What is the Power Law?

The power law (also called the scaling law) states that a relative change in one quantity results in a proportional
relative change in another. The simplest example of the law in action is a square; if you double the length of a side

(say, from 2 to 4 inches) then the area will quadruple (from 4 to 16 inches squared). A power law distribution has
the form Y = k X9, where:

« XandY are variables of interest,
» aisthe law’s exponent,
« kisaconstant.

Any inverse relationship like Y = X is also a power law, because a change in one quantity results in a negative
change in another.

Y = kX% Y=kX?
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Vilfredo Pareto

15 July 1848
Paris, France

19 August 1923 (aged 75)
Céligny, Switzerland
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Basic Power Law

Frequency of Phenomenon

n
Examples: earthquakes,
storms, number of sales by
individual sales reps, etc.
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Bell Curve

Most nodes have
the same sumber of links
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It shows straight line when a log-log plotted, as
In(p(x))=c—aln(x)

Normal It exponentiate on both sides such that p(x), that is the
Distribution probability observed item having size ‘x’, given by

7

N >= x

p(x)=Cx

Power Law
normalization

D l St” b Utl on constant (probabilities over ower. ey exponent
! all x must sum to 1)

* Rank the dat in creasing order, Xy, X,,...X,,

* Generate a vector of values N, N-1, N-2,...,N-N

* Plots on a binary diagram the couples (x;,N), (x,, N-1),...(x,,0)

* Transform the axes in log-log = the red curve will be a straight line—> presence of
a power law
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Dotted line represents power law fit.
Purple line represents log-normal fit.
Green line represents exponential fit.
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Complex systems often display scale invariance, i.e. similar patterns appear over and
over in many scales of observation, in a fractal manner. Scale invariance is often
associated with a power-law frequency distribution.

For example, the sizes of fire events typically display this type of distribution. This means
that, for each fire of size s, the amount of fires whose size is, say, s/2, does not depend
on s (unless s is extremely large or small).

a fragment of a normal curve doesn’t show
similarity to the rest of the curve —i.e. lacks
scale-invariance. Smaller sample size doesn’t
represent the population.
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Pareto distribution, defined by Vilfredo Pareto, is a power law distribution and nothing
like the normal distribution. It is not symmetric. It doesn’t have a stable or well-behaved
mean or variance. So these values become meaningless. It has a long thick tail, allowing
the presence of more extremes. It assumes that samples are interdependent.
Furthermore, like a fractal, for most parts it has scale-invariance, parts of curve show

similarity to the whole (self-similarity and self-affinity).

Values interdependent and interactive

No stable mean or variance

scale-invariance

Long fat tail

Main Characteristics of Power Distribution

Systems that show a Paretian
Distribution have interdependent,
interactive, and/or self-organizing
elements that disallow linearity. The
causal impacts on the system may not
produce effects that are proportional:
butterfly effect on weather systems for
example (proportionality of cause and
effect). Likewise we cannot calculate
the impact of multiple causes acting
on the system by summing them up
(superposition).

Lacking stable or well-behaved mean
and independent elements means that
these systems do not show a trend
toward equilibrium, as the
interdependent and self-organizing
behavior of the elements do not allow
this to happen.



25 X 25

Comfort zone within +2 SD

disregard the interdependency and
interactivity of elements in a system.

Wilderness of Pareto
Actual universe is complex or chaoticin
behavior. Extremes happen all the time
(by universe time, not our blink of
existence). The second law of
thermodynamics tells us that the
universe doesn’t tend towards
equilibrium or balance, actually it
prefers chaos.

Linear causality and superposition are not valid for most natural systems. Nature and
society, and related systems are all complex, messy, and unpredictable, where extremes
can happen, individual elements can eventually make big impact, and the systems may

not settle in a preset equilibrium.



To survive in Pareto world you pay attention to extremes,
especially low-probability, high impact extremes.

Einstein was a low-probability/high impact human being, so
was Hitler, they were outliers in the Gaussian world.

To survive the unpredictable world, where individual
extremes can have high impact you know that you cannot
build a perfect Richter 14 earthquake proof building. You
don’t build for robustness, you build for resilience: shorter
buildings, better evacuation, post-earthquake survival, less
dense cities, and etc..

In the complex system of nature and society elements constantly
interact with and modify each other and the system itself.
Causality is not linear.



Fractal structures optimize entropy production in complex dissipative systems

TIME, STRUCTURE AND FLUCTUATIONS

Nobel Lecture, 8 December, 1977 "ya Pl’igogine
by - oy
ILYA PRIGOGINE

Université Libre de Bruxelles, Brussels, Belgium
and the University of Texas at Austin, Austin, Texas, USA

« Dissipative structures are
organized arrangement in non-
equilibrium systems that are
dissipating energy and thereby
generate entropy

rJ_

Born liya Romanovich Prigogine
25 January 1917
Moscow, Russian Empire

Died 28 May 2003 (aged 86)
Brussels, Belgium
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State of the system State of the system

(A) Flickering to an alternative state as a warning signal in highly
stochastic systems. In such situations, the frequency distribution of
states (B and C) can be used to approximate the shape of the basins of
attraction of the alternative states (D and E).
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+

Local losses
+

Gradual change

The connectivity and
homogeneity of the units
affect the way in which
distributed systems with local
alternative states respond to
changing conditions.

Networks in which the
components differ (are
heterogeneous) and where
incomplete connectivity
causes modularity tend to
have adaptive capacity in that
they adjust gradually to
change.
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Critical transitions

By contrast, in highly
connected networks,
local losses tend to be
“repaired” by
subsidiary inputs from
linked units until at a
critical stress level the
system collapses. The
particular structure of
connections also has
important
consequences for the
robustness of
networks, depending
on the kind of
interactions between
the nodes of the
network.
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A High resilience B Low resilience

System state
System state

Time Time

State (t+1)
State (t+1)

State (t) State (t)

Critical slowing down as an indicator that the system has lost resilience and may therefore be
tipped more easily into an alternative state. Recovery rates upon small perturbations (C and E)
are slower if the basin of attraction is small (B) than when the attraction basin is larger (A). The
effect of this slowing down may be measured in stochastically induced fluctuations in the state
of the system (D and F) as increased variance and “memory” as reflected by lag-1
autocorrelation (G and H).



Different classes of generic observations that can be used to indicate the potential
for critical transitions in a complex system.

Observation Indicative of Prediction Options for Action
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