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This chapter portrays how to make sense of gathered data before performing the 
formal statistical inference. The covered topics are types of data, how to visualize 
data, how to summarize data into few descriptive statistics (i.e., condensed numeri-
cal indices), and introduction to some useful probability models.

1.1  Types of Data

Typical types of data arising from clinical studies mostly fall into one of the follow-
ing categories.

Nominal categorical data contain qualitative information and appear to discrete 
values that are codified into numbers or characters (e.g., 1=case with a disease diag-
nosis, 0 = control; M = male, F = female).

Ordinal categorical data are semi-quantitative and discrete, and the numeric cod-
ing scheme is to order the values such as 1 = mild, 2 = moderate, and 3 = severe. 
Note that the value of 3 (severe) does not necessarily be three times more severe 
than 1 (mild).

Count (number of events) data are quantitative and discrete (i.e., 0, 1, 2 …).
Interval scale data are quantitative and continuous. There is no absolute 0 and the 

reference value is arbitrary. Particular examples of such data are temperature values 
in °C and °F.

Ratio scale data are quantitative and continuous, and there is the absolute 0. 
Particular examples of such data are body weight and height.

In most cases the types of data usually fall into the above classification scheme 
shown in Table 1.1 in that the types of data can be classified into either quantitative 
or qualitative, and discrete or continuous. Nonetheless, some definition of the data 
type may not be clear and among which the similarity and dissimilarity between the 
ratio scale and interval scale may be such ones that need further clarification.
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Ratio scale: Two distinct values of the ratio scale are ratio-able. For example, the 
ratio of two distinct values of a ratio scale x, x1/x2 = 2 for x1 = 200 and x2 = 100, can 
be interpreted as “twice as large.” Blood cholesterol level, measured as the total 
volume of cholesterol molecule in a certain unit, is such an example in that if person 
A's cholesterol level to person B's cholesterol level ratio is 2, then we will be able to 
say that person A's cholesterol level is doubly higher than that of person B. Other 
such examples are lung volume, age, and disease duration.

Interval scale: If two distinct values of quantitative data were not ratio-able, then 
such data are interval scale data. Temperature is a good example in that there are 
three temperature systems, i.e., Fahrenheit, Celsius, and Kelvin. Kelvin system even 
has its absolute 0 (there is no negative temperature in Kelvin system). For example, 
200 °F is not a temperature that is twice higher than 100 °F. We can only say that 
200° is higher by 100° (i.e., the displacement between 200° and 100° is 100° in the 
Fahrenheit measurement scale).

1.2  Description of Data Pattern

1.2.1  Distribution

A distribution is a complete description of how large the occurring chance (i.e., 
probability) of a unique datum or certain range of data is. The following two expla-
nations will help you grasp the concept. If you keep on rolling a die, you expect to 
observe 1, 2, 3, 4, 5, or 6 equally likely, i.e., a probability for each unique outcome 
value is 1/6. We say “a probability of 1/6 is distributed to the value of 1, 1/6 is dis-
tributed to 2, 1/6 to 3, 1/6 to 4, 1/6 to 5, and 1/6 to 6, respectively.” Another example 
is that if you keep on rolling a die many times, and each time you say “a success” if 
the observed outcome is 5 or 6 and say “a failure” otherwise, then your expected 
chance to observe a success is 1/3 and that of a failure is 2/3. We say “a probability 
of 1/3 is distributed to the success and 2/3 is distributed to the failure”. In real life, 
there are many distributions that cannot be verbalized as simply as these two exam-
ples, which require descriptions using sophisticated mathematical expressions.

Table 1.1 Classifications of data types

Qualitative Quantitative

Discrete Nominal categorical  
(e.g., M=male, F=female)

Ordinal categorical (e.g., 1=mild, 2=moderate, 
3=severe)

Count (e.g., number of incidences 0, 1, 2, 3, …)
Continuous N/A Interval scale (e.g., temperature)

Ratio scale (e.g., weight)
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Let’s discuss how to describe the distributions arising from various types of data. 
One way to describe a set of collected data is to make description about the distribu-
tion of relative frequency for the observed individual values (e.g., what values are 
how much common and what values are how much less common). Graphs, simple 
tables, or a few summary numbers are commonly used.

1.2.2  Description of Categorical Data Distribution

A simple tabulation, aka frequency table, is to list the observed count (and propor-
tion in percentage value) for each category. A bar chart (see Figs. 1.1 and 1.2) is a 
good visual description of where the horizontal axis defines the categories of the 
outcome and the vertical axis shows the frequency of each observed category. The 
size of each bar in the Figures is the actual count. It is also common to present the 
relative frequency (i.e., proportion of each category in percentage value).

1.2.3  Description of Continuous Data Distribution

Figure 1.3 is a listing of white blood cell (WBC) counts of 31 patients diagnosed with 
a certain illness listed by the patient identification number. Does this listing itself tell 
us the group characteristics such as the average and the variability among patients?

Fig. 1.1 Frequency table  
and bar chart for describing 
nominal categorical data

1.2  Description of Data Pattern



Fig. 1.2 Frequency table  
and bar chart for describing 
ordinal data

Fig. 1.3 List of WBC raw 
data of 31 subjects
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How can we describe the distribution of these data, i.e., how much of the occur-
ring chance is distributed to WBC=5,200, how much to WBC=3,100 …, and etc.? 
Such a description may be very cumbersome. As depicted in Fig. 1.4, the listed full 
data in ascending order can be a primitive way to describe the distribution, but it 
does not still describe the distribution. An option is to visualize the relative frequen-
cies for grouped intervals of the observed data. Such a presentation is called histo-
gram. To create a histogram, one will first need to create equally spaced WBC 
categories and count how many observations fall into each category. Then the bar 
graph can be drawn where each bar size indicates the relative frequency of that par-
ticular WBC interval category. This may be a daunting task. Rather than covering 
the techniques to create the histogram, next section introduces an alternative option.

1.2.4  Stem-and-Leaf

The Stem-and-Leaf plot requires much less work than creating the conventional 
histogram while providing the same information as what the histogram does. This is 
a quick and easy option to sketch a continuous data distribution.

Let’s use a small data set for illustration, and then revisit our WBC data example 
for more discussion (Fig. 1.10) after we become familiar to this method. The fol-
lowing nine data points: 12, 32, 22, 28, 26, 45, 32, 21, and 85, are ages (ratio scale) 
of a small group. Figures 1.5, 1.6, 1.7, 1.8, and 1.9 demonstrate how to create the 
Stem-and-Leaf plot of these data.

Minimum Value

Median Value

Maximum Value

Fig. 1.4 List of 31 individual 
WBC values in ascending 
order
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Fig. 1.5 Step-by-step illustration of creating a Stem-and-Leaf plot

Fig. 1.6 Illustration of 
creating a Stem-and-Leaf plot

Fig. 1.7 Two Stem-and-Leaf 
plots describing the same 
data
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Fig. 1.8 Common mistakes 
in Stem-and-Leaf

Fig. 1.9 Two Stem-and-Leaf 
plots describing the same 
distribution by ascending and 
descending orders

The main idea of this technique is a quick sketch of the distribution of an observed 
data set without computational burden. Let’s just take each datum in the order that 
it is recorded (i.e., the data are not preprocessed by other techniques such as sorting 
by ascending/descending order) and plot one value at a time (see Fig. 1.5). Note that 
the oldest observed age is 85 years which is much greater than the next oldest age 
45 years, and the unobserved stem interval values (i.e., 50s, 60s, and 70s) are placed. 
The determination of the number of equally spaced major intervals (i.e., number of 
stems) can be subjective and data range-dependent.

As presented in Fig. 1.10, the distribution of our WBC data set is described by 
the Stem-and-Leaf plot. Noted observations are: most values lie between 3,000 and 
4,000 (i.e., mode); the contour of the frequency distribution is skewed to the right 
and the mean value did not describe the central location well; and the smallest and 
the largest observations were 1,800 and 11,200, respectively.

1.2  Description of Data Pattern
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1.3  Descriptive Statistics

In addition to the visual description such as Stem-and-Leaf plot, further description 
of the distribution by means of a few statistical metrics is useful. Such metrics are 
called descriptive statistics which indicate where most of the data values are con-
centrated and how much the occurring chance distribution is scattered around that 
concentrated location.

1.3.1  Statistic

A statistic is a function of data, wherein a function usually appears as a mathematical 
expression that takes the observed data and reduces to a single summary metric, e.g., 
mean = sum over all data divided by the number of sample size. Note that the word 
mathematical expression is interchangeable with formula. As the word formula is usu-
ally referred in a plug-and-play setting, this monograph names it mathematical expres-
sion, and the least amount of the expression is introduced only when necessary.

1.3.2  Central Tendency Descriptive Statistics  
for Quantitative Outcomes

In practice, there are two kinds of descriptive statistics used for quantitative out-
comes of which the one kind is the metric indices for characterizing the central 
tendency and the second is for the dispersion. The mean (i.e., sum of all observa-
tions divided by the sample size), the median (i.e., the midpoint value), and the 
mode (i.e., the most frequent value) are the central tendency descriptive statistics.

Stem-Leaf* Frequency**
11-2 1
10-
9-3 1
8-19 2
7-5 1
6-115 3
5-289 3
4-011358 6
3-01344577889 11
2-68 2
1-8 1

*Multiply Stem-Leaf by 1000 Multiply Stem-Leaf by 1000

** Frequency counts annotation is not a part of the Stem-and-Leaf and
unnecessary but presented to aid the reading.

Fig. 1.10 Presentation of WBC data of 31 subjects using Stem-and-Leaf
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1.3.3  Dispersion Descriptive Statistics for Quantitative 
Outcomes

The range (i.e., maximum value–minimum value) and interquartile range (i.e., 
75th–25th percentile) are very simple to generate by which the dispersion of a data 
set is described. Other commonly used dispersion descriptive statistics are variance, 
standard deviation, and coefficient of variation, and these describe the dispersion of 
data (particularly when the data are symmetrically scattered around the mean), and 
the variance and standard deviation are important statistics that play a pivotal role in 
the formal statistical inferences which will be discussed in Chap. 2.

1.3.4  Variance

The variance of a distribution, denoted by σ2, can be conceptualized an average 
squared deviation (explained in detail below) of the data values from their mean. 
The more dispersed the data are, the more the variance increases. It is common that 
standard textbooks present the definitional and computational mathematical expres-
sions. Until the modern computer was not widely available, finding a shortcut for 
manual calculations and choosing a right tool for a quick and easy calculation had 
been a major issue of statistical education and practice. Today’s data analysis utiliz-
ing computer software and knowledge about the shortcut for manual calculations is 
not important. Nonetheless, understanding the genesis of definitional expression, at 
least, is important. The following is the demonstration of the definitional expression 
of the variance.
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 notation on the numerator is to sum over all individual terms, 

x xi -( )2 , for i = 1 to n (e.g., n = 31 for the WBC data). The term x xi -( )2  for i is 
the squared deviation of an individual data value from its mean and is depicted by 
d2 in the following visual demonstration.
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After this summation is carried out, the resulting numerator is then divided by 
the divisor n – 1 (note that the divisor will be 30 for the WBC data example).

As depicted in Fig. 1.11, positive deviations (i.e., x xi - > 0 ) are presented by 
horizontal dashed line segments, and negative deviations (i.e., x xi - < 0 ) by dashed 
ones. The length of each line segment represents how far each datum is displaced 
above or below the mean. How do we cumulate and preserve the deviations of the 
entire group? If straight summation is considered, the positive and negative indi-
vidual deviations may get cancelled out each other and the resulting sum may not 
retain the information. Thus the straight summation is not a great idea. The indi-
vidual deviations are squared first then summed up so that the resulting sum can 
retain the information (i.e., positive and negative deviations) although the retained 
quantity is not in the original scale. Then, the sum of squared deviations is divided 
by n – 1. If it had been divided by n, it could have been literally the average squared 
deviation. Instead, the used divisor is n-1. Normally an average is obtained by divid-
ing the sum of all values by the sample size n. However, when computing the vari-
ance using sample data, we divide by n-1, not by n. The idea behind is the following. 
If the numerator (i.e., sum of squared deviations from the mean) is divided by the 
sample size, n, then such a calculation will slightly downsize the true standard devi-
ation. The reason is that when the deviation of each individual data point from the 
mean was obtained, the mean is usually not externally given to us but is generated 
within the given data set and thus the actually observed deviations could become 
slightly smaller than what it should be (i.e., referencing to an internally obtained 
mean value). So, in order to make an appropriate adjustment for the final averaging 

Fig. 1.11 Definitional formula of variance
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step, we divide it by n -1. You may be curious why it has to be 1 less than the sample 
size, not 2 less than, or something else. We can at least show that 2 less cannot 
handle when the sample size is 2, and 3 less cannot handle the sample size of 3. 
Unlike other choices, n-1 (i.e., 1 less than the sample size) can handle any sample 
size because the smallest sample size that will have a variance is 2 (obviously there 
is no variance for a single observation)? There is a formal proof that the divisor of 
n-1 is the best for any sample size but it is not necessary to cover it in full detail 
within this introductory course setting.

The computed variance of the WBC data set is [(5200 - 4900)2 + (3100 - 4900)2 
+ … + (6500 - 4900)2]/(31-1) = 4778596. Note that variance’s unit is not the same 
as the raw data unit (because of the squaring the summed deviations).

1.3.5  Standard Deviation

The standard deviation of a distribution, denoted by σ, is the square root of variance 
(i.e., variance), and the scale of the standard deviation is the same as that of the 
raw data. The greater the data are dispersed the standard deviation increases. If the 
dispersed data form a particular shape (e.g., bell curve), then one standard deviation 
unit symmetrically around (i.e., above and below) the mean will cover about middle 
two-thirds of the data range value (see standard normal distribution in Sect. 1.4.3).

 

1.3.6  Property of Standard Deviation After Data 
Transformations

The observed data often require transformations for analysis purposes. One exam-
ple is to shift the whole data set to a new reference point by simply adding a positive 
constant to or subtracting it from the raw data values. Such a simple transformation 
does not alter the distances between the individual data values thus the standard 
deviation remains unchanged (Fig. 1.12).

1.3  Descriptive Statistics
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Another example is to change scale of the data without- or with changing 
the reference point. In general, if data x (a collection of x1, x2, …, xn) of which the 
mean = μ and standard deviation = σx is transformed to y = a·x+b, where a is the 
scaling constant and b is the reference point, then the mean of y remains the same 
of y = a·(mean of x) + b = a·μ + b and the standard deviation y, σy = a·σx. Note that 
adding a constant does not alter the original standard deviation, and only the scal-
ing factor does.

The following example is to demonstrate how the means and standard deviations 
are changed after transformation. The first column lists a set of body temperature of 
eight individuals recorded in °C, the second column lists their deviations from the 
normal body temperature 36.5 °C (i.e., d = C – 36.5), and the third column lists their 
values in °F (i.e., F = 1.8C + 32). The mean of the deviations from the normal tem-
perature is 0.33 (i.e., 0.33° higher than the normal temperature on average), which 
can be reproduced by the simple calculation of the difference between the two mean 
values 36.83 and 36.5 without having to recalculate the transformed individual data. 
The standard deviation remains the same because this transformation was just a 
shifting of the distribution to the reference point 32. The mean of the transformed 
values to °F scale is 98.29, which can be obtained by the simple calculation of 1.8 
times the mean of 36.83 then add 32 without having to recalculate using the trans-
formed individual observations. This transformation involves not only the distribu-
tion shifting but also the rescaling where the rescaling was to multiply the original 
observations by 1.8 prior to shifting the entire distribution to the reference point of 
32. The standard deviation of the data transformed to °F scale is 1.12, which can be 
directly obtained by multiplying 1.8 to the standard deviation of the raw data in °C 
scale, i.e., 1.12 = 0.62 ×1.8 (Fig. 1.13).

Fig. 1.12 Shifted data without changing dispersion
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1.3.7  Other Descriptive Statistics for Dispersion

Figure 1.14 illustrates the asymmetrical distribution of the WBC that was illustrated 
in Fig. 1.10. The mean, median, and mode are not very close to each other.

What would be the best description of the dispersion? The standard deviation = 
2,186 which can be interpreted that a little less than thirds of the data are within 

Body Temperature °C
(Raw Data)

Body Temperature
Deviation from 36.5 °C

Reference Point
(Transformation:

d = C - 36.5)

Body Temperature
°F

(Transformation:
F = 1.8C + 32)

36.40 -0.10 97.52
36.50 0.00 97.70
36.50 0.00 97.70
36.50 0.00 97.70
36.60 0.10 97.88
37.20 0.70 98.96
38.10 1.60 100.58

Stem
and Leaf

38.(0~4) 1
237.(5~9)

37.(0~4)
36.(5~9) 5556
36.(0~4) 4

1.(5~9)
1.(0~4)
0.(5~9) 7

6

0.(0~4) 0001
1-0.(0~4)

100.
99. 0*

6

0005
98.
97.

* 98.96 was rounded to
99.0

Mean 36.83 0.33 (subtract 36.5
from the original
mean)
0.62 (recalculation is
unnecessary)

98.29

Std. Dev. 0.62 1.12 (0.62 was
multiplied by .8)

Fig. 1.13 Scale invariant and scale variant transformations

Stem-Leaf* Frequency**

11-2 1
10-
9-3 1
8-19 2
7-5 1
6-115 3
5-289 3
4-011358 6
3-01344577889 11
2-68 2
1-8 1

*Multiply Stem-Leaf by 1000 Multiply Stem-Leaf by 1000

Mean: 4910
Median: 4100 
Mode: 3500~3999 

Fig. 1.14 Asymmetrical distribution depicted by a Stem-and-leaf plot
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2,714 ~ 7,086 (i.e., within the interval of mean ± standard deviation) if the contour 
of the distribution had appeared to a bell-like shape. Because the distribution was 
not symmetrical, the interquartile range may describe the dispersion better than the 
standard deviation. The 25th and 75th quartiles are 3,400 and 6,100, respectively, 
and this tells literally that the half of the group is within this range and the width of 
the range is 2,700 (i.e., Inter-Quartile Range = 6,100 - 3,400 = 2,700).

1.3.8  Dispersions Among Multiple Data Sets

Figure 1.15 presents two data sets of the same measurement variable in two sepa-
rate groups of individuals. The two group means are the same but the dispersion 
of the first group is twice as the dispersion of the second group. The difference in 
the dispersions is not only visible but is also observed in the standard deviations 
of 10 and 5.

The comparison of the dispersions may become less straightforward in certain 
situations. What if the two distributions are from either the same characteristics 
(e.g., body temperatures) from two distinct groups or different characteristics mea-
sured in the same unit but of the same individuals (e.g., fat mass and lean mass in 
the body measured in grams, or systolic blood pressure (SBP) and diastolic blood 
pressure measured in mmHg). In Fig. 1.16, can we say the SBP values are more 
dispersed than DBP solely by reading the two standard deviations? Although the 
standard deviation of SBP distribution is greater than that of DBP, the mean SBP is 
obviously also greater and the interpretation of the standard deviations needs to take 
into account the magnitudes of the two means. Coefficient of Variation (CV) is a 
descriptive statistic that is applicable for such a circumstance by converting the 
standard deviation to a universally comparable descriptive statistic.

CV is defined as a standard deviation to mean ratio expressed in percent scale 
(i.e., CV = 100 × standard deviation/mean). This is useful for comparing the disper-
sions of two or more distributions of the same variable in two or more different data 
sets of the means are not identical, or those of two or more different variables mea-
sured in the same unit in the same data set. As demonstrated in Table 1.2 

Fig. 1.15 Two data sets with unequal dispersions and equal means
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demonstrates the situation of comparing the dispersions of two different character-
istics measured from the same individuals in the same unit. The standard deviation 
of the Fat Mass in grams is smaller than that of the Lean Mass in grams of the same 
150 individuals, but the CV of the Fat Mass is greater describing that the Fat Mass 
distribution is more dispersed (CV 43.0 % compared to 14.4 %).

Table 1.3 demonstrates the situation of comparing the dispersions of the same 
characteristic measured from the same individuals. The standard deviations appeared 
greater within Group 1 but the CV was greater within Group 2 describing that the 
dispersion of fat Mass was greater within Group 2.

1.3.9  Caution to CV Interpretation

CV is a useful descriptive statistic to compare dispersions of two or more data sets 
when the means are different across the data sets. However, the CV should be 

Fig. 1.16 Two data sets with unequal dispersions and unequal means

Table 1.2 Application of CV to compare the dispersions of two different characteristics, measured 
in the same unit, of the same individuals

N Mean Standard deviation CV (%)

Body fat mass (g) 160 19,783.28 8,095.68 40.9
Body lean mass (g) 160 57,798.63 8,163.56 14.1

Table 1.3 Application of CV to compare the dispersions of the same characteristics, measured in 
the same unit, of two distinct groups

N Mean Standard deviation CV (%)

Body fat mass (g) Group 1 80 21,118.04 8,025.78 38.0
Group 2 80 18,448.53 7,993.01 43.3

1.3  Descriptive Statistics



16

applied carefully. When the dispersions of two distributions are compared, we need 
to ensure that the comparison is appropriate. A comparison of the dispersions of the 
same or compatible kinds is appropriate (e.g., CVs of body weights obtained from 
two separate groups, or CVs of SBP and DBP obtained from the same group of 
persons). However, a comparison of two dispersions of which one of the two is a 
result of a certain transformation of the original data is not appropriate. For exam-
ple, in the case of the body temperature example in 1.3.6 the CV of the original °C 
is 100×(0.62/36.82) = 1.68 % and the CV of the transformed data via °C – 36.5 is 
100×(0.62/0.33) = 187.88 %. Did the dispersion increase this large after the whole 
distribution simple shift? No, the dispersion did not differ and the standard devia-
tions remained the same. However, the CV of °F scale data distribution is different 
from the original °C scale.

1.3.10  Box and Whisker Plot

Unlike the Stem-and-Leaf plot, this plot does not show the individual data values 
explicitly. If the Stem-and-Leaf plot is seen from a bird’s eye view (Fig. 1.17), then 
the resulting description can be made as shown in the right hand side panel of 
Fig. 1.18 which is  depicted separately in Fig. 1.19.

Stem-Leaf
11-2
10-
9-3
8-19
7-5
6-115
5-289
4-011358
3-01344577889
2-68
1-8

Point of view

Fig. 1.17 View of Stem-and- 
Leaf from above

11-2
10-
9-3
8-19
7-5
6-115
5-289
4-011358
3-01344577889
2-68
1-8

Fig. 1.18 Relationship 
between Stem-and-Leaf and 
Box-and-Whisker plots
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Among the several advantages of this technique, the unique feature is to  visualize 
the interval where the middle half of the data exist (i.e., the interquartile range) by a 
box, and the interval where the rest of the data by the whiskers (Fig. 1.19).

If there are two or more modes, the Box-and-Whisker plot cannot fully 
 characterize such a phenomenon, but the Stem-and-Leaf does (see Fig. 1.20).

Fig. 1.19 Box-and-Whisker 
plot of a skewed data set

12500

10000

7500

5000
ub

c

2500

0

Fig. 1.20 Stem-and-Leaf and Box-and-Whisker plots of a skewed data set

56667998

8 34

7 9

7

6

6

5 5788899

001133
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5

4 7

24
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Upper quartile is around 90

There are two modes and
the modes can be depicted
by the stem-and-leaf plot,
but such a phenomenon is
not describable the box-
and-whisker plot
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Median=70

Lower quartile is around 60
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1.4  Descriptive Statistics for Describing Relationships 
Between Two Outcomes

1.4.1  Linear Correlation Between Two Continuous Outcomes

Previous sections discussed how to summarize the data observed from a single vari-
able (aka univariate). This section discusses how to describe a relationship between 
a set of pairs of continuous outcomes (e.g., a collection of heights measured from 
biological mother and her daughter pairs). The easiest way to describe such a pat-
tern is to create a scatter plot of the paired data (Fig. 1.21). Correlation coefficient, 
ρ, is a descriptive statistic that summarizes the direction and strength of a linear 
association. The correlation coefficient exists between -1 and 1 (geometry of the 
correlation coefficient is demonstrated by Fig. 1.22). Negative ρ values indicate a 
reverse linear association between the paired variables and positive ρ values 

Fig. 1.21 Linear 
relationships between two 
continuous outcomes

Fig. 1.22 Geometry of correlation coefficient

1 Warming Up: Descriptive Statistics and Essential Probability Models
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indicate the same directional linear association. For example, ρ between x and y, ρxy 
= -0.9 indicates a strong negative linear association between x and y, and ρxy = 0.2 
indicates a weak positive linear association. Note that the correlation coefficient 
measures only a linear association. Figure 1.23 illustrates a situation that the corre-
lation coefficient is 0 but there is a clear relationship between the paired variables. 
The computation may be a burden if done manually. Computer software is widely 
available, and even Excel can be used (see Chap. 7 for details).

1.4.2  Contingency Table to Describe an Association  
Between Two Categorical Outcomes

Qualitative categorical outcomes cannot be summarized by the mean and standard 
deviation value of the observed categories even if the categories were numerically 
coded (i.e., mean value of such a codified data is meaningless). It is also true that an 
association of a pair of the numerically categorized outcomes cannot be assessed by 
the correlation coefficient because the calculation of the correlation coefficient 
involves the mean value and deviations from the means (see Fig. 1.12). A scatter 
plot is not well applicable for a visual description between a pair of categorical 
outcomes. In order to describe the pattern of a set of pairs obtained from two cate-
gorical outcomes, the contingency table is used (Fig. 1.24, where each cell number 

Fig. 1.23 Nonlinear 
relationship between two 
continuous outcomes

Fig. 1.24 Patterns of association between two binary outcomes
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is the observed frequencies of the study subjects). The number appeared in each cell 
(i.e., cell frequency) provides you the information about the association between 
two categorical variables. Figure 1.24 illustrates the perfect, moderate, and com-
plete absence of the association between a disease status and a deleterious risk fac-
tor. Figure 1.25 illustrates what data pattern is to be recognized for a summary 
interpretation. There are 20 % (i.e., 10 out of 50) of mothers who are ≤20 years old 
delivered low weight babies, whereas only 10 % (i.e., 15 out of 150) of the > 20 
years old mothers did so. It is also noted that the 20 % is greater than the marginal 
proportion of the ≤2,500 g (i.e., 12.5 %) and 10 % is lower than the marginal. This 
observed pattern is interpreted as a twofold difference in proportion of ≥2,500 g 
between the two mother groups.

1.4.3  Odds Ratio

Odds ratio (OR) is a descriptive statistic that measures the direction and strength of 
an association between two binary outcomes. It is defined as a ratio of two odds. 
The odds is the ratio between the probability of observing an event of interest, π, 
and the probability of not observing that event, 1- π (i.e., odds = π/(1- π)). In practi-
cal application, the odds can be calculated simply by taking the ratio between the 
number of events of interest and the number of events not of interest (e.g., number 
of successes divided by number of failures). Thus the odds ratio associated with a 
presented risk factor versus the absence of the risk factor for the outcome of interest 
is defined as [π 1/(1- π 1)]/[π 2/(1- π 2)]. The odds ratio ranges from 0 to infinity of 
which the value between 0 and 1 is a protective effect of the factor (i.e., the outcome 
is less likely to happen within the risk group), 1 being neutral, and greater than 1 is 
a deleterious effect of the risk factor (i.e., the outcome is less likely to happen within 
the risk group). According to the definition, the odds ratio associated with the moth-
er’s age ≤ 20 years versus > 20 years for the offspring’s birth weight ≤ 2,500 g is 
[0.2/(1-0.2)]/[0.1/(1-0.1)] = 2.25. The same result is obtained simply by the cross 
product ratio, i.e., [(10/40)]/[(15/135)] = (10 × 135)/(40 × 15) = 2.25. The interpre-
tation of this is that the odds to deliver the offspring with ≤ 2,500 g of birth weight 
among the mothers age ≤ 20 years is 2.25 times of that of the mothers >20 years. It 

Fig. 1.25 Exploratory data summary by a contingency table
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is a common mistake to make the following erroneous interpretation that the risk of 
having low birth weight delivery is 2.25 times greater. By definition, the risk is the 
probability whereas the odds ratio is a ratio of two odds.

1.5  Two Useful Probability Distributions

Two important probability distributions are introduced here, which are very instru-
mental for the inference (see Chap. 2 for inference). A distribution is a complete 
description of a set of data that species the domain of data occurrences and the cor-
responding relative frequency over the domain of occurrence. Note that the object 
being distributed is the relative frequency. A probability model (e.g., Gaussian, 
binomial model) is the underlying mathematical rule (i.e., mechanism) that gener-
ates the data being observed. If you had thought that a distribution is just a curve, or 
histogram (i.e., visually described data scatter), you would need to revise it.

Two widely applied and very useful models in statistical inference are the 
Gaussian distribution, a continuous data generation mechanism, and binomial dis-
tribution, a count of binary event data generation mechanism (i.e., number of pres-
ence or absence of a certain characteristic).

1.5.1  Gaussian Distribution

The Gaussian distribution describes the continuous data generation mechanism, and 
it has important mathematical properties on which the applications of event proba-
bility computations and the inference (see Chap. 2) rely. The name Gaussian is 
originated by the mathematician Gauss who derived its mathematical properties. Its 
common name is Normal Distribution because the model describes well the proba-
bility distributions of typical normal behaviors of continuous outcomes (aka bell 
curve). This distribution has a unique characteristic that the mean, median, and 
mode are identical, and the data are largely aggregated around the central location 
and gradually spread symmetrically. A particular Gaussian distribution is com-
pletely characterized by the mean and standard deviation, and its notation is N (μ, 
σ2), where μ and σ denote the values of mean and standard deviation (thus σ2 denotes 
the variance), respectively.

1.5.2  Density Function of Gaussian Distribution

Density is a concentrated quantity on a particular value of the possible data range of 
a continuous outcome, and this quantity is proportional to the probability of occur-
rence within a neighborhood of that particular value. Figure 1.26 describes the 
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density of a Gaussian distribution with mean μ and standard deviation σ. The height 
of the symmetric bell curve is the size of density (not the actual probability) concen-
trated over the values of the continuous outcome x. The value where the density 
peaks and the degree of dispersion are completely determined by the mean and 
standard deviation of the distribution, respectively. The area under the entire density 
curve becomes 1. As depicted in the figure the shaded area is the probability that the 
x values exist between the mean and k times the standard deviation above the mean. 
The area under the density curve from one standard deviation below to above the 
mean is approximately 68.3 % (exactly 68.2689 %) meaning that a little bit over 
middle two-thirds of the group is aggregated symmetrically within one standard 
deviation around the mean of any Gaussian distribution.

1.5.3  Application of Gaussian Distribution

The Gaussian distribution model is very useful tool to approximately calculate a 
probability of observing certain numerical range of events. The example shown in 
Fig. 1.27 is to find out the proportion of a large group of pediatric subjects whose 
serum cholesterol level above 250 mg/mL if the group’s cholesterol distribution fol-
lows a Gaussian distribution with mean of 175 and standard deviation of 30. Because 
the standard deviation is 30, the value of 250 is 2.5 times the standard deviation 
above the mean (i.e., 250 = 175 + 2.5×30). The area under the curve that covers the 

Fig. 1.26 Gaussian density function curve

Fig. 1.27 Density curve and tail probability
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cholesterol range > 250 is 0.625 %, which indicates the subjects with cholesterol 
level >250 are within top 0.625 % portion. The calculation requires integration of 
the Gaussian density function equation. However, we can obtain the result using 
Excel or standard probability tables of Gaussian distribution. Next section will dis-
cuss how to calculate the probability using the tables by transforming any Gaussian 
distribution to the Standard Normal Distribution.

1.5.4  Standard Normal Distribution

The Standard Normal Distribution is the Gaussian distribution of which the mean is 
0 and the standard deviation is 1, i.e., N (0, 1). Any Gaussian distribution can be 
standardized by the following transformation. In the following equation, x is the 
variable that represents a value of the original Gaussian distribution with mean μ 
and standard deviation σ, and z represents the value of the following 
transformation:

 
z

x
=

- m
s  

This transformation shifts the entire data set uniformly by subtracting μ from all 
individual values, and rescale the already shifted data values by dividing them by 
the standard deviation, thus the transformed data will have mean 0 and standard 
deviation 1.

The Standard Normal Distribution has several useful characteristics on which 
data analysis and statistical inference rely (we discuss inference well in Chap. 2). 
First, as seen above, the density is symmetrically distributed over the data range 
resembling bell-like shape. Moreover, one standard deviation below and above the 
mean, i.e., the interval from -1 to 1 on z, covers approximately 68.3 % of the distri-
bution symmetrically. The interval of z from -2 to 2 (i.e., within two standard devia-
tion symmetrically around the mean) covers approximately 95.5 % of the 
distribution. The normal range, -1.96 to 1.96 on z which covers 95 % of distribution 
around mean, is frequently sought (Fig. 1.28).

Figure 1.29, excerpted from Chap. 10, presents the areas under the standard 
normal density curve covering from negative infinity to various values of the stan-
dard normal random variable, z. This table can be used to compute the probability 
evaluated within a certain interval without using a computer program. For example, 
Pr {-1.96 < x ≤ 1.96} can be computed Pr {z ≤1.96} – Pr {z ≤ -1.96} = 0.975 – 
0.025 = 0.95.

As shown in Fig. 1.30, the probability to observe a value above 250 if the data 
follow a Gaussian probability model with mean of 175 and standard deviation of 30, 
then the probability is evaluated by first transforming the value 250 to z value (i.e., 
standardize to mean 0 and standard deviation 1). The transformed z value is 2.5 (i.e., 
250 – 175 = 70, then divide 75 by 30 to find 2.5). Finally, the area under the Standard 
Normal density curve above 2.5 is the probability of interest. The evaluation of this 
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area can be done by using either of the tables in Fig. 1.29 or any other published 
tables. To use the first table, we locate the row of the table associated with z value 
of -2.5 then narrow down to the first column that lists the calculated area above 2.50 
(i.e., 0.9938). If z was 2.53, then the fourth column element of the same row would 
be read (i.e., 0.9943).

Fig. 1.28 Covered proportions of 1 (and 1.96) unit of standard deviation above and below means 
in standard normal distribution

Cumulative
Probability

Evaluated
from

negative
infinity to

Cumulative
Probability

Evaluated
from

negative
infinity to

0.010 -2.3263 0.810 0.8779

0.015 -2.1701 0.815 0.8965

0.020 -2.0537 0.820 0.9154

0.025 -1.9600 0.825 0.9346

0.030 -1.8808 0.830 0.9542

0.170 -0.9542 0.970 1.8808

0.175 -0.9346 0.975 1.9600

0.180 -0.9154 0.980 2.0537

0.185 -0.8965 0.985 2.1701

0.190 -0.8779 0.990 2.3263

0.195 -0.8596 0.995 2.5758

Fig. 1.29 List of selected normal random variates and cumulative probabilities up to those 
values

1 Warming Up: Descriptive Statistics and Essential Probability Models



25

1.5.5  Binomial Distribution

The probability values that are distributed to the possible numbers of events counted 
from a set of finite number of dichotomous outcomes (e.g., success and failure) are 
typically modeled by Binomial Distribution. For a demonstration purpose, let us 
discuss the following situation. Suppose that it is known that a new investigative 
therapy can reduce the volume of a certain type of tumor significantly, and the aver-
age success rate is 60 %. What will be the probability of observing 4 or more suc-
cessful outcomes (i.e., significant tumor volume reduction) from a small experiment 
treating five animals with such a tumor if the 60 % average success rate is true? 
First, let us calculate the probabilities of all possible outcomes under this assump-
tion, i.e., no success, 1 success, 2, 3, 4, or all 5 successes if the true average success 
rate is 60 %. Note that a particular subject’s single result should not alter the next 
subject’s result, i.e., the resulting outcomes are independent among experimental 
animals. In this circumstance, the probabilities distributed to the single dichoto-
mous outcome (shrunken tumor as the success or no response as the failure) of each 
animal are characterized by Bernoulli distribution with its parameter π which is the 
probability of success in a single animal treatment (i.e., the two probabilities are π, 
the success rate and 1-π, the failure rate). The single trial, in this case each trial is a 
treatment given to each animal, is called Bernoulli trial. The resulting probability 
distribution of the total number of successes out of those five independent treatment 
series (i.e., five independent Bernoulli trials) is then described by Binomial 
Distribution which is characterized by two parameters of which the first is the total 
number of Bernoulli trials, n, and the second is the Bernoulli distribution’s param-
eter of the success rate, π. In this example, the total number of independent trials, n, 
is 5 and the parameter of the success rate, p, on each single trial Bernoulli distribu-
tion is 0.6. Table 1.4 lists all possible results and their probabilities (0 = failure with 
its single occurring chance of 0.4, 1=success with its single occurring chance of 
0.6). As shown in the last column of the table, these computed probabilities are 
0.0102 for 0 successes (i.e., all failures and its probability is 0.4 × 0.4 × 0.4 × 0.4 × 
0.4 = 0.0102), 0.0768 for 1 success, 0.2304 for 2 successes, 0.3456 for 3 successes, 

Fig. 1.30 Standardization of an observed value x = 250 from N (Mean = 175, SD=30) to z=2.5 of 
the standardized normal distribution, i.e., N (0, 1)
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0.2592 for 4 successes, and 0.0778 for all 5 successes, respectively. General nota-
tion of a Binomial Distribution is Bi (n, π), thus in this example it is Bi (5, 0.6). Let 
us also note that the aforementioned Bernoulli distribution is a special case of 
Binomial Distribution, and its general notation is Bi (1, π). Figure 1.31 displays Bi 
(5, 0.6). Thus the probability of observing 4 or more successes out of the treatments 
given to five independent animals is 0.2592 + 0.0778 = 0.3370. Although this book 
does not exhibit the closed form equation that completely describes the Binomial 
Distribution, the following expression can help understand the concept: Bi (n, π) 
can be expressed by Probability of {no. of events, X = x out of n independent 
Bernoulli trials} = K πx(1-π)n-x, where K is an integer value multiplier that reflects 
the number all possible assortments of the number of success events x (x = 0, 1, …, 
n). Readers who are familiar with combinatorics can easily figure out K = n!/[x!(n-
x)!]. In Table 1.4, K =1 for x = 0, K = 5 for x = 1, K = 10 for x= 2, …, and K = 1 for 

Table 1.4 Bi (5, 0.6), binomial distribution with n=5 and π=0.6

Number of successes Result of subjects Probability

1st 2nd 3rd 4th 5th
0 (1 assortment) 0 0 0 0 0 0.4 × 0.4 × 0.4 × 0.4 × 0.4 = 0.45

(Subtotal = 0.0102)
1 (5 assortments) 1 0 0 0 0 0.6 × 0.4 × 0.4 × 0.4 × 0.4 = 0.6 × 0.44

0 1 0 0 0 0.4 × 0.6 × 0.4 × 0.4 × 0.4 = 0.6 × 0.44

0 0 1 0 0 0.4 × 0.4 × 0.6 × 0.4 × 0.4 = 0.6 × 0.44

0 0 0 1 0 0.4 × 0.4 × 0.4 × 0.6 × 0.4 = 0.6 × 0.44

0 0 0 0 1 0.4 × 0.4 × 0.4 × 0.4 × 0.6 = 0.6 × 0.44

(Subtotal = 0.0768)
2 (10 assortments) 1 1 0 0 0 0.6 × 0.6 × 0.4 × 0.4 × 0.4 = 0.62 × 0.43

1 0 1 0 0 0.6 × 0.4 × 0.6 × 0.4 × 0.4 = 0.62 × 0.43

(Subtotal = 0.2304)
3 (10 assortments) 1 1 1 0 0 0.6 × 0.6 × 0.6 × 0.4 × 0.4 = 0.63 × 0.42

1 1 0 1 0 0.6 × 0.6 × 0.4 × 0.6 × 0.4 = 0.63 × 0.42

(Subtotal = 0.3456)
4 (5 assortments) 1 1 1 1 0 0.6 × 0.6 × 0.6 × 0.6 × 0.4 = 0.64 × 0.4

1 0 1 1 1 0.6 × 0.4 × 0.6 × 0.6 × 0.6 = 0.64 × 0.4
(Subtotal = 0.2592)

5 (1 assortment) 1 1 1 1 1 0.6 × 0.6 × 0.6 × 0.6 × 0.6 = 0.65

(Subtotal = 0.0778)

Fig. 1.31 Distribution (aka probability mass function) of Bi (n=5, π=0.6)
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x = 5. It is straightforward that the expression of Bi (1, π) is Probability of {no. of 
events, X = x out of 1 Bernoulli trials} = πx(1-π)1-x, where x = either 1 (for success) 
or 0 (failure).

While the Binomial Distribution fits to the probability of success counts arising 
from a fixed number of independent trials, if the event of interest is not rare (i.e., 
π is not very small) and the size of the trial, n, becomes large, then the probability 
calculation for a range of number of success events can be conveniently approxi-
mated by using the Gaussian distribution even if, the number of success is not 
continuous. Figure 1.32 demonstrates the rationale for such an application. In 
general, for n×π ≥ 5 (i.e., the number of expected successes is at least 5), if n 
becomes large for a given a π, or π becomes large for a given n, then the distributed 
probability pattern of Binomial Distribution becomes closer to N (μ = n × π, σ2 = 
n × π × (1- π)).

Suppose that we now increased the number of animal experiment to 100, and we 
want to compute the probability of observing 50–75 successes arising from 100 
independent trials. Because n × π = 100 × 0.6 = 60, and n × π × (1- π) =100 × 0.6 
× 0.4 = 24, this task can be resorted to the normal approximation for which the used 
distribution is N (μ = 60, σ2 = 24). Then as depicted by Fig. 1.33, the first step is to 
transform the interval 50 ~ 75 on N (μ = 60, σ2 = 24) to a new interval on N (0, 1), 
i.e., 50 → (50 – μ)/σ = (50-60)/ 24  = -2.05 and 75 → (70 – μ)/σ = (75-60)/ 24  
=2.05. So, the probability to observe 50–75 successes is the area under the density 
curve of N (0, 1) covering from -2.05 and 2.05 on z, which is 0.98.

Fig. 1.32 Large sample behavior of binomial distributions illustrated by histograms of binomial 
distributions with various trial sizes and success rates
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On the other hand, when the event of interest is rare and the size of the trial 
becomes very large then the computation can be approximated by Poisson model in 
which the number of trials is no longer an important constant (i.e., parameter) that 
characterizes the Poisson distribution. The notation is Poi (λ), where λ denotes the 
number of average successes of the rare event out of a large number of independent 
trials. A particular exemplary outcome that is well characterized by the Poisson 
model is the number of auto accidents on a particular day in a large metropolitan 
city. The rare events can be the ones of which the Binomial characteristic constants 
are n × π < 5 (i.e., expected number of successes). The next example is a Binomial 
Distribution for which the probability calculation can be approximated by a Poisson 
distribution. Figure 1.34 displays the probabilities of observing 0, 1, 2, …, 30 
adverse events among 30 independent clinical trials of a new drug if the true adverse 
event rate = 0.01 (i.e., 1 %). The typical pattern of Poisson distribution is that the 
probability value decreases exponentially after certain number of successes, and as 
the expected number of successes, n × π, becomes smaller the value decreases 
faster. If we let a computer calculate the probability to observe 3 or more adverse 
events from 30 trials, then the result will be 0.0033. If we approximate this distribu-
tion to Poi (λ =30 × 0.01 = 0.3) and let a computer calculate such an event, the 
result will be 0.0035, which is not much different from the Binomial model- based 
calculation.

Fig. 1.33 Normal approximation to calculate a probability range of number of binary events

Fig. 1.34 Distribution (aka probability mass function) of Bi (n=30, π =0.01)
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1.6  Study Questions

 1. What are the similarity and dissimilarity between the interval scale and ratio 
scale?

 2. What is the definition of a distribution? What is being distributed?
 3. In a Box-and-Whisker plot, what proportion of the population is contained in 

the “box” interval? Is such a plot useful to describe a bimodal (i.e., two modes) 
distribution?

 4. Please explain the definition of standard deviation.
 5. What proportion of the data values are within one standard deviation above and 

below the mean if the data are normally distributed?
 6. Can a correlation coefficient measure the strength of any relationship between 

two continuous observations?
 7. What are the definitions of odds and odds ratio?
 8. What are the two parameters that completely determine a Gaussian distribution?
 9. What are the two parameters that completely determine a Binomial Distribution?
 10. Under what condition can a Gaussian model approximate the proportion of a 

population lies within a certain range of number of events describable by a 
Binomial model?
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