by three1. In a remarkable paper
dealing only with majority principle, Greenberg (1979, Corollary 3) proves that ν-majority social choice
functions exist if and only if

ν >
n− 1

n
h. (2)

While it is known that condition (2) is necessary and sufficient also for the existence of ν-majority
rules2, at the best of our knowledge, in the literature there is no result about which conditions on the
parameters h, n and ν guarantee the existence of anonymous and neutral rules and anonymous and
neutral ν-majority rules. The major contribution of the paper is just the determination of such conditions
as described by Theorems A and B below3.

Theorem A. There exists an anonymous and neutral rule if and only if gcd(h, n!) = 1.

1When alternatives are two, Campbell and Kelly (2011, 2013) prove that social choice functions satisfying monotonicity
and suitable weak versions of anonymity and neutrality are consistent with the majority principle, whether the number of
individuals is odd or even.

2For the sake of completeness, following Can and Storken (2013, Example 4), we prove again that fact in Section 5.
3Theorem A is just a rephrasing of Theorem 5, while Theorem B of Theorem 12.
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Theorem B. There exists an anonymous and neutral ν-majority rule if and only if gcd(h, n!) = 1 and
ν > n−1

n h.

Theorem A shows that anonymity and neutrality, though natural and appealing, are not requirements
frequently reachable by rules since having them together is equivalent to the strong coprimality condition
(1). However, this quite negative result is far to be discouraging. On the contrary, it suggests new research
directions which we are going to discuss in the last section of the paper. Theorem B shows instead that
taking together the necessary and sufficient conditions for the existence of anonymous and neutral rules
(condition (1)) and for the existence of majority rules (condition (2)), we get a set of necessary and
sufficient conditions for the existence of anonymous and neutral majority rules. While one of the two
implication is straightforward, the other one is not obvious and a bit unexpected. We also emphasize that
Theorem B implies a generalization of the already quoted theorem by Moulin for social choice functions
(Theorem 15).

In order to get the stated results, a careful and detailed analysis of the set of preference profiles is
needed. Following an approach already explored by Eğecioğlu (2009), we carry on that analysis by means
of the theory of finite symmetric groups4. The way we use the fundamental concepts and theorems of
group theory seems to be promising and able to generate many interesting results in social choice theory.
In fact, beyond Theorems A and B, we further prove that assumption (1) is necessary and sufficient for
the existence of anonymous and neutral rules having the property that, for every preference profile, the
corresponding social preference is consistent with all majority thresholds not generating cycles for that
profile, that is, consistent with transitivity (Theorem 14). Moreover, we provide a general method to
construct and count all the anonymous and neutral rules5 and all the anonymous and neutral majority
rules (Proposition 16). That method is largely mechanical (with algorithmic implementations, in principle,
possible) but it involves a great amount of computations whose complexity strongly increases when the
number of individuals and alternatives increase. However, at least for small values of n and h, it can
be really applied to generate concrete examples. Thus, after having discussed all the needed preliminary
notation and results, in Section 10 we explicitly describe how that method works in some simple cases.
For instance, we show that if five members of a committee decide to strict rank three alternatives via
an anonymous and neutral 4-majority rule, then they have 221320 rules to choose from. We also prove
that, in order to make that choice, committee members simply have to find an agreement on which social
outcome, consistent with the 4-majority principle, should be associated with each preference profile in a
particular set of preference profiles having only 33 elements. Of course, such an agreement must be found
on the basis of further shared principles different from anonymity, neutrality and 4-majority.

2 Definitions and notation

2.1 Symmetric groups

Let X be a nonempty finite set. We denote by |X| the order of X and by F(X) the set of functions
from X to X. Given f1, f2 ∈ F(X), we denote by f1f2 the element of F(X) defined as follows: for every
x ∈ X, f1f2(x) = f1(f2(x)). In other words, we denote the (right-to-left) composition of two functions
by juxtaposition. Given f1, f2 ∈ F(X), we call f1f2 the product between f1 and f2. The subset of F(X)
made up by the bijective functions is denoted by Sym(X). Under the product of functions Sym(X) is a
finite group called the symmetric group on X, whose neutral element is the identity function, denoted by
idX or simply by id.

Fixed k ∈ N, we denote Sym({1, . . . , k}) simply by Sk and call its elements permutations on k objects.
Any notation and basic results for permutations used in the paper are standard (see, for instance, Wielandt
(1964) and Rose (1978)).

4The use of group theory in social choice theory is not a novelty. Kelly (1991), for instance, discusses the role of symmetry
in the arrovian framework through suitable subgroups of the symmetric group. Many results proved within the topological
approach to social choices developed by Chichilnisky (1980) require the use of algebraic concepts and in particular that
of symmetric group. The geometric approach and the symmetry arguments introduced by Donald Saari to understand
paradoxes in voting, have been recently cast in a fully algebraic framework by Daugherty et al. (2009), inaugurating what
is now called algebraic voting theory.

5When alternatives are two and individual and social preferences can express indifference between them, the problem to
count the anonymous and neutral rules was solved by Perry and Powers (2008).
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2.2 Linear orders and permutations

Fix n ∈ N and let N = {1, . . . , n}. Denote by L(N) the set of linear orders on N , that is, the set of
transitive, complete and antisymmetric binary relations on N . Consider the set of vectors with n distinct
components in N given by

V(N) =
{

(xj)
n
j=1 ∈ Nn : xj1 = xj2 ⇒ j1 = j2

}
,

and think the vector (xj)
n
j=1 ∈ V(N) as a column vector, that is, x1

...
xn

 = [x1, . . . , xn]T .

There is a natural bijection between V(N) and L(N) given by function f : V(N)→ L(N) which associates
with the vector (xj)

n
j=1 ∈ V(N) the relation

{(xi, xj) ∈ N ×N : i, j ∈ {1, . . . , n}, i ≤ j} ∈ L(N).

We identify R ∈ L(N) with the vector f−1(R) ∈ V(N). Note also that |V(N)| = |L(N)| = n!.
Given R ∈ L(N) and ψ ∈ Sn, we define the relation ψR ∈ L(N) as follows: for every x, y ∈ N , (x, y) ∈

ψR if and only if (ψ−1(x), ψ−1(y)) ∈ R. It is easily checked that, identifying R with (xj)
n
j=1 ∈ V(N), our

definition is readable as

ψ

 x1

...
xn

 =

 ψ(x1)
...

ψ(xn)

 .
Note that, for everyR ∈ L(N) and ψ1, ψ2 ∈ Sn, ψ1R = R if and only if ψ1 = id, and (ψ1ψ2)R = ψ1(ψ2R).
As a consequence, for each fixed R0 ∈ L(N), the map g : Sn → L(N) defined by g(ψ) = ψR0 is bijective.
In particular, for every R ∈ L(N), there exists ψ ∈ Sn such that R = ψR0.

Given C ⊆ L(N) and ψ ∈ Sn, let ψC = {ψR ∈ L(N) : R ∈ C}. Note that, for every C ⊆ L(N) and
ψ1, ψ2 ∈ Sn, |ψ1C| = |C|, and (ψ1ψ2)C = ψ1(ψ2C).

2.3 Individual preferences and rules

From now on, let h, n ∈ N with h, n ≥ 2 be fixed. Let H = {1, . . . , h} be the set of individuals and
N = {1, . . . , n} be the set of alternatives. A preference on N is an element of L(N). Given p0 ∈ L(N)
and x, y ∈ N , we say that x is at least as good as y according to p0, if (x, y) ∈ p0 and x is preferred to
y according to p0 if (x, y) ∈ p0 and (y, x) 6∈ p0. A preference profile is an element of L(N)h. The set
L(N)h is denoted by P. If p ∈ P and i ∈ H, the i-th component of p is denoted by pi and represents the
preference of individual i. Any p ∈ P can be identified with the matrix whose i-th column is the column
vector representing the i-th component of p. Note that |P| = n!h.

A rule or social welfare function is a function from P to L(N). The set of all rules is denoted by F .
Consider now the group G = Sh × Sn. For every (ϕ,ψ) ∈ G and p ∈ P, define p(ϕ,ψ) ∈ P as the

preference profile such that, for every i ∈ H,(
p(ϕ,ψ)

)
i

= ψpϕ−1(i). (3)

The profile p(ϕ,ψ) is thus the profile obtained by p as if alternatives and individuals were renamed according
to the following rules: for every i ∈ H, individual i is renamed ϕ(i); for every x ∈ N , alternative x is
renamed ψ(x). For instance, if n = 3, h = 5 and

p =

 3 1 2 3 2
2 2 1 2 3
1 3 3 1 1

 , ϕ = (134)(25), ψ = (12),
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we have

p(ϕ,id) =

 3 2 3 2 1
2 3 2 1 2
1 1 1 3 3

 , p(id,ψ) =

 3 2 1 3 1
1 1 2 1 3
2 3 3 2 2

 , p(ϕ,ψ) =

 3 1 3 1 2
1 3 1 2 1
2 2 2 3 3

 .
Since we have given no meaning to (pi)

(ϕ,ψ) for a single preference pi ∈ L(N), we will write the i-th

component of the profile p(ϕ,ψ) simply as p
(ϕ,ψ)
i , instead of

(
p(ϕ,ψ)

)
i
.

A rule F is said anonymous and neutral if, for every p ∈ P and (ϕ,ψ) ∈ G,

F (p(ϕ,ψ)) = ψF (p),

that is, collective decisions are independent on alternative and individual names. The set of anonymous
and neutral rules is denoted by Fan.

Given ν ∈ N ∩ (h/2, h], let us define, for every p ∈ P, the set

Cν(p) =
{
q0 ∈ L(N) : ∀x, y ∈ N, |{i ∈ H : (x, y) ∈ pi, (y, x) 6∈ pi}| ≥ ν ⇒ (x, y) ∈ q0, (y, x) 6∈ q0

}
,

that is, the set of preferences having x preferred to y whenever, according to the preference profile p,
at least ν individuals prefer x to y. Note that, for every ν, ν′ ∈ N ∩ (h/2, h] with ν ≤ ν′ and p ∈ P,
Cν(p) ⊆ Cν′(p).

A rule F is said a ν-majority rule if, for every p ∈ P, F (p) ∈ Cν(p). The set of ν-majority rules is
denoted by Fν . Of course,

Fν = ×p∈PCν(p), (4)

and if ν, ν′ ∈ N ∩ (h/2, h] with ν ≤ ν′, then Fν ⊆ Fν′ . As already explained in the introduction, our
purpose is to investigate which conditions on n, h and ν are necessary and sufficient to get Fan 6= ∅,
Fν 6= ∅ and Fan ∩ Fν 6= ∅.

3 Properties of the set of preference profiles

In the present section we begin an analysis of the structure of the preference profile set P to be continued
in Section 9. As explained in the introduction, our approach follows the one by Eğecioğlu (2009). We
start with a basic result which allows to exploit many facts from group theory.

Proposition 1. The function f : G→ F(P) defined, for every (ϕ,ψ) ∈ G, as

f(ϕ,ψ) : P → P, p 7→ p(ϕ,ψ), (5)

maps G into Sym(P) and induces a group homomorphism from G to Sym(P).

Proof. First of all, we note that, by definition (3), we have f(id, id) = id. Then we show that, for every
(ϕ1, ψ1), (ϕ2, ψ2) ∈ G,

f((ϕ1, ψ1)(ϕ2, ψ2)) = f(ϕ1, ψ1)f(ϕ2, ψ2), (6)

that is, for every p ∈ P and (ϕ1, ψ1), (ϕ2, ψ2) ∈ G,

p (ϕ1ϕ2,ψ1ψ2) =
(
p (ϕ2,ψ2)

)(ϕ1,ψ1)

. (7)

Indeed, for every i ∈ H and (x, y) ∈ N , by definition (3), we have

(x, y) ∈ p (ϕ1ϕ2,ψ1ψ2)
i ⇔

(
(ψ1ψ2)−1(x), (ψ1ψ2)−1(x)

)
∈ p(ϕ1ϕ2)−1(i)

⇔
(
ψ−1

2

(
ψ−1

1 (x)
)
, ψ−1

2

(
ψ−1

1 (y)
))
∈ pϕ−1

2 (ϕ−1
1 (i)) ⇔

(
ψ−1

1 (x), ψ−1
1 (y)

)
∈ p(ϕ2,ψ2)

ϕ−1
1 (i)

⇔ (x, y) ∈
(
p (ϕ2,ψ2)

)(ϕ1,ψ1)

i
.
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As a consequence, for every (ϕ,ψ) ∈ G, we get

f(ϕ,ψ)f(ϕ−1, ψ−1) = f(ϕ−1, ψ−1)f(ϕ,ψ) = f(id, id) = id.

Thus, f(ϕ,ψ) is a function of P into itself with inverse f(ϕ−1, ψ−1), and therefore f(ϕ,ψ) ∈ Sym(P).
Finally, note that the fact that f is a homomorphism from the group G to the group Sym(P) is now
exactly the content of equality (6).

According to the language of group theory, the function f : G→ Sym(P) defined as in (5) is an action
of the group G on the set P. Given p ∈ P and g ∈ G, we write pg instead of f(g)(p). For every p ∈ P,
the set {pg ∈ P : g ∈ G} is called the orbit of p and is denoted by pG. It is well known that the set of the
orbits PG = {pG : p ∈ P} is a partition6 of P. We denote the order of PG by R. Any vector (pj)Rj=1 ∈ PR
such that PG = {pj G : j ∈ {1, . . . , R}}, is called a system of representatives of the orbits. The set of all
the systems of representatives is nonempty and denoted by S. For every p ∈ P, the stabilizer of p in G is
the subgroup of G defined by

StabG(p) = {g ∈ G : pg = p}.

It is well known that the order of the orbit pG can be expressed in terms of the stabilizer of p by

|pG| = |G|
|StabG(p)|

, (8)

and, in particular, the order of each orbits divides |G| = n!h!.
Proposition 2 below is the key ingredient in each existence theorem of the paper and it is proved under

the strong coprimality condition gcd(h, n!) = 1. As we will show later, that condition is very natural in
the context of anonymous and neutral rules.

Proposition 2. Let gcd(h, n!) = 1 and p ∈ P. Then StabG(p) ≤ Sh × {id}.

Proof. Suppose that g = (ϕ,ψ) ∈ StabG(p) and prove that ψ = id. Let ϕ = γ1 · · · γr be a decomposition
of ϕ into r ≥ 1 disjoint cycles γj ∈ Sh of order bj ≥ 1 with

∑r
j=1 bj = h. Since StabG(p) is a subgroup

of G, for every j ∈ {1, . . . , r}, we also have gbj = (ϕbj , ψbj ) ∈ StabG(p). Then, for every j ∈ {1, . . . , r},
p(ϕbj ,ψbj ) = p, that is,

ψbjpi = pϕbj (i) for all i ∈ H.

Since ϕbj has at least bj fixed points, picking one of them, say i0, we get ψbjpi0 = pi0 and thus ψbj = id.
It follows that, for every j ∈ {1, . . . , r}, |ψ| | bj and then |ψ| | h. On the other hand, ψ ∈ Sn implies
|ψ| | n!, as well. As a consequence, |ψ| | gcd(h, n!) = 1 which gives ψ = id.

4 Anonymous and neutral rules

In this section we use the action of G = Sh × Sn on P and the properties of its stabilizer, established in
Proposition 2, to reach a fundamental result: when gcd(h, n!) = 1, we can construct an anonymous and
neutral rule freely assigning its values on a system of representatives of the orbits.

Proposition 3. Let gcd(h, n!) = 1. For every (pj)Rj=1 ∈ S and (qj)
R
j=1 ∈ L(N)R, there exists a unique

F ∈ Fan such that, for every j ∈ {1, . . . , R}, F (pj) = qj.

Proof. Let (pj)Rj=1 ∈ S and (qj)
R
j=1 ∈ L(N)R. Since {pj G : j ∈ {1, . . . , R}} is a partition of P, given

p ∈ P, there exist j ∈ {1, . . . , R} and (ϕ,ψ) ∈ G such that p = pj (ϕ,ψ) even though that representation
is not necessarily unique. We show that if there exist j1, j2 ∈ {1, . . . , R} and (ϕ1, ψ1), (ϕ2, ψ2) ∈ G such
that pj1 (ϕ1,ψ1) = pj2 (ϕ2,ψ2), then j1 = j2 and ψ1 = ψ2. In fact, by definition of system of representatives,
we immediately have that j1 = j2. Thus, we get pj1 (ϕ1,ψ1) = pj1 (ϕ2,ψ2) and equality (7) gives(

pj1 (ϕ1,ψ1)
)(ϕ−1

2 ,ψ−1
2 )

= pj1 (ϕ−1
2 ϕ1,ψ

−1
2 ψ1) = pj1 .

6A partition of a nonempty set X is a set of nonempty pairwise disjoint subsets of X whose union is X.
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Thus (ϕ−1
2 ϕ1, ψ

−1
2 ψ1) ∈ StabG(pj1) and, by Proposition 2, we obtain ψ−1

2 ψ1 = id, that is, ψ1 = ψ2.
Consider now the rule F defined, for every p ∈ P as F (p) = ψqj , where j ∈ {1, . . . , R} and (ϕ,ψ) ∈ G

are such that p = pj (ϕ,ψ). Note that, because of the previous remark, this definition is unambiguous.
Moreover, for every j ∈ {1, . . . , R}, F (pj) = qj . Let us prove that F ∈ Fan. Consider p ∈ P and
(ϕ,ψ) ∈ G and let p = pj (ϕ∗,ψ∗) for some j ∈ {1, . . . , R} and (ϕ∗, ψ∗) ∈ G. By definition of F and by the
equality (7), we conclude that

F (p(ϕ,ψ)) = F

((
pj (ϕ∗,ψ∗)

)(ϕ,ψ)
)

= F (pj (ϕϕ∗,ψψ∗)) = (ψψ∗)qj = ψ(ψ∗qj) = ψF (pj (ϕ∗,ψ∗)) = ψF (p).

In order to prove the uniqueness of F , it suffices to note that if F ′ ∈ Fan is such that, for every
j ∈ {1, . . . , R}, F ′(pj) = qj , then F ′(pj (ϕ,ψ)) = ψqj = F (pj (ϕ,ψ)) for all j ∈ {1, . . . , R} and (ϕ,ψ) ∈ G.
Thus, for every p ∈ P, F ′(p) = F (p).

Let gcd(h, n!) = 1, (pj)Rj=1 ∈ S and (qj)
R
j=1 ∈ L(N)R: we denote by F

[
(pj)Rj=1, (qj)

R
j=1

]
the unique

F ∈ Fan such that, for every j ∈ {1, . . . , R}, F (pj) = qj .

Proposition 4. Let gcd(h, n!) = 1 and (pj)Rj=1 ∈ S. Then the function f : L(N)R → Fan defined, for

every (qj)
R
j=1 ∈ L(N)R, as f

(
(qj)

R
j=1

)
= F

[
(pj)Rj=1, (qj)

R
j=1

]
, is bijective. In particular, |Fan| = n!R.

Proof. Straightforward.

Theorem 5. Fan 6= ∅ if and only if gcd(h, n!) = 1.

Proof. From Proposition 3, it immediately follows the “if” part. In order to prove the “only if” part,
assume gcd(h, n!) 6= 1 and suppose, by contradiction, that there exists F ∈ Fan. Let c be an integer such
that 2 ≤ c ≤ n and c | h, and let m = h

c . Let

ψ = (1 . . . c) ∈ Sn and ϕ = (1 . . . c)(c+ 1 . . . 2c) · · · ((m− 1)c+ 1 . . . h) ∈ Sh.

Note that |ψ| = c and, being c ≥ 2, we have ψ 6= id. Note also that ϕ is a product of m cycles of length c
and, for every i ∈ H, c divides the integer ϕ(i)− (i+ 1).

Let p0 = [1, . . . , n]T and define p ∈ P by pi = ψi−1p0 for all i ∈ H. We claim that p(ϕ,ψ) = p,

that is, for every i ∈ H, p
(ϕ,ψ)
ϕ(i) = pϕ(i). In fact, p

(ϕ,ψ)
ϕ(i) = ψpi = ψip0 and pϕ(i) = ψϕ(i)−1p0. Since

|ψ| | ϕ(i) − (i + 1), we have ψϕ(i)−(i+1) = id. Then ψi = ψϕ(i)−1 and thus p
(ϕ,ψ)
ϕ(i) = pϕ(i). As a

consequence, F (p) = F (p(ϕ,ψ)) = ψF (p), which implies the contradiction ψ = id.

5 Majority rules

We devote this section to explain under which arithmetical conditions on h, n and ν a ν-majority rule
exists. As already discussed, the results are not original but it is useful to have them expressed in terms
of our notation and inside our framework (for the proofs, we follow Can and Storken, 2013, Example 4).

Define, for every p ∈ P and x, y ∈ N , the set

H(p, x, y) = {i ∈ H : (x, y) ∈ pi, (y, x) 6∈ pi},

and note that, if x = y, then H(p, x, y) = ∅ while if x 6= y, then H(p, x, y) = {i ∈ H : (x, y) ∈ pi}. Define
also, for every ν ∈ N ∩ (h/2, h] and p ∈ P, the relation on N

Σν(p) = {(x, y) ∈ N ×N : |H(p, x, y)| ≥ ν}.

Of course, Cν(p) = {q0 ∈ L(N) : q0 extends Σν(p)} and, in particular, Cν(p) 6= ∅ if and only if Σν(p) is
acyclic.

Proposition 6. Let ν ∈ N ∩ (h/2, h] such that ν > n−1
n h. Then, for every p ∈ P, Cν(p) 6= ∅.
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Proof. We get the proof showing that Σν(p) is acyclic. Assume by contradiction that there exist l ∈ N
with l ≥ 2 and distinct x1, . . . , xl ∈ N such that, for every j ∈ {1, . . . , l − 1}, (xj , xj+1) ∈ Σν(p) and
(xl, x1) ∈ Σν(p). Note that, in particular, l ≤ n. Define also xl+1 = x1. Then, for every j ∈ {1, . . . , l},

|H(p, xj , xj+1)| ≥ ν > n− 1

n
h ≥ l − 1

l
h. (9)

Observe now that if it were
⋂l
j=1H(p, xj , xj+1) = ∅ then, for every i ∈ H, we would obtain

|{j ∈ {1, . . . , l} : i ∈ H(p, xj , xj+1)}| ≤ l − 1.

Thus, by (9) we would get

(l − 1)h <
∑l
j=1 |H(p, xj , xj+1)| = |{(j, i) ∈ {1, . . . , l} ×H : i ∈ H(p, xj , xj+1)}|

=
∑
i∈H |{j ∈ {1, . . . , l} : i ∈ H(p, xj , xj+1)}| ≤ (l − 1)h,

which is a contradiction. As a consequence, we have
⋂l
j=1H(p, xj , xj+1) 6= ∅ and there exists i∗ ∈ H

such that, for every j ∈ {1, . . . , l}, (xj , xj+1) ∈ pi∗ . Then the linear order pi∗ contains a cycle, which is a
contradiction.

Proposition 7. Let ν ∈ N∩ (h/2, h] such that ν ≤ n−1
n h. Then, there exists p ∈ P such that Cν(p) = ∅.

Proof. Let ν ∈ N ∩ (h2 , h] with ν ≤ n−1
n h. Write h = qn + r, where q, r ∈ N ∪ {0} and r ≤ n − 1, and

consider p0 = [1, . . . , n]T . Let σ = (1 . . . n) ∈ Sn and define p ∈ P by pi = σip0 for all i ∈ H. First of all,
let us prove that, for every k ∈ N with k ≤ n and x ∈ N ,

|{i ∈ {1, . . . , k} : (x, σ(x)) ∈ σip0}| ≥ k − 1. (10)

To that purpose, observe first that, for every y ∈ N , (y, σ(y)) ∈ p0 if and only if y 6= n, and that, for every
m ∈ N, σm(1) = n if and only if m ≡ −1(modn). Fix now x ∈ N and k ≤ n, and let j be the unique
element in {0, . . . , n− 1} such that x = σj(1). Then

{i ∈ {1, . . . , k} : (x, σ(x)) ∈ σip0} = {i ∈ {1, . . . , k} :
(
σj−i(1), σ(σj−i(1))

)
∈ p0}

= {i ∈ {1, . . . , k} : σj−i(1) 6= n} = {1, . . . , k} \ {j + 1}
that implies (10). Since, for every i ∈ H with i ≤ h − n, we have that pi = pi+n, using (10) we get, for
every x ∈ N ,

|H(p, x, σ(x))| ≥ (n− 1)q + max{0, r − 1}.
However, it is easily checked that

(n− 1)q + max{0, r − 1} = (n− 1)q +

⌊
n− 1

n
r

⌋
=

⌊
n− 1

n
(qn+ r)

⌋
≥ ν.

As a consequence, for every x ∈ N , |H(p, x, σ(x))| ≥ ν and so the relation Σν(p) contains the cycle
1, 2, . . . , n, that is, Cν(p) = ∅.

By the definition of Fν and Propositions 6 and 7, the following result immediately follows.

Theorem 8. Let ν ∈ N ∩ (h/2, h]. Then Fν 6= ∅ if and only if ν > n−1
n h.

For every p ∈ P, let us now define

ν(p) = min{ν ∈ N ∩ (h/2, h] : Cν(p) 6= ∅}.

Of course, ν(p) is well defined as, by Proposition 6, for every p ∈ P, Ch(p) 6= ∅ and ν(p) ∈ N ∩ (h/2, h].
A rule F is said a minimal majority rule if, for every p ∈ P, F (p) ∈ Cν(p)(p). In other words, minimal
majority rules have the property that, for every preference profile, the corresponding social preference is
consistent with all majority thresholds not generating cycles for that profile.

The set of minimal majority rules is denoted by Fmin. Thus

Fmin = ×p∈PCν(p)(p)

and, by definition, Fmin 6= ∅ independently on any arithmetic condition on h and n. Note that, for every
ν ∈ N ∩ (h/2, h] such that ν > n−1

n h, we have Fmin ⊆ Fν ⊆ Fh.
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6 Anonymous and neutral majority rules

In this section we characterize in terms of h, n and ν when the sets Fan
ν = Fan∩Fν and Fan

min = Fan∩Fmin

are nonempty, and give a method to construct and, in particular, count all of their elements.

Lemma 9. For every p ∈ P, x, y ∈ N and (ϕ,ψ) ∈ G, H(p(ϕ,ψ), x, y) = ϕ
(
H(p, ψ−1(x), ψ−1(y))

)
and

|H(p(ϕ,ψ), x, y)| = |H(p, ψ−1(x), ψ−1(y))|.

Proof. The first relation is trivially verified when x = y. If instead x 6= y, then we have that

i ∈ H(p(ϕ,ψ), x, y)⇔ (x, y) ∈ p(ϕ,ψ)
i = ψpϕ−1(i) ⇔ (ψ−1(x), ψ−1(y)) ∈ pϕ−1(i)

⇔ ϕ−1(i) ∈ H(p, ψ−1(x), ψ−1(y))⇔ i ∈ ϕ
(
H(p, ψ−1(x), ψ−1(y))

)
.

The second relation immediately follows by the fact that ϕ ∈ Sh.

Lemma 10. Let ν ∈ N ∩ (h/2, h]. Then, for every p ∈ P and (ϕ,ψ) ∈ G, Cν(p(ϕ,ψ)) = ψCν(p) and,
|Cν(p(ϕ,ψ))| = |Cν(p)|. In particular, ν(p) = ν(p(ϕ,ψ)).

Proof. We prove first that, for every p ∈ P and (ϕ,ψ) ∈ G,

ψCν(p) ⊆ Cν(p(ϕ,ψ)). (11)

Let us consider then p ∈ P, (ϕ,ψ) ∈ G, q0 ∈ Cν(p) and show that ψq0 ∈ Cν(p(ϕ,ψ)). Assume that
x, y ∈ N are such that |H(p(ϕ,ψ), x, y)| ≥ ν. By Lemma 9, we have |H(p, ψ−1(x), ψ−1(y))| ≥ ν and since
q0 ∈ Cν(p), we have (ψ−1(x), ψ−1(y)) ∈ q0, that is, (x, y) ∈ ψq0. Then ψq0 ∈ Cν(p(ϕ,ψ)).

We are left to show that, for every p ∈ P and (ϕ,ψ) ∈ G, we also have ψCν(p) ⊇ Cν(p(ϕ,ψ)), that is,
ψ−1Cν(p(ϕ,ψ)) ⊆ Cν(p). This is immediately seen because, by (11) and by (7), we have

ψ−1Cν(p(ϕ,ψ)) ⊆ Cν
((

p(ϕ,ψ)
)(ϕ−1,ψ−1)

)
= Cν(p).

Finally, since |Cν(p)| = |ψCν(p)| and Cν(p(ϕ,ψ)) = ψCν(p), we also get |Cν(p(ϕ,ψ))| = |Cν(p)|. In particu-
lar ν(p) = ν(p(ϕ,ψ)) .

Proposition 11. Let gcd(h, n!) = 1, ν ∈ N∩(h/2, h] such that ν > n−1
n h, and (pj)Rj=1 ∈ S. Then the func-

tion f : ×Rj=1Cν(pj)→ Fan defined, for every (qj)
R
j=1 ∈ ×Rj=1Cν(pj), as f

(
(qj)

R
j=1

)
= F

[
(pj)Rj=1, (qj)

R
j=1

]
has nonempty domain, is injective and its image is Fan

ν . In particular, |Fan
ν | =

∏R
j=1 |Cν(pj)| ≥ 1.

Proof. By Proposition 6, the condition ν > n−1
n h implies that f has nonempty domain; by Proposition 3,

the definition of f is well posed; the injectivity of f is trivial.
Let us prove now that Im(f) ⊆ Fan

ν . Let F ∈ Im(f) and show that F ∈ Fan
ν . Surely F ∈ Fan and

there exists (qj)
R
j=1 ∈ ×Rj=1Cν(pj) such that F = F

[
(pj)Rj=1, (qj)

R
j=1

]
. Consider now any p ∈ P. Then

there are j ∈ {1, . . . , R} and (ϕ,ψ) ∈ G such that p = pj (ϕ,ψ). As, for every j ∈ {1, . . . , R}, we know that
F (pj) ∈ Cν(pj), using Lemma 10 we have that

F (p) = F (pj (ϕ,ψ)) = ψF (pj) ∈ ψCν(pj) = Cν(pj (ϕ,ψ)) = Cν(p).

Then, for every p ∈ P, F (p) ∈ Cν(p), that is, F ∈ Fν .
In order to prove that Fan

ν ⊆ Im(f), let F ∈ Fan
ν and define, for every j ∈ {1 . . . , R}, qj = F (pj). Then

we immediately have (qj)
R
j=1 ∈ ×Rj=1Cν(pj) and F = f

(
(qj)

R
j=1

)
, so that F ∈ Im(f).

Theorem 12. Let ν ∈ N ∩ (h/2, h]. Then Fan
ν 6= ∅ if and only if gcd(h, n!) = 1 and ν > n−1

n h.

Proof. The “if” part follows from Proposition 11. The “only if” part follows instead from Theorems 5
and 8.

Proposition 13. Let gcd(h, n!) = 1 and (pj)Rj=1 ∈ S. Then the function f : ×Rj=1Cν(pj)(p
j) → Fan

defined, for every (qj)
R
j=1 ∈ ×Rj=1Cν(pj)(p

j), as f
(
(qj)

R
j=1

)
= F

[
(pj)Rj=1, (qj)

R
j=1

]
has nonempty domain,

is injective and its image is Fan
min. In particular, |Fan

min| =
∏R
j=1 |Cν(pj)(p

j)| ≥ 1.
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Proof. Since Cν(p)(p) 6= ∅ for all p ∈ P, we immediately get that f has nonempty domain; the injectivity
of f is trivial. In order to prove that Im(f) = Fan

min we have only to observe that Lemma 10 implies that,
for all j ∈ {1, . . . , R} and p ∈ pj G, ν(p) = ν(pj). Then, we conclude by the same argument used in the
proof of Proposition 11.

Theorem 14. Fan
min 6= ∅ if and only if gcd(h, n!) = 1.

Proof. The “if” part follows from Proposition 13. The “only if” part follows instead from Theorem 5.

7 Anonymous and neutral majority social choice functions

The last existence result of the paper is about social choice functions: Theorem 15 below is an immediate
consequence of Theorem 12, and generalizes Theorem 1 in Moulin (1983, p.23). We recall that a social
choice function is a function f : P → N ; it is called anonymous and neutral if, for every p ∈ P and
(ϕ,ψ) ∈ G, f(p(ϕ,ψ)) = ψ(f(p)); given ν ∈ N ∩ (h/2, h], it is called a ν-majority if, for every p ∈ P and
x ∈ N , we have |H(p, x, f(p))| < ν.

Theorem 15. Let ν ∈ N ∩ (h/2, h]. There exists an anonymous and neutral ν-majority social choice
function if and only if gcd(h, n!) = 1 and ν > n−1

n h.

Proof. The “only if” part follows Theorem 1 in Moulin (1983, p.23) and Corollary 3 in Greenberg (1979).
In order to prove the “if” part assume that gcd(h, n!) = 1 and ν > n−1

n h and, using Theorem 12, consider
F ∈ Fan

ν . Consider then the social choice function f : P → N defined as follows: for every p ∈ P, f(p)
is the unique maximum of the linear order F (p). It is immediate to verify that f is an anonymous and
neutral ν-majority social choice function.

8 General formulas for counting the rules

Summarizing the content of theorems and propositions proved in Sections 4, 5 and 6, we get the following
proposition which provides formulas for the order of all the sets of rules defined along the paper.

Proposition 16. Let ν ∈ N ∩ (h/2, h] and (pj)Rj=1 ∈ S. Then

|F| = n!(n!h), (16.1)

|Fν | =
∏R
j=1 |Cν(pj)||pj G|, (16.2)

|Fmin| =
∏R
j=1 |Cν(pj)(p

j)||pj G|, (16.3)

|Fan| =

{
n!R if gcd(h, n!) = 1

0 if gcd(h, n!) 6= 1
, (16.4)

|Fan
ν | =

{ ∏R
j=1 |Cν(pj)| if gcd(h, n!) = 1 and ν > n−1

n h

0 if gcd(h, n!) 6= 1 or ν ≤ n−1
n h

, (16.5)

|Fan
min| =

{ ∏R
j=1 |Cν(pj)(p

j)| if gcd(h, n!) = 1

0 if gcd(h, n!) 6= 1
. (16.6)

Proof. In order to get (16.1), simply note that |P| = n!h. By definition (4) of Fν and Lemma 10, we have

|Fν | =
∏
p∈P
|Cν(p)| =

R∏
j=1

∏
p∈pjG

|Cν(p)| =
R∏
j=1

|Cν(pj)||p
jG|

and (16.2) is proved. An analogous argument proves (16.3). Formula (16.4) follows from Proposition 4
and Theorem 5. Formula (16.5) follows from Proposition 11 and Theorem 12. Finally, (16.6) follows from
Proposition 13 and Theorem 14.
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9 Further properties of the set of preference profiles

When gcd(h, n!) = 1, we can construct and count rules via Propositions 4, 11, 13, and 16. In order to
apply those results, a system of representatives is needed but its computation is hard in general. In this
section we are going to prove some further properties of the set of preference profiles that are useful to
simplify that task.

Given k ∈ N, we define the set

Π(k) =
⋃k
r=1

{
(bj)

r
j=1 ∈ Nr :

∑r
j=1 bj = k, b1 ≥ . . . ≥ br

}
whose elements are called partitions of k. In other words, a partition of k is a decreasing list of positive
integers whose sum is k. We call each component of b ∈ Π(k) a part of b. Given b ∈ Π(k), r(b)
denotes the number of parts of b and, for every j ∈ {1, . . . , k}, aj(b) counts how many parts of b are

equal to j. Observe that
∑k
j=1 aj(b) = r(b) and

∑k
j=1 jaj(b) = k. If m ∈ N, we also define the set

Πm(k) = {b ∈ Π(k) : r(b) ≤ m}. Note that m ≥ k implies Πm(k) = Π(k).
Given now b ∈ Πn!(h), we say that p ∈ P has block type b if there exist B1, . . . , Br(b) ⊆ H and distinct

q1, . . . , qr(b) ∈ L(N) such that:

• {Bk}r(b)k=1 is a partition of H,

• for every k ∈ {1 . . . , r(b)}, |Bk| = bk,

• for every i ∈ H and k ∈ {1 . . . , r(b)}, pi = qk if and only if i ∈ Bk.

The set of preference profiles having block type b is denoted by P(b). It is immediate to prove that
{P(b) : b ∈ Πn!(h)} has order |Πn!(h)| and is a partition of P. Moreover, for every b ∈ Πn!(h) and
p ∈ P(b), we have that pG ⊆ P(b). In particular, P(b) is union of orbits.

As shown by the following propositions, the concept of block type allows to get a deeper insight into
the properties of the orbits. In fact, Proposition 17 shows that the order of the orbit of a preference
profile depends only on its block type. Proposition 18 provides instead a formula for counting the orbits
contained in the set of preference profiles having the same block type. The proofs of those propositions
are in the Appendix.

Proposition 17. Let gcd(h, n!) = 1, b ∈ Πn!(h) and p ∈ P(b). Then

|pG| = n!h!∏h
j=1 j!

aj(b)
. (12)

Proposition 18. Let gcd(h, n!) = 1 and b ∈ Πn!(h). Then the number of orbits in P(b) is(
n!
r(b)

)
r(b)!

n!
∏h
j=1 aj(b)!

.

Let us propose now a simple formula for the number R of orbits under the assumption gcd(h, n!) = 1.
That formula, already proved by Eğecioğlu (2009, Section 4.4)7, is obtained here in a different manner,
using Proposition 18 and the following equality, holding for every m, k ∈ N :(

m+ k − 1

k − 1

)
=

∑
b∈Πk(m)

(
k
r(b)

)
r(b)!∏m

j=1 aj(b) !
. (13)

Equality (13) is an original arithmetic relation linking a classical balls-in-boxes counting with partitions.
We leave its proof in the Appendix.

Proposition 19. Let gcd(h, n!) = 1. Then the number R of orbits in P is

1

n!

(
h+ n!− 1

n!− 1

)
. (14)

7Actually, Eğecioğlu (2009) claims that the formula for R was previously proved by Giritligil and Doğan (An Impossibility
Result on Anonymous and Neutral Social Choice Functions, preprint). However, we could not find that reference.
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Proof. Since {P(b) : b ∈ Πn!(h)} is a partition of P, by Proposition 18, we have that

R =
1

n!

∑
b∈Πn!(h)

(
n!
r(b)

)
r(b)!∏h

j=1 aj(b) !
.

Applying equality (13) with k = n! and m = h, we immediately get (14).

10 Some applications

In the present section we show how the results stated in the previous sections can be concretely applied.
We focus on some particular values of n and h satisfying the condition gcd(h, n!) = 1.

Assume first n = 2 and h odd. Let k ∈ N be such that h = 2k + 1 and note that N ∩ (h/2, h] =
{k + 1, . . . , h} and

Π2!(h) = {(k + j, k + 1− j) : j ∈ {1, . . . , k}} ∪ {(2k + 1)}.

In particular, |Π2!(h)| = k + 1. On the other hand, by Proposition 19, the number of orbits is R = k + 1.
As a consequence, for every b ∈ Π2!(h), P(b) is made up by exactly one orbit so that we can build a
system of representatives of the orbits simply choosing, for every b ∈ Π2!(h), a preference profile having
block type b. Given j ∈ {1, . . . , k + 1}, let pj ∈ P be such that, for every i ∈ {1, . . . , h},

pji =

{
[1, 2]T if i ≤ k + j

[2, 1]
T

if i > k + j

Note that the block type of pj is (k+j, k+1−j) if j ≤ k, while it is (2k+1) if j = k+1. As a consequence,
(pj)k+1

j=1 is a system of representatives of the orbits. Let us fix now j ∈ {1, . . . , k + 1}. Using Proposition

17, we get |pj G| = 2(2k+1)!
(k+j)!(k+1−j)! . Moreover, for every ν ∈ {k + 1, . . . , h}, Cν(pj) = L({1, 2}) if j < ν − k,

while Cν(pj) =
{

[1, 2]T
}

if j ≥ ν − k. In particular, ν(pj) = k + 1. Then, applying Proposition 16, we
finally obtain

|F| = 2(22k+1), |Fν | =

{
1 if ν = k + 1∏ν−k−1
j=1 2

2(2k+1)!
(k+j)!(k+1−j)! if ν ≥ k + 2

, |Fmin| = 1,

|Fan| = 2k+1, |Fan
ν | = 2ν−k−1, |Fan

min| = 1.

Note also that, Fk+1 = Fmin = Fan
k+1 = Fan

min = {Fmaj}, where Fmaj is the simple majority rule.

Assume now n = 3 and h = 5. We have that N = {1, 2, 3}, N ∩ (h2 , h] = {3, 4, 5} and ν > n−1
n h if and

only if ν ∈ {4, 5}. Moreover,

Π3!(5) = Π(5) = {(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)}.

By Proposition 19, we know that the number of orbits in P is 42, and by Propositions 17 and 18 we have
that:

• P(5) is one orbit of order 6,

• P(4, 1) is the union of 5 orbits of order 30,

• P(3, 2) is the union of 5 orbits of order 60,

• P(3, 1, 1) is the union of 10 orbits of order 120,

• P(2, 2, 1) is the union of 10 orbits of order 180,

• P(2, 1, 1, 1) is the union of 10 orbits of order 360,

• P(1, 1, 1, 1, 1) is one orbit of order 720.
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Consider now the following preference profiles

p1 =

 1 1 1 1 1
2 2 2 2 2
3 3 3 3 3

 , p2 =

 1 1 1 1 2
2 2 2 2 1
3 3 3 3 3

 , p3 =

 1 1 1 1 3
2 2 2 2 2
3 3 3 3 1

 , p4 =

 1 1 1 1 1
2 2 2 2 3
3 3 3 3 2

 ,

p5 =

 1 1 1 1 2
2 2 2 2 3
3 3 3 3 1

 , p6 =

 1 1 1 1 3
2 2 2 2 1
3 3 3 3 2

 , p7 =

 1 1 1 2 2
2 2 2 1 1
3 3 3 3 3

 , p8 =

 1 1 1 3 3
2 2 2 2 2
3 3 3 1 1

 ,

p9 =

 1 1 1 1 1
2 2 2 3 3
3 3 3 2 2

 , p10 =

 1 1 1 2 2
2 2 2 3 3
3 3 3 1 1

 , p11 =

 1 1 1 3 3
2 2 2 1 1
3 3 3 2 2

 , p12 =

 1 1 1 2 3
2 2 2 1 2
3 3 3 3 1

 ,

p13 =

 1 1 1 2 1
2 2 2 1 3
3 3 3 3 2

 , p14 =

 1 1 1 2 2
2 2 2 1 3
3 3 3 3 1

 , p15 =

 1 1 1 2 3
2 2 2 1 1
3 3 3 3 2

 , p16 =

 1 1 1 3 1
2 2 2 2 3
3 3 3 1 2

 ,

p17 =

 1 1 1 3 2
2 2 2 2 3
3 3 3 1 1

 , p18 =

 1 1 1 3 3
2 2 2 2 1
3 3 3 1 2

 , p19 =

 1 1 1 1 2
2 2 2 3 3
3 3 3 2 1

 , p20 =

 1 1 1 1 3
2 2 2 3 1
3 3 3 2 2

 ,

p21 =

 1 1 1 2 3
2 2 2 3 1
3 3 3 1 2

 , p22 =

 1 1 2 2 3
2 2 1 1 2
3 3 3 3 1

 , p23 =

 1 1 2 2 1
2 2 1 1 3
3 3 3 3 2

 , p24 =

 1 1 3 3 2
2 2 2 2 1
3 3 1 1 3

 ,

p25 =

 1 1 3 3 1
2 2 2 2 3
3 3 1 1 2

 , p26 =

 1 1 1 1 2
2 2 3 3 1
3 3 2 2 3

 , p27 =

 1 1 1 1 3
2 2 3 3 2
3 3 2 2 1

 , p28 =

 1 1 2 2 2
2 2 3 3 1
3 3 1 1 3

 ,

p29 =

 1 1 2 2 3
2 2 3 3 2
3 3 1 1 1

 , p30 =

 1 1 3 3 3
2 2 1 1 2
3 3 2 2 1

 , p31 =

 1 1 3 3 2
2 2 1 1 3
3 3 2 2 1

 , p32 =

 1 1 2 3 1
2 2 1 2 3
3 3 3 1 2

 ,

p33 =

 1 1 2 3 2
2 2 1 2 3
3 3 3 1 1

 , p34 =

 1 1 2 3 3
2 2 1 2 1
3 3 3 1 2

 , p35 =

 1 1 2 1 2
2 2 1 3 3
3 3 3 2 1

 , p36 =

 1 1 2 1 3
2 2 1 3 1
3 3 3 2 2

 ,

p37 =

 1 1 2 2 3
2 2 1 3 1
3 3 3 1 2

 , p38 =

 1 1 3 1 2
2 2 2 3 3
3 3 1 2 1

 , p39 =

 1 1 3 1 3
2 2 2 3 1
3 3 1 2 2

 , p40 =

 1 1 3 2 3
2 2 2 3 1
3 3 1 1 2

 ,

p41 =

 1 1 1 2 3
2 2 3 3 1
3 3 2 1 2

 , p42 =

 1 2 3 1 2
2 1 2 3 3
3 3 1 2 1

 .

Using the fact that two preference profiles having different block type cannot be in the same orbit and
simple algebraic arguments, it can be proved that:

• p1 is a representative of the unique orbit in P(5),

• pj for 2 ≤ j ≤ 6 are representatives of the 5 orbits in P(4, 1),

• pj for 7 ≤ j ≤ 11 are representatives of the 5 orbits in P(3, 2),

• pj for 12 ≤ j ≤ 21 are representatives of the 10 orbits in P(3, 1, 1),

• pj for 22 ≤ j ≤ 31 are representatives of the 10 orbits in P(2, 2, 1),

• pj for 32 ≤ j ≤ 41 are representatives of the 10 orbits in P(2, 1, 1, 1),

• p42 is a representative of the unique orbit in P(1, 1, 1, 1, 1).

In order to give to the reader the possibility to check what affirmed above, we illustrate the strategy to
show that the pj , for 22 ≤ j ≤ 31, are representatives of the 10 orbits in P(2, 2, 1). The argument is
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analogous for the other cases. First of all, let p0 = [1, 2, 3]T and write all the columns of pj in the form
σp0 for suitable σ ∈ S3. We find the following equalities:

p22 = [p0, p0, (12)p0, (12)p0, (13)p0] , p23 = [p0, p0, (12)p0, (12)p0, (23)p0]

p24 = [p0, p0, (13)p0, (13)p0, (12)p0] , p25 = [p0, p0, (13)p0, (13)p0, (23)p0]

p26 = [p0, p0, (23)p0, (23)p0, (12)p0] , p27 = [p0, p0, (23)p0, (23)p0, (13)p0]

p28 = [p0, p0, (123)p0, (123)p0, (12)p0] , p29 = [p0, p0, (123)p0, (123)p0, (13)p0]

p30 = [p0, p0, (132)p0, (132)p0, (13)p0] , p31 = [p0, p0, (132)p0, (132)p0, (123)p0]

Of course, we get the desired result proving that, for every 22 ≤ j < k ≤ 31, pk 6∈ pj G. Let us
describe only the case k = 31, being the other cases similar. Assume, by contradiction, that there exist
(ϕ,ψ) ∈ G = S5 × S3 and 22 ≤ j < 31 such that p31 = pj (ϕ,ψ). Then, it has to be ψpj5 = (123)p0. As

{pj5 : 22 ≤ j < 31} = {(12)p0, (13)p0, (23)p0}, it is immediate to prove that ψ ∈ {(12), (13), (23)}. As
a consequence, since p0 appears twice in each pj , at least one among (12)p0, (13)p0, and (23)p0 should
appear twice in p31, but that is not the case and the contradiction is found. Let us finally note that the
strategy here described can also be used to build a system of representatives of the orbits. Indeed, it is
exactly what we used to determine p1, . . . , p42.

For every j ∈ {1, . . . , 42} and ν ∈ {3, 4, 5}, the computation of the set Cν(pj) is now easy and
mechanical. Again, for the sake of clarity, we explain how to compute Cν(pj) in one case, namely, j = 20
and ν = 4. We observe that in p20 we have that 1 is preferred to 2 four times, 1 is preferred to 3 five times,
and 2 is preferred to 3 three times. Thus, the 4-majority condition applies only to 1 with respect to 2 and
to 1 with respect to 3, imposing us to find the set of linear orders q0 ∈ L(N) such that (1, 2), (1, 3) ∈ q0.
Thus, we get C4(p20) = {[1, 2, 3]T , [1, 3, 2]T }.

The following table describes the results of those computations. Of course, in agreement with Propo-
sitions 6 and 7, C4(pj) 6= ∅ and C5(pj) 6= ∅ for all j, while C3(pj) = ∅ for some j.
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C3 C4 C5

p1
{

[1, 2, 3]T
} {

[1, 2, 3]T
} {

[1, 2, 3]T
}

p2
{

[1, 2, 3]T
} {

[1, 2, 3]T
} {

[1, 2, 3]T , [2, 1, 3]T
}

p3
{

[1, 2, 3]T
} {

[1, 2, 3]T
}

L({1, 2, 3})
p4

{
[1, 2, 3]T

} {
[1, 2, 3]T

} {
[1, 2, 3]T , [1, 3, 2]T

}
p5

{
[1, 2, 3]T

} {
[1, 2, 3]T

} {
[1, 2, 3]T , [2, 1, 3]T , [2, 3, 1]T

}
p6

{
[1, 2, 3]T

} {
[1, 2, 3]T

}
{[1, 2, 3]T , [1, 3, 2]T , [3, 1, 2]T }

p7
{

[1, 2, 3]T
}

{[1, 2, 3]T , [2, 1, 3]T } {[1, 2, 3]T , [2, 1, 3]T }
p8

{
[1, 2, 3]T

}
L({1, 2, 3}) L({1, 2, 3})

p9 {[1, 2, 3]T } {[1, 2, 3]T , [1, 3, 2]T } {[1, 2, 3]T , [1, 3, 2]T }
p10 {[1, 2, 3]T } {[1, 2, 3]T , [2, 1, 3]T , [2, 3, 1]T } {[1, 2, 3]T , [2, 1, 3]T , [2, 3, 1]T }
p11 {[1, 2, 3]T } {[1, 2, 3]T , [1, 3, 2]T , [3, 1, 2]T } {[1, 2, 3]T , [1, 3, 2]T , [3, 1, 2]T }
p12 {[1, 2, 3]T } {[1, 2, 3]T , [2, 1, 3]T } L({1, 2, 3})
p13 {[1, 2, 3]T } {[1, 2, 3]T } {[1, 2, 3]T , [3, 2, 1]T , [1, 3, 2]T }
p14 {[1, 2, 3]T } {[1, 2, 3]T , [2, 1, 3]T } {[1, 2, 3]T , [2, 1, 3]T , [2, 3, 1]T }
p15 {[1, 2, 3]T } {[1, 2, 3]T } L({1, 2, 3})
p16 {[1, 2, 3]T } {[1, 2, 3]T , [1, 3, 2]T } L({1, 2, 3})
p17 {[1, 2, 3]T } {[1, 2, 3]T , [2, 1, 3]T , [2, 3, 1]T } L({1, 2, 3})
p18 {[1, 2, 3]T } {[1, 2, 3]T , [1, 3, 2]T , [3, 1, 2]T } L({1, 2, 3})
p19 {[1, 2, 3]T } {[1, 2, 3]T } L({1, 2, 3})
p20 {[1, 2, 3]T } {[1, 2, 3]T , [1, 3, 2]T } {[1, 2, 3]T , [1, 3, 2]T , [3, 1, 2]T }
p21 {[1, 2, 3]T } {[1, 2, 3]T , [2, 3, 1]T } L({1, 2, 3})
p22 {[2, 1, 3]T } {[1, 2, 3]T , [2, 1, 3]T } L({1, 2, 3})
p23 {[1, 2, 3]T } {[1, 2, 3]T , [2, 1, 3]T } {[1, 2, 3]T , [3, 2, 1]T , [1, 3, 2]T }
p24 {[2, 1, 3]T } L({1, 2, 3}) L({1, 2, 3})
p25 {[1, 3, 2]T } L({1, 2, 3}) L({1, 2, 3})
p26 {[1, 2, 3]T } {[1, 2, 3]T , [1, 3, 2]T } {[1, 2, 3]T , [3, 2, 1]T , [1, 3, 2]T }
p27 {[1, 3, 2]T } {[1, 2, 3]T , [1, 3, 2]T } L({1, 2, 3})
p28 {[2, 1, 3]T } {[1, 2, 3]T , [2, 1, 3]T , [2, 3, 1]T } {[1, 2, 3]T , [2, 1, 3]T , [2, 3, 1]T }
p29 {[2, 3, 1]T } {[1, 2, 3]T , [2, 1, 3]T , [2, 3, 1]T } L({1, 2, 3})
p30 {[3, 1, 2]T } {[1, 2, 3]T , [1, 3, 2]T , [3, 1, 2]T } L({1, 2, 3})
p31 ∅ {[1, 2, 3]T , [1, 3, 2]T , [3, 1, 2]T } L({1, 2, 3})
p32 {[1, 2, 3]T } {[1, 2, 3]T , [3, 2, 1]T , [1, 3, 2]T } L({1, 2, 3})
p33 {[2, 1, 3]T } {[1, 2, 3]T , [2, 1, 3]T , [2, 3, 1]T } L({1, 2, 3})
p34 {[1, 2, 3]T } L({1, 2, 3}) L({1, 2, 3})
p35 {[1, 2, 3]T } {[1, 2, 3]T , [2, 1, 3]T } L({1, 2, 3})
p36 {[1, 2, 3]T } {[1, 2, 3]T , [1, 3, 2]T } L({1, 2, 3})
p37 {[1, 2, 3]T } L({1, 2, 3}) L({1, 2, 3})
p38 {[1, 2, 3]T } L({1, 2, 3}) L({1, 2, 3})
p39 {[1, 3, 2]T } {[1, 2, 3]T , [1, 3, 2]T , [3, 1, 2]T } L({1, 2, 3})
p40 ∅ L({1, 2, 3}) L({1, 2, 3})
p41 {[1, 2, 3]T } {[1, 2, 3]T , [1, 3, 2]T , [3, 1, 2]T } L({1, 2, 3})
p42 {[2, 1, 3]T } L({1, 2, 3}) L({1, 2, 3})

By Proposition 13, we know that selecting a rule in Fan
min is equivalent to choosing, for every j, an

element in Cν(pj)(p
j) representing the social outcome associated with pj . Of course, for those j such that

Cν(pj)(p
j) is a singleton, that choice is completely determined. Then, as the table shows, if five individuals

desire to strict rank three alternatives using an anonymous and neutral minimal majority rule, then they
only need to find an agreement on which element in Cν(pj)(p

j) has to be associated with pj for all j such
that |Cν(pj)(p

j)| ≥ 2, that is, for j ∈ {31, 40}. Similar considerations also hold for the sets Fan
4 and Fan

5 ,
using now Proposition 11. Note that there are 33 values of j such that |C4(pj)| ≥ 2, and 41 values of j
such that |C5(pj)| ≥ 2.
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By Proposition 16 and checking on the table, we also get

|F| = 67776, |F5| = 2669037590, |F4| = 2474035460, |F3| = 0, |Fmin| = 23603540,

|Fan| = 642, |Fan
5 | = 231337, |Fan

4 | = 221320, |Fan
3 | = 0, |Fan

min| = 18.

11 Concluding comments

We dealt with the problem to understand whether the members of a committee could strict rank a given
family of alternatives obeying the principles of anonymity, neutrality and majority. The existence results
presented in the paper are proved thanks to a preliminary theoretical analysis of the set of preference
profiles developed with some tools from group theory. Indeed, principles of anonymity and neutrality are
naturally associated with an action of the group G = Sh × Sn on the set of preference profiles.

We firmly believe that the way we apply group theory for dealing with anonymous and neutral rules
could be developed into further interesting directions. Consider, for instance, a collective decision problem
where a committee is divided into two or more sub-committees whose members are known and impartially
treated within or where one or more alternatives are favourite or distinguished. Situations characterized
by partial anonymity and partial neutrality can be analysed via the action of a suitable subgroup U of G
on the set of preference profiles. As Proposition 1 can be proved replacing G by any of its subgroups, most
of the algebraic machinery we used still works in the new framework. Given the number of individuals
and alternatives, not necessarily satisfying the coprimality condition (1), an interesting problem is then
to understand which extent of anonymity and neutrality is allowed. Using our approach that corresponds
to find the subgroups U of G for which there exists a rule F such that, for every p ∈ P and (ϕ,ψ) ∈ U ,
F (p(ϕ,ψ)) = ψF (p).

Note also that in our paper individual and social preferences are modelled as linear orders. However,
Proposition 1 can be easily adapted to the interesting case where indifference is allowed and preferences
are modelled as orders. Then, even though new tools and methods seem to be required to fully treat the
new setting, some parts of the theory we developed can be used to carry on that analysis.

We finally observe that our paper has an essentially constructive flavour as particularly evidenced
by the analysis of the case with three alternatives and five individuals. That suggests the possibility to
implement algorithmically our results in order to explicitly determine and use the various kinds of rules.

Appendix

Proof of Proposition 17. Since p ∈ P(b) we know that there are a partition B = {Bk}r(b)k=1 of H with
|Bk| = bk and distinct q1, . . . qr(b) ∈ L(N) such that, for every i ∈ H and k ∈ {1 . . . , r(b)},

pi = qk if and only if i ∈ Bk. (15)

Consider the subgroup U of Sh which leaves fixed each Bk, that is,

U = {ϕ ∈ Sh : ∀k ∈ {1, . . . , r(b)}, ϕ(Bk) = Bk} .

Clearly U is isomorph to ×r(b)k=1Sym(Bk) and then also to ×hj=1S
aj(b)
j .

We show that StabG(p) = U × {id}. Let (ϕ, id) ∈ U × {id} and see that p(ϕ,id) = p, that is, for every
i ∈ H, pϕ(i) = pi. Since B is a partition of H, we can verify that, for every k ∈ {1, . . . , r(b)} and i ∈ Bk,
pϕ(i) = pi. But if i ∈ Bk also ϕ(i) ∈ Bk, by definition of U , and thus pi = qk = pϕ(i), by (15). Next let
g ∈ StabG(p). Then, by Proposition 2, we have that g = (ϕ, id) for some ϕ ∈ Sh and thus pϕ(i) = pi for
all i ∈ H. We need to see that ϕ ∈ U , that is, ϕ(Bk) ⊆ Bk for all k ∈ {1, . . . , r(b)}. But if i ∈ Bk we have
pi = qk and thus also pϕ(i) = qk, which by (15) gives ϕ(i) ∈ Bk.

It follows that

|StabG(p)| = |U | =
∣∣∣×hj=1S

aj(b)
j

∣∣∣ =

h∏
j=1

j! aj(b)

which, by (8), gives immediately (12).
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Proof of Proposition 18. For every p ∈ P(b) and j ∈ {1, . . . , h}, define

Qj(p) =
{
q0 ∈ L(N) : |{i ∈ H : pi = q0}| = j

}
.

It is immediately observed that, for every p ∈ P(b), j ∈ {1, . . . , h} and (ϕ,ψ) ∈ G,

Qj(p
(ϕ,ψ)) = ψQj(p). (16)

Moreover, for every p ∈ P(b), define Q(p) = (Qj(p))
h
j=1 and note that it belongs to the set

Q(b) =
{

(Qj)
h
j=1 : ∀j, k ∈ {1, . . . , h} with j 6= k,Qj ⊆ L(N), |Qj | = aj(b), Qj ∩Qk = ∅

}
.

Since
∑h
j=1 aj(b) = r(b), we have that

|Q(b)| =
(

n!

a1(b)

)(
n!− a1(b)

a2(b)

)
. . .

(
n!− r(b) + ah(b)

ah(b)

)
=

(
n!
r(b)

)
r(b)!∏h

j=1 aj(b)!
.

For every Q = (Qj)
h
j=1 ∈ Q(b), let P(Q) = {p ∈ P : Q(p) = Q}. Note that the set P(Q) is well defined

and nonempty because
∑h
j=1 jaj(b) = h. Since the profiles in P(Q) are obtained one from the other

simply acting with a permutation of the individuals, P(Q) is contained in a unique orbit. Consider then
the function f : Q(b)→ {pG : p ∈ P(b)} defined, for every Q ∈ Q(b), as the unique orbit containing P(Q)
and prove that, for every p ∈ P(b),

f−1(pG) =
{(
Qj(p

(id,ψ))
)h
j=1
∈ Q(b) : ψ ∈ Sn

}
.

Let Q =
(
Qj(p

(id,ψ))
)h
j=1

where ψ ∈ Sn. Then p(id,ψ) ∈ P(Q) and therefore pG = f(Q). This shows

that
{(
Qj(p

(id,ψ))
)h
j=1
∈ Q(b) : ψ ∈ Sn

}
⊆ f−1(pG). To get the other inclusion let Q ∈ f−1(pG): then

f(Q) = pG, which implies P(Q) ⊆ pG. Picking q ∈ P(Q), we have that there exists (ϕ,ψ) ∈ G such that
q = p(ϕ,ψ). Then, by (16), it follows that, for every j ∈ {1, . . . , h},

Qj = Qj(q) = Qj(p
(ϕ,ψ)) = ψQj(p) = Qj(p

(id,ψ)),

which says Q =
(
Qj(p

(id,ψ))
)h
j=1

.

Let us show now that, for every p ∈ P(b),∣∣∣{(Qj(p(id,ψ))
)h
j=1
∈ Q(b) : ψ ∈ Sn

}∣∣∣ = n!

by proving that, for every ψ1, ψ2 ∈ Sn,(
Qj(p

(id,ψ1))
)h
j=1

=
(
Qj(p

(id,ψ2))
)h
j=1

⇒ ψ1 = ψ2.

Assume that, for every j ∈ {1, . . . , h}, Qj(p(id,ψ1)) = Qj(p
(id,ψ2)). Then there exists ϕ ∈ Sh such

that p(id,ψ1) = [p(id,ψ2)](ϕ,id), which by (7), gives p(ϕ,ψ−1
1 ψ2) = p. Thus, (ϕ,ψ−1

1 ψ2) ∈ StabG(p) and by
Proposition 2, it follows that ψ−1

1 ψ2 = id, that is, ψ1 = ψ2.
As a consequence

|{pG : p ∈ P(b)}| = 1

n!
|Q(b)| =

(
n!
r(b)

)
r(b)!

n!
∏h
j=1 aj(b)!

,

and the proof is complete.

Proof of equality (13). It is well known (see, for instance, Feller (1957)) that the number W (m, k) of ways
of distributing m ∈ N indistinguishable balls into k ∈ N distinguishable boxes is given by

W (m, k) =

(
m+ k − 1

k − 1

)
.
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We also show that

W (m, k) =
∑

b∈Πk(m)

(
k
r(b)

)
r(b)!∏m

j=1 aj(b) !
(17)

Let r ∈ N with r ≤ k be fixed. We associate with each partition b ∈ Π(m) such that r(b) = r some
distributions of the m balls into the k boxes: form bunches of b1 balls, b2 balls, up to br balls exhausting
the m available balls. Note that there is only a way to do that because the balls are indistinguishable.

Now choose r boxes among the k available to distribute the r bunches of balls each in a different
box: since the boxes are distinguishable you have k choices for the first box in which you put the b1
balls, k − 1 choices for the second box in which you put the b2 balls, up to k − r + 1 choices for the box
in which you put the last bunch of br balls. Note that aj(b) ∈ N ∪ {0} counts the number of bunches
of order j for j ∈ {1, . . . ,m} : since the balls are indistinguishable the aj(b) bunches of order j may

be interchanged among themselves producing the same final result. Thus we reach
(k
r)r!∏m

j=1 aj(b) ! different

distributions associated with b ∈ Π(m) with r(b) = r. It is clear that, with r fixed, different choices of
the partition b produce different distributions. It is also clear that the varying of r leads to different
distributions, because r is the number of boxes involved in the distribution of the balls. In other words,
we have in total reached

k∑
r=1

∑
b∈Π(m),r(b)=r

(
k
r

)
r!∏m

j=1 aj(b) !
=

∑
b∈Πk(m)

(
k
r(b)

)
r(b)!∏m

j=1 aj(b) !

ways of distributing the m indistinguishable balls into the k distinguishable boxes. On the other hand,
if any distribution is given, we may think that it arises from our procedure. Namely, look into each box,
count the balls inside and extract them. Then, consider the number r of boxes containing at least one
ball and arrange the number of balls found in the boxes in a non-decreasing order reaching a partition
b ∈ Π(m), with r(b) = r. Now among the possibilities of our procedure starting from b ∈ Π(m), there is
the one consisting in putting the bunches in the boxes where they originally were. Thus, we have shown
(17).
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