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N	>=	x	
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•  Rank	the	dat	in	creasing	order,	x1,	x2,…xn	
•  Generate	a	vector	of	values	N,	N-1,	N-2,…,N-N	
•  Plots	on	a	binary	diagram	the	couples	(x1,N),	(x2,	N-1),…(xn,0)	
•  Transform	the	axes	in	log-log	à	the	red	curve	will	be	a	straight	lineà	presence	of	

a	power	law	





DoIed	line	represents	power	law	fit.	
Purple	line	represents	log-normal	fit.	
Green	line	represents	exponenLal	fit.	



Complex	 systems	 oNen	 display	 scale	 invariance,	 i.e.	 similar	 paIerns	 appear	 over	 and	
over	 in	 many	 scales	 of	 observaLon,	 in	 a	 fractal	 manner.	 Scale	 invariance	 is	 oNen	
associated	with	a	power-law	frequency	distribuLon.		
	
For	example,	the	sizes	of	fire	events	typically	display	this	type	of	distribuLon.	This	means	
that,	for	each	fire	of	size	s,	the	amount	of	fires	whose	size	is,	say,	s/2,	does	not	depend	
on	s	(unless	s	is	extremely	large	or	small).	

a	fragment	of	a	normal	curve	doesn’t	show	
similarity	to	the	rest	of	the	curve	–	i.e.	lacks	
scale-invariance.	Smaller	sample	size	doesn’t	

represent	the	populaLon.	



Pareto	distribuLon,	 defined	by	Vilfredo	Pareto,	 is	 a	 power	 law	distribuLon	and	nothing	
like	the	normal	distribuLon.	It	is	not	symmetric.	It	doesn’t	have	a	stable	or	well-behaved	
mean	or	variance.	So	these	values	become	meaningless.	 It	has	a	 long	thick	tail,	allowing	
the	 presence	 of	 more	 extremes.	 It	 assumes	 that	 samples	 are	 interdependent.	
Furthermore,	 like	 a	 fractal,	 for	most	 parts	 it	 has	 scale-invariance,	 parts	 of	 curve	 show	
similarity	to	the	whole	(self-similarity	and	self-affinity).	

Systems	 that	 show	 a	 PareLan	
DistribuLon	 have	 interdependent,	
interacLve,	 and/or	 self-organizing	
elements	 that	 disallow	 linearity.	 The	
causal	impacts	on	the	system	may	not	
produce	 effects	 that	 are	 proporLonal:	
buIerfly	effect	on	weather	systems	for	
example	 (proporLonality	of	cause	and	
effect).	 Likewise	 we	 cannot	 calculate	
the	 impact	 of	 mulLple	 causes	 acLng	
on	 the	 system	 by	 summing	 them	 up	
(superposiLon).	
	
Lacking	 stable	 or	 well-behaved	 mean	
and	independent	elements	means	that	
these	 systems	 do	 not	 show	 a	 trend	
t ow a r d	 e q u i l i b r i um ,	 a s	 t h e	
interdependent	 and	 self-organizing	
behavior	of	the	elements	do	not	allow	
this	to	happen.	



disregard	the	interdependency	and	
interacLvity	of	elements	in	a	system.		

Wilderness	of	Pareto	
Actual	universe	is	complex	or	chaoLc	in	
behavior.	Extremes	happen	all	the	Lme	

(by	universe	Lme,	not	our	blink	of	
existence).	The	second	law	of	

thermodynamics	tells	us	that	the	
universe	doesn’t	tend	towards	

equilibrium	or	balance,	actually	it	
prefers	chaos.	

Linear	 causality	 and	 superposiLon	 are	 not	 valid	 for	most	 natural	 systems.	 Nature	 and	
society,	and	related	systems	are	all	complex,	messy,	and	unpredictable,	where	extremes	
can	happen,	 individual	elements	can	eventually	make	big	 impact,	and	the	systems	may	
not	seIle	in	a	preset	equilibrium.	



To	 survive	 in	 Pareto	world	 you	 pay	 aIenLon	 to	 extremes,	
especially	low-probability,	high	impact	extremes.		
	
Einstein	was	a	low-probability/high	impact	human	being,	so	
was	Hitler,	they	were	outliers	in	the	Gaussian	world.		
	
To	 survive	 the	 unpredictable	 world,	 where	 individual	
extremes	 can	 have	 high	 impact	 you	 know	 that	 you	 cannot	
build	 a	 perfect	 Richter	 14	 earthquake	 proof	 building.	 You	
don’t	build	 for	 robustness,	 you	build	 for	 resilience:	 shorter	
buildings,	 beIer	 evacuaLon,	 post-earthquake	 survival,	 less	
dense	ciLes,	and	etc..	

In	the	complex	system	of	nature	and	society	elements	constantly	
interact	with	and	modify	each	other	and	the	system	itself.		

Causality	is	not	linear.		



Fractal	structures	op4mize	entropy	produc4on	in	complex	dissipa4ve	systems	



(A)	Flickering	to	an	alternaLve	state	as	a	warning	signal	in	highly	
stochasLc	systems.	In	such	situaLons,	the	frequency	distribuLon	of	

states	(B	and	C)	can	be	used	to	approximate	the	shape	of	the	basins	of	
aIracLon	of	the	alternaLve	states	(D	and	E).	



The	connecLvity	and	
homogeneity	of	the	units	
affect	the	way	in	which	

distributed	systems	with	local	
alternaLve	states	respond	to	

changing	condiLons.		
	

Networks	in	which	the	
components	differ	(are	

heterogeneous)	and	where	
incomplete	connecLvity	
causes	modularity	tend	to	

have	adapLve	capacity	in	that	
they	adjust	gradually	to	

change.		



By	contrast,	in	highly	
connected	networks,	
local	losses	tend	to	be	

“repaired”	by	
subsidiary	inputs	from	
linked	units	unLl	at	a	
criLcal	stress	level	the	
system	collapses.	The	
parLcular	structure	of	
connecLons	also	has	

important	
consequences	for	the	

robustness	of	
networks,	depending	

on	the	kind	of	
interacLons	between	
the	nodes	of	the	

network.	





CriLcal	slowing	down	as	an	indicator	that	the	system	has	 lost	resilience	and	may	therefore	be	
Lpped	more	easily	into	an	alternaLve	state.	Recovery	rates	upon	small	perturbaLons	(C	and	E)	
are	slower	if	the	basin	of	aIracLon	is	small	(B)	than	when	the	aIracLon	basin	is	larger	(A).	The	
effect	of	this	slowing	down	may	be	measured	in	stochas4cally	induced	fluctua4ons	in	the	state	
of	 the	 system	 (D	 and	 F)	 as	 increased	 variance	 and	 “memory”	 as	 reflected	 by	 lag-1	
autocorrelaLon	(G	and	H).	



Different	classes	of	generic	observaLons	that	can	be	used	to	indicate	the	potenLal	
for	criLcal	transiLons	in	a	complex	system.	


