
The	shape	of	the	frequency	distribu2on	allow	us	to	find	indica2ons	about	the	
mechanisms	genera2ng	randomness	and	the	factors	controlling	it.		

Agterberg,	F.P.,	2014.	Geomathema(cs:	
Theore(cal	founda(ons,	applica(ons	and	
future	developments,	Springer,	553).	

Many	random	processes	occur	in	nature.	To	make	accurate	predic2ons	it	is	
necessary	to	construct	models	that	include	“random	components”.	



Random:	A	haphazard	course	–	at	
random:	without	definite	aim,	

direc2on,	rule	or	method	

The	concept	of	“randomness”	as	used	in	
common	English,	is	different	from	its	meaning	in	

sta2s2cs.	
	

To	emphasize	this	difference,	the	word	
stochas0c	commonly	is	used	in	sta2s2cs	for	
random,	and	stochas.c	process	is	a	random	

process.	

A	stochas0c	process	is	one	that	includes	any	random	components,	and	a	process	
without	random	components	is	called	determinis.c.	

	
Because	environmental	phenomena	nearly	always	include	random	components,	the	
study	of	stochas2c	processes	is	essen2al	for	making	valid	environmental	predic(ons.	



The	world	we	live	in	consists	of	many	
iden2fiable	cause-effect	rela0onships.	

A	cause-effect	rela0onship	is	
characterised	by	the	certain	knowledge	
that,	if	a	specified	ac2on	takes	place,	a	
par2cular	result	always	will	occur,	and	
there	are	no	excep2ons	to	this	rule.	

Such	a	process	is	called	determinis0c,	because	
the	resul2ng	outcome	is	determined	completely	
by	the	specific	cause,	and	the	outcome	can	be	

predicted	with	certainty.	



To	make	accurate	
predic2ons	about	the	

system’s	future	behaviour	
Two	independent	sources	of	informa2on	

Physical	(chemical)	
knowledge	of	the	structure	of	

the	system	

Observa.onal	knowledge	about	its	
behaviour	

Conceptual	model	(theore2cal	
informa2on)	

Valida0on	of	the	
conceptual	model	with	

real	observa2ons	
(empirical	informa2on)	



A	theore2cal	model	validated	by	
empirical	observa2on	usually	
provides	a	powerful	tool	for	

predic2ng	future	behaviour	of	a	
system	or	process.	

	
However	some2me	our	knowledge	
will	be	vague	and	uncertain	or	very	

limited.	
	

Despite	our	lack	of	informa2on	it	
may	be	necessary	to	make	a	
predic2on	about	the	future	
behaviour	of	the	system.	

	
Introduc2on	to	the	concept	of	

random	variable.	



A	random	variable	X	is	a	mapping	from	Ω	to	ℝ.	



Geometry	of	sample	space	
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Random	variable:	sum	of	independent	components?	Product	of	independent	component?	
What	else?		How	environmental	factor	combines?	















The	environmental	variables	actually	observed	are	the	consequence	of	thousands	of	
events,	some	of	which	may	be	poorly	defined	or	imperfectly	understood.	

The	concentra2on	of	a	pes2cide	
observed	in	a	stream	results	from	
the	combined	influence	of	many	
complex	factors,	such	as	the	
amount	of	pes2cide	applied	to	
crops	in	the	area,	the	amount	

deposited	on	the	soils,	irriga2on,	
rainfall,	seepage	into	the	soil,	the	
nature	of	the	surroundings	terrain,	
porosity	of	the	soil,	mixing	and	

dilu2on	as	the	pes2cide	travels	to	
the	stream,	flow	rates	of	adjoining	
tributaries,	chemical	reac2ons,	

many	other	factors…	

Factors	will	change	with	2me	and	space.	



The	concentra2ons	of	an	air	pollutant	observed	in	a	city	o_en	are	influenced	by	
hundreds	or	thousands	of	sources	in	the	area,	atmospheric	variables	(wind	speed	and	
direc2on,	temperature,	weather	condi2ons,	mechanical	mixing	and	dilu2on,	chemical	
reac2ons,	interac2on	with	physical	surfaces	or	biological	systems,	other	phenomena…)	



Even	more	complex	are	the	factors	that	affect	pollutants	as	they	move	through	the	
food	chain,	from	source	to	soils,	to	plants,	to	animals,	and	to	man,	ul2mately	

becoming	deposited	in	human	2ssue	or	in	body	fluids.	



A	histogram	is	a	graphical	display	of	
tabulated	frequencies	(or	probabili2es),	

shown	as	bars;	it	shows	
what	propor2on	of	cases	fall	into	each	of	

several	adjacent	non-overlapping	
categories;	and	it	is	a	way	

of	binning	the	data.		
	

Histograms	are	extremely	useful	for	
quickly	visualizing	the	distribu2on	of	

values	in	a	variable.		
	

As	environmental	data	are	o_en	highly	
skewed,	a	histogram	will	readily	reveal	

that	skew.		
	

Distribu0on	analysis	

Moreover,	extreme	values	in	the	distribu2on	(i.e.,	poten2al	outliers)	o_en	show	up	
as	isolated	bars	on	the	tail	of	the	distribu2on.		

	



A	collec2on	of	values	that	concentrate	around	a	single	central	tendency	(the	average	
value)	and	trail	off	in	both	direc2ons	at	the	same	rate.	

	the	“normal”	distribu2on	is	
frequently	used	as	a	reference	

framework	for	
describing	data	characteris2cs	and	

is	the	basis	for	most	classical	
sta2s2cs.		

	
A	normal	distribu2on	

describes	a	data	set	that	exhibits	a	
symmetrical	“bell-	shaped”	
frequency	distribu2on.		
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The	key	premise	is	that	a	distribu0on’s	shape	reveals	informa2on	about	the	governing	
dynamics	of	the	system	that	gave	rise	to	the	distribu2on.	

Francis	Galton	(1822	–	1911)	



	Par2cles	fall	from	a	funnel	
onto	2ps	of	triangles,	where	they	are	
deviated	to	the	le_	or	to	the	right	with	
equal	probability	(0.5)	and	finally	fall	

into	receptacles.	
	

The	2p	of	a	triangle	is	at	distance	x		from	
the	le_	edge	of	the	board,	triangle	2ps	
to	the	right	and	to	the	le_	below	it	are	

placed	at	x		+	c	and	x		–	c.	
	

	The	distribu2on	is	generated	by	many	
small	random	effects	(according	to	the	

central	limit	theorem)	that	are	
Addi2ve.	

Roughly,	the	central	limit	theorem	
states	that	the	distribu2on	of	the	sum	
(or	average)	of	a	large	number	of	

independent,	iden2cally	distributed	
variables	will	be	approximately	normal,	

regardless	of	the	underlying	
distribu2on.	





Condi0ons	for	normal	
process	

Many	variables	found	in	nature	result	from	the	
summing	of	numerous	unrelated	components.	

	
When	the	individual	component	are	sufficiently	

unrelated	and	complex,	then	the	resul2ng	sum	tend	
toward	normality	as	the	number	of	component	

becomes	increasingly	large.	

Two	important	
condi2ons	for	
normal	process	

1)	Summa2on	of	many	con2nuous	
random	variables	

2)	Independence	of	these	
random	variables	

Dynamic	governing	
the	“addi2ve”	natural	

system	
Component-dominant	dynamics	





condi2ons	of	good	mixing	(i.e.,	complete	s2rring	and	
homogenisa2on)	require	2me	and	vigorous	

dynamics	in	the	system.		
	

Under	such	condi2ons,	one	sta2s2cal	theorem	
dominates	all	the	reasoning	about	the	mixing	of	the	

different	distribu2ons.	This	is	the	central	limit	
theorem.		

Scaling	laws	and	geochemical	
distribu0ons	

	
C.J.	Allègre	&	E.	Lewin,	EPSL,

132,	1995	

This	theorem	says	that,	with	a	rather	unconstrained	hypothesis,	the	average	of	an	
increasing	number	of	random	variables	tends	to	follow	the	normal	Laplace-Gauss	

probability	distribu2on,	mainly	provided	that	these	random	variables	are	altogether	
independent.	

The	prac2cal	consequence	of	this	is	that	the	mixing	of	several	distribu2ons	will	
rapidly	converge	a_er	the	addi2on	of	less	than	a	tenth	to	the	Laplace-Gauss	

normal	distribu2on.	This	is	why	in	Nature	we	observe	several	Gaussian	
distribu2ons	in	mul2ple	stage	mixing	situa2ons.	

4He/3He	histogram	in	MORB’s	(44	samples	from	all	
ocean	ridges,	away	from	hotspot	influence)	



we	will	 start	with	a	crustal	segment	of	mass	M0,	being	
uniformly	 concentrated	 in	 some	 considered	 trace	
element	with	concentra2on	C0.	

Repeated	mixing	opera2ons	produce	normal	
distribu2ons,	while	uncompleted	mixing	of	a	

small	number	of	components	produces	
bimodal,	or	even	mul2modal,	distribu2ons.	

Use	of	the	normal	
distribu2on	to	
approximate	
binomial	

probabili2es.		
	

The	Central	Limit	
Theorem	is	the	tool	
that	allows	us	to	do	

so…	



A	variate	subject	to		process	of	change	is	said	to	obey	
the	law	of	propor0onate	effect	if	the	change	in	the	

variate	at	any	step	of	the	process	is	a	random	
propor2on	of	the	previous	value	of	the	variate	

Xj	–	Xj-1	=	εj	Xj-1	

The	sand	finally	arriving	in	the	receptacles	placed	at	
the	borom	of	the	machine	forms	a	skew	histogram	
approxima2ng	to	that	given	by	a	two-parameter	

lognormal	distribu0on.	



	If	the	2p	of	a	triangle	is	at	distance	x		
from	the	le_	edge	of	the	board,	

triangle	2ps	to	the	right	and	to	the	
le_	below	it	are	placed	at	(x·c)	and	
(x/c)	for	the	log-normal,	with	c	

constant.	
	
	

	The	distribu2on	is	generated	by	
many	small	random	effects	

(according	to	the	central	limit	
theorem)	that	are	mul2plica2ve.	

	This	follows	from	the	mul2plica2ve	version	of	the	central	limit	theorem,	which	
proves	that	the	product	of	many	independent,	iden2cally	distributed,	posi2ve	

random	variables	has	approximately	a	log-normal	distribu2on.	



The	chromatographic	enrichment:	at	each	
level,	only	the	most	enriched	segment	is	re-

frac2onated.	

If	we	consider	a	por2on	of	con2nental	
crust	that	has	had	a	long	geological	

history	(e.g.,	having	suffered	successive	
orogenic,	anatexis	and	high-grade	
metamorphism	episodes)	the	final	

element	concentra2on	
distribu2ons	are	log-normal.		

	
Indeed,	seeing	as	con2nental	crust	is	
subject	to	episodic	circula2on	of	fluids,	
with	dissolu2on,	redeposi2on	and	
migra2on,	both	in	supergene	and	in	

deep-seated	condi2ons,	a	long	
geological	history	o_en	means	a	

superimposi2on	of	several	enrichment/
deple2on	episodes.	



beaker	experiment	in	which	a	
beaker	containing	a	pollutant	

at	concentra2on	c0	
undergoes	successive	stages	
of	"determinis2c"	dilu2on.	

Histogram	of	the	final	
concentra2on	in	Beaker	4	
generated	by	computer	

simula2on	of	1,000	successive	
random	dilu2on	experiments.		

	In	general,	if	m		denotes	the	number	of	successive	
dilu2ons	in	a	successive	random	dilu2on	process,	then	

the	final	concentra2on	will	be	the	product	of	the	
ini2al	concentra2on	c0		and	m		dilu2on	factors:	



	Consider	the	general	case	in	which	m	is	a	large	number.	If	we	take	logarithms	of	both	
sides	of	Equa2on:	

	logarithm	of	the	
final	concentra2on		

	sum	of	log	c0		and	the	logarithms	of	the	m	dilu2on	
factors.	If	the	dilu2on	factors	D1,	D2,	…,	Dm		are	independent	

random	variables,	then	the	logarithms	of	the	dilu2on	
factors	also	will	be	independent		random	variables.		

	
By	the	addi2ve	form	of	the	Central	Limit	Theorem,	the	
right-hand	side	of	Equa2on	is	approximately	normally	

distributed,	since	it	is	the	sum	of	m	independent	
random	variables.	



This	 conclusion	does	 not	 depend	on	 the	 nature	 of	 the	 individual	 distribu2ons	 of	 the	
dilu2on	factors	Di;		they	may	have	the	same	distribu2on	or	different	distribu2ons.	Since	
log	 Cm	 	 is	 approximately	 normally	 distributed,	 then	 Cm	 	 will	 be	 approximately	
lognormally	distributed.	

	This	analysis	parallels	development	of	the	Law	of	
Propor0onate	Effect,	which	ini2ally	was	proposed	

by	Kapteyn		to	explain	the	lognormal	
distribu2on	for	observed	biological	

variables.	

A	lognormal	process	is	one	in	which	the	random	variable	of	interest	results	from	the	
product	of	many	independent	random	variables	mul2plied	together.	

Interac0on-dominant	dynamics	are	associate	with	systems	that	entail	2ghtly	coupled	
processes	spanning	a	wide	range	of	temporal	or	spa2al	scales,	including	fractal	

systems.	
	

They	refer	to	systems	that	entail	mul0plica0ve	and/or	interdependent	feedback	
transac0ons	among	the	processes	that	govern	the	system	dynamic’s.	





Andrei	Borisovich	Vistelius	(1915–
1995),	along	with	William	Chris2an	

Krumbein	(1902–1979)	
and	John	Cedric	Griffiths	(1912–1992),	
were	dominant	figures	in	the	forma2ve	

and	development	years	of	
mathema2cal	(or	quan2ta2ve)	geology	

as	a	subdiscipline	of	geology.	



The	dis2lla2on	process:	at	each	level,	only	the	
‘residual’	segment	is	refrac2onated.	

classical	model	used	in	geochemistry	in	order	
to	explain	the	extreme	enrichments	observed	

for	some	trace	elements,	especially	in	
crystalline	rocks.	

	
The	background	of	the	model	is	a	closed	

system	in	which	a	material	crystallises	from	a	
melt.	Trace	elements	are	par22oned	between	

the	melt	and	the	crystallising	solid.		
	

Considering	one	of	these	trace	elements	known	
as	incompa2ble	(i.e.,	they	are	enriched	in	the	
melt	rela2ve	to	the	crystallising	solid),	the	

successive	melts	become	progressively	more	
enriched.	

Pareto	distribu2on	



An	inverse	power-law	distribu0on	is	a	so-called	heavy-tailed	distribu.on;	
the	heavy	tail	represents	large	magnitude,	but	rare	events.	

Thus,	it	expresses	a	salient	posi2ve	skew.	If	the	extreme	right	tail	of	an	event	distribu2on	
decays	as	a	power	func2on,	then	the	probability	of	observing	a	par2cular	event	

magnitude,	p(x),	is	the	inverse	of	the	x	value	itself,	raised	to	the	scaling	exponent	α	(alpha)	
that	is	p(x)	≈	x-α.	

The	formal	mathema2cal	equa2on	of	the	inverse	power-law	probability	density	
func2on	is	p(x)	=	b	.	x−α,	where	b	is	a	posi2ve	constant.	The	scaling	exponent	α	

quan2fies	the	rate	of	decay	of	the	distribu2on’s	tail.	

Circular,	interdependent	feedback	
transac2ons	likely	govern	systems	that	
express	inverse	power-law	scaling.	
Moreover,	power	law	behavior	is	
symptoma2c	of	self-organizing	physical	
systems	poised	near	a	cri2cal	point.	

One	of	several	model	systems	for	studying	
the	behavior	of	self-organized	and	cri2cal	

systems	is	a	simple	rice	pile…	



Actual	rice	pile	experiments	use	an	
apparatus	that	makes	detailed	

measurements	of	rice	grain	ac2vity,	as	
kernels	are	con2nuously	added	to	and	exit	

the	pile.	

Ini2ally,	small,	localized	piles	emerge	within	the	
larger	pile.	As	the	local	piles	grow,	avalanches	
unfold.	At	a	cri2cal	point,	a	holis2c	coordina2ve	
balance	emerges	throughout	the	system.	The	
balance	is	governed	by	two	compe2ng	sources	

of	constraint:	fric2on	and	iner2a	

From	that	point	on,	the	rice	pile	maintains	a	2me-invariant	organiza2on,	
even	in	the	face	of	the	constant	perturba2on	induced	by	the	intermirent	

clusters	of	inflowing	and	avalanching	rice.	



In	the	long	run,	small	avalanches	occur	frequently	and	occasional	very	large	avalanches	
unfold,	all	the	while	the	pile	maintains	a	2me-invariant	average	height	and	slope.	An	

inverse	power-law	distribu2on	neatly	summarizes	the	rela2onship	between	the	avalanche	
magnitudes	(indexed	by	grain	counts)	and	their	frequency	of	occurrence.	

When	a	rice	pile	is	in	a	cri2cal	regime	the	
effects	of	perturba2on	are	no	longer	

propor2onal	to	the	size	of	the	perturba2on—	
adding	one	new	grain	might	result	in	no	

change,	a	2ny	avalanche,	or	a	large	avalanche,	
affec2ng	the	en2re	pile.		

By	way	of	summary,	the	model	rice	pile	system	only	reaches	a	cri0cal	state	when	certain	grain	size	
and	smoothness	requirements	are	met.	For	instance,	if	one	adds	a	constraint	that	changes	the	

balance	between	iner2a	and	fric2on	so	that	one	or	the	other	term	dominates	the	interac2ons,	the	
empirical	consequences	of	feedback	are	minimized,	and	the	rice	pile	converges	on	a	characteris2c	

relaxa2on	2me.	Systems	in	which	the	effects	of	feedback	are	negligible	but	that	are	s2ll	governed	by	
mul2plica2ve	interac2ons	exhibit	lognormal	instead	of	power	law	behaviour.	



One	may	envision	a	loose	con2nuum	of	ideal	distribu2ons	spanning	the	general	
taxonomy	of	component-dominant	and	interac0on-dominant	dynamics.	

At	one	extreme,	there	is	the	
Gaussian	distribu0on,	
signature	of	weak	

unsystema2c	addi2ve	
interac2ons	among	
independent	random	

variables.	

At	the	other	extreme,	there	is	the	heavy-tailed	inverse	power-law,	the	
signature	distribu2on	of	interdependent	feedback	dynamics.	The	

moderately	skewed	lognormal	stands	between	these	two	extremes;	it	
arises	from	mul2plica2ve	interac2ons	among	independent	variables.	


