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In Chap. 1, Pearson’s correlation coefficient as a means to describe a linear association 
between two continuous measures was introduced. In this chapter, the inference of 
the correlation coefficient using sample data will be discussed first, and then the 
discussion will extend to a related method and its inference to examine a linear 
association of the continuous and binary outcomes with one or more variables using 
sample data.

5.1  Inference of a Single Pearson’s Correlation Coefficient

A linear association measured by the Pearson’s correlation coefficient between two 
continuous measures obtained from a sample, r, requires an inference. The two 
forms of inferences are hypothesis testing and interval estimation (i.e., construction 
of the confidence interval). Testing hypothesis is to state the null and alternative 
hypotheses, compute the test statistic, and determine if it is significant. Let us 
discuss the hypothesis testing first. The null hypothesis is that there is no linear 
association between two continuous outcomes (i.e., H0: ρ = 0), and the alternative 
hypothesis is either a nondirectional alternative hypothesis (i.e., H1: ρ ≠ 0) or a 
directional alternative hypothesis (i.e., H1: ρ > 0, or H1: ρ < 0), depending on the 
researcher’s objective. For such an inference we need a test statistic. A typical test 
statistic involves an arithmetic transformation of the sample correlation coefficient 
r because the sampling distribution of r is not approximately normal even when the 
sample size becomes large (i.e., the CLT is not applicable for the sample correlation 
coefficient). Nonetheless, it is noted that the sampling distribution of the transfor-
mation z = ½[ln(1+r) - ln(1-r)] will follow N(0, 1/√(n-3)) under the null hypothesis 
as the number of observed data pairs, n, becomes sufficiently large. The idea of 
“Observed Estimate ~ Null Value ~ SE triplet (see Sect. 2.2.4.2)” is then applied 
to derive the test statistic. Instead of directly plugging in the observed sample cor-
relation r, the above z transformation is substituted for the observed estimate, 
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i.e., z = {0.5·[ln(1+r) - ln(1-r)] - 0}/√(n-3), so that the sampling distribution of this 
resulting test statistic z can follow the standard normal distribution.

For small sample size, this test statistic can be resorted to t-distribution (i.e., one- 
sample t-test). The following table lists the minimum values of the sample correla-
tion coefficients that would become statistically significant by a nondirectional 
t-test of which H0: ρ = 0 and H1: ρ ≠ 0 for various sample sizes (Table 5.1).

The interval estimation can also be made by using this z-statistic. The lower and 
upper 95 % confidence limits of the population correlation coefficient can be 
obtained in two steps, of which the first step is to find the lower and upper 95 % 
confidence limits (i.e., 2.5th and 97.5th percentiles of the sampling distribution) of z, 
then equating these two limits to the expression {0.5 [ln(1+ ρ) - ln(1- ρ)] - 0}/√(n- 3), 
then finally solving them for ρ.

5.1.1  Q & A Discussion

Question: In correlation analyses, to what extent should we look at the r-value and the 
p-value? For instance, is r = 0.7 (p < 0.05), “stronger” than r = 0.5 (p < 0.001)? Is r = 0.1 
a poor correlation even if p < 0.001? Is r = 0.8 a good correlation even if p > 0.1?

Answer: The magnitude of r and its p-value cannot be interpreted universally. 
The cross comparison of the magnitudes of r’s is only meaningful within one data 
set where all the r’s are obtained from the same sample size. Don’t compare apples 
with oranges.

5.2  Linear Regression Model with One Independent 
Variable: Simple Regression Model

A statistical model usually appears as a mathematical description (often involves 
mathematical expression, i.e., equations, etc.) of how individual datum is deter-
mined with uncertainty (i.e., random sampling error). Linear regression model with 

Table 5.1 Smallest absolute values of sample correlations that are significantly 
different from 0 by nondirectional t-test

Level of significance of a one-sample 
 nondirectional t-test (H0: ρ = 0 versus H1: ρ ≠ 0)

df = n of pairs–2 10 % 5 % 1 %

3 0.805 0.878 0.959
10 0.497 0.576 0.708
15 0.412 0.482 0.606
20 0.360 0.423 0.537
25 0.323 0.381 0.487
30 0.296 0.381 0.449
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one independent variable describes how a numeric (normally distributed) outcome 
(i.e., dependent) variable is determined by one independent nonrandom variable and 
a random error. More specifically, it appears as an equation where the left-hand side 
is the outcome variable and the right-hand side consists of two parts of which the 
first part articulates the nonrandom common rule and the second does the random 
error (i.e., individuals’ deviations from the nonrandom common rule).

The following is a typical expression of the ith observed outcome yi described by 
the linear regression model with one independent variable:

 

yi
0 1 i i=

↑ ↑
+β β ε+ X ,

Common rule Randomphenomenon  

where εi, for individual i, is a random error term that follows a normal distribution 
with mean = 0 and variance = σ2. The ith observed outcome yi is expressed by the 
common value that is the same as the value for all other observations as long as the 
value of the independent variable is given to a certain value plus the random devia-
tion from the common value. The regression refers to the rule, how this common 
value of the dependent variable is determined given a certain value of the indepen-
dent variable. This model is called a simple linear regression model. It is called 
simple because there is only one independent variable and called linear because the 
common rule is expressed by a linear function of the independent variable. As dis-
cussed later in this chapter, a multiple (as opposed to simple) linear regression 
model is a linear model that includes more than one independent variable, e.g., 
yi = β0 + β1x1 + β2x2 + … + εi.

The simple regression model can have its variants, and the following is such an 
example:

 y X ,i 1
2

i i= +b b e0 +  

where εi, for individual i, is a random error term that follows a normal distribution 
with mean = 0 and variance = σ2. First, how many independent variables are there? 
Only one, so the simple part makes sense. Having x2 in the model as the independent 
variable does not mean this is a nonlinear model. Let’s note that the word linear 
means that the nonrandom common rule, β0 + β1x2

i, is linearly determined by a given 
value of the independent variable (i.e., the rate of linear change is β1 for a unit 
change of x2, and the amount β1x2

i determined by a particular value of x2 is additive 
to β0). To make it clearer, one can rename x2 to a new name z, i.e., yi = β0 + β1zi + εi.

5.3  Simple Linear Regression Analysis

Regression analysis is to seek the best common rule equation that determines the 
mean value of the outcome variable given a certain value of the independent variable. 
The widely used computational procedure is the least squares method.

5.3 Simple Linear Regression Analysis



90

In Fig. 5.1, the drawn line is the estimated regression line determined by the least 
squares method. Residual ei is the difference between the observed yi and the pre-
dicted value !yi  via the estimated sample regression line. Note that the residual ei is 
not the same random error term εi introduced in the model specification in that the 
term εi specified is the difference between the observed and the true population 
regression line. The least squares method is to estimate the intercept and slope of the 
regression line that minimize sum of squared residuals, ei

2. The resulting estimated 
line is indeed the whole collection of the predicted means of the outcome variable y 
given the values of the independent variable x when the normality assumption of the 
εi error term’s distribution is true. Computer programs (even Excel software has 
the feature) are widely available for estimating each regression equation parameter 
(i.e., intercept β0, and slope β1) and the standard error of each estimated regression 
parameter, and for providing the test statistic of the hypothesis testing whether or 
not each of the population coefficient is different from zero, as well as the 95 % 
confidence interval of each regression parameter.

A goodness of fit for the estimated simple linear regression equation is measured 
by r2. This metric is the same as the squared value of the sample linear correlation 
coefficient computed from the observed y and x pairs. It is also the same as the 
proportion of the explained variation of the dependent variable by the estimated 
regression equation. The possible range is from 0 (0 % is explained) to 1 (100 % is 
explained). The r2 is 1 – (sum of squares of the residuals/sum of squares deviations 
of the observed outcome values from the overall mean of the outcome values). 
Figure 5.2 illustrates the concept of r2 and demonstrates the computational details. 
The first plot depicts the r2 in the absence of a fitted regression equation for which 
the horizontal line represents the mean of y irrespective of the values of independent 
variable. The second plot depicts the r2 of the fitted regression equation. It is also 
noted that r2 is the squared value of the correlation coefficient between y and ŷ , and 
it is also the same as the squared value of the correlation coefficient between y and 
x. This can be shown algebraically and numerically.

Let’s use an example of a simple linear regression equation estimated from an 
analysis, y = 64.30 + 1.39·x, where y denotes systolic blood pressure (SBP) and x 

Fig. 5.1 Illustration of the 
least squares method to 
estimate linear regression 
equation
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denotes age. The interpretation is that mean SBP increases linearly by 1.39 as a 
person’s age increases by 1 year. For instance, a mean SBP of 30-year-old persons 
is predicted as 64.30 + 1.39·30 = 106. This value 106 is the common systematic rule 
to everyone whose age = 30. Note that this regression equation should be applied for 
a meaningful interval of the predictor variable x (e.g., age = 200 or age = −10 is non-
sense). y = 64.30 when x = 0 is indeed the y-intercept and this may not be a value of 
interest (i.e., for age = 0).

It is important to know that what is being predicted by this linear regression 
equation is the mean value of the dependent variable given a particular value of the 
independent variable (aka conditional mean). In the above blood pressure predic-
tion example, the predicted SBP value = 106 for a given age = 30 is indeed the esti-
mated mean SBP of all subjects with age = 30. In Fig. 5.3, the estimated regression 

Fig. 5.2 Numerical illustration of r2
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line represents the collection of predicted means (i.e., conditional means) of the 
dependent variable y given particular values of independent variable x.

All values on the predicted regression line are the means over the range of the 
given independent variable values, and a single point on that line is the estimated 
mean value given a particular value of the independent variable.

Many computer software programs offer to find the best (unbiased minimum 
variance estimates) regression coefficients of the specified model. Such programs 
also provide the estimated standard errors (SE) of the estimated regression coef-
ficients for drawing inference. The hypothesis tests and interval estimations for 
the regression coefficients can be either directly available or easily completed by 
utilizing the computer-generated estimates.

The hypothesis test for the slope, β1, is usually performed by a z- or t-test depending 
on the sample size. The practical choice of z-test is when the sample size is large 
enough (e.g., 30 or greater), otherwise a t-test is usually applied. The null hypothe-
sis usually states that the regression slope is 0, i.e., H0: β1 = 0 (i.e., independent vari-
able is not predictive of the outcome). The alternative hypothesis can either be 
nondirectional or directional depending on the research question, i.e., H1: β1 ≠ 0 for 
a nondirectional test and H1: β1 > 0 for a directional test to claim a positive slope, etc. 
For both the z- and t-tests the test statistic is derived by the aforementioned “triplet,” 
i.e., ˆ 0 / ˆ

1 1b b−



 ( )SE  (see Sect. 2.2.4.5). The degrees of freedom for a t-test is 

n – 2.
The interval estimation for each regression coefficient, i.e., the slope, can be 

constructed using z- or t-distribution depending on the sample size. For example, 
the 95 % confidence interval for the regression slope β1 with a sample size of 20 is 
derived as ˆ 2.101 ˆ , ˆ 2.101 ˆ

1 1 1 1b b b b− × ( ) + × ( )



SE SE , where 2.101 is the t-value, 

of which the tail area below −2.101 is 0.025 (i.e., 2.5th percentile) and the area 
above 2.101 is 0.025 (i.e., 97.5th percentile) with df = 18. The 95 % confidence 
interval using z-distribution when the sample size is large enough is derived as 

ˆ 1.96 ˆ , ˆ 1.96 ˆ
1 1 1 1b b b b− × ( ) + × ( )



SE SE .

The confidence interval (band) for the entire regression mean response line 
(i.e., whole collection of individual regression means given the individual values of 
independent variable) can also be constructed. The algebraic expression becomes 
more complex than that of the slope because the interval estimation for the 

Fig. 5.3 Illustration of 
regression mean
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regression line involves issues of the underlying correlation between the intercept 
and slope estimates that are not independent with each other. The technical details 
may be beyond the level of knowledge of most of the readers. Letting alone the 
details, Fig. 5.4 demonstrates how the confidence band appears in that the band-
width around the mean of independent variable is the narrowest and becomes wider 
as the values of the independent variable departs from its mean. Figure 5.4a demon-
strates a special situation that only the intercept is estimated while the slope is not 
being estimated (assumed to be known and fixed during the estimation). Intuitively, 
the confidence band is parallel to the estimated regression line because the slope is 
always fixed to one value. Figure 5.4b demonstrates the variability of estimated 
regression line of which both the intercept and slope are being estimated (the shown 
lines are only several of infinitely large number of regression lines that are estimated 
and fluctuating due to the sampling variability of the raw data). Then, Fig. 5.4c 
illustrates the actual band of a regression line. Actual calculation of this is usually 
done by computer software.

Another interval estimation problem is to construct a confidence interval for pre-
dicted individual outcomes. When the regression equation is applied, the point esti-
mate of an individual outcome value at a particular value of independent variable is 
indeed the estimated regression mean itself which is determined at that particular 
value of the independent variable. However, the confidence band of the predicted 
individual outcome values turn out to be a little bit wider than that of the regression 
line (i.e., the regression mean response line) because for a point on the regression line 
there are many individual values surrounded randomly above and below that single 
mean value on a particular point of the regression line. Such a band is called predic-
tion band (e.g., 95 % prediction band), and its computational details take into account 
the additional random variability of these surrounded individual observations. Actual 
calculation of this is usually done by computer software.

Fig. 5.4 Illustration for aiding to understand confidence interval of the estimated linear regression 
equation
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Before we proceed to the next topic, a very important issue needs to be discussed. 
In many applications the data are observed at multiple time points within one sub-
ject and the observations are correlated within a subject (i.e., autocorrelation). 
Clinical studies may include a long-time series data of only a single subject (e.g., a 
long-time series of weekly incidence of an infectious disease in a particular place 
over many years, where the particular place can be viewed as a single study subject 
and the dependent variable is the number of new cases and the independent variable 
is the number of weeks since week 0) or multiple subjects with relatively short-time 
series data (monthly height growth pattern of a group infants over first 6 months 
after life, i.e., dependent variable is height and the independent variable is month after 
birth). The method of least squares estimation assumes that all data are uncorrelated 
(i.e., there is no autocorrelation). If this assumption is violated then the standard error 
of the regression coefficient estimate becomes inaccurate. Advanced techniques are 
available, but this material will not discuss. However, it is important to ensure that 
whether or not the study design (or data collection mechanism) would have induced 
such a problem and seek statistician’s guidance to resolve the problem.

5.4  Linear Regression Models with Multiple Independent 
Variables

The outcome (dependent) variable of a regression models may need to be explained 
by more than one explanatory (independent) variable. For example, gray-haired 
people may show higher blood pressure than the rest, but the association between 
age and blood pressure is probably confounded with gray hair and age association 
and such a phenomenon needs to be taken into account. If multiple independent 
variables are additionally entered into the model, the model will decrease the residual 
variation of dependent variable that had not been explained solely by the primary 
independent variable of interest. Such a model with multiple independent variables 
is expressed as the following linear combination (i.e., a particular value of the 
dependent variable given a set of values of all independent variables in the model is 
expressed as a weighted sum of the independent variables where the regression 
coefficients β’s being the weights).

 y x x x xi k k i= + + + + + +b b b b b e0 1 1 2 2 3 3 ,…  

where the assumption about εi is the same as what is specified in Sect. 5.2. The pre-
dicted value of the estimated regression equation for the ith individual, i.e., 
ˆ ˆ ˆ ˆ ˆ ˆ x0 1 1i 2 2 i 3 3 i ky x x x kii = + + + + +b b b b b… , is the mean value of dependent variable 

y given the observed values of x1i, x2i, x3i, …, and xki. The model fitting usually requires 
computer software. Below is a brief overview of how to perform such an analysis for 
model fitting (i.e., estimation of regression coefficients) and related inference.

The goodness of fit for a linear regression with multiple independent variables is 
measures by R2 that is interpreted as the proportion of the explained variation of the 
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dependent variable by the estimated regression equation. The least squares estima-
tion seeks the regression coefficients that maximize and the least squares estimation 
seeks the regression coefficient estimates that maximize R2. This R2 is the squared 
value of the correlation coefficient between y and ŷ . In order to distinguish it from 
the case of simple linear regression’s case (i.e., r2), the notation uses capitalized R.

Multi-colinearity is a phenomenon due to a set of correlated independent vari-
ables in a multiple regression setting. It affects the estimated regression equation 
adversely. For an estimated multiple regression, ˆ ˆ ˆ x ˆ x ˆ x … ˆ x0 1 1 2 2 3 3 k ky = + + + +b b b b b , 
if two independent variables (for instance x1 and x2) are highly correlated, then the 
uncertainty about b̂ 1 and b̂ 2 increases and the standard errors of these two esti-
mated regression coefficients are inflated. A high overall R2 value (i.e., the indepen-
dent variables, as a whole set, predict the mean outcomes pretty well) but the test 
results for some individual coefficients may not be significant (due to the inflated 
standard error of the regression coefficient estimate) and the interpretation of such 
regression coefficients in conjunction with other regression coefficient(s) becomes 
dubious (Fig. 5.5).

Exclusion of the independent variables that are highly correlated (i.e., redundant 
to certain variables) will prevent such an adverse consequence. A formal diagnosis 
can be made by using Tolerance, which is the proportion of unexplained variance 
of the independent variable being diagnosed by all other remaining independent 
variables (i.e., 1- R2 of the estimated regression of the independent variable being 
diagnosed on all other variables). The inverse of Tolerance is called Variance 
Inflation Factor (VIF). A common criterion is to exclude the independent variable if 
the tolerance is less than 0.1 (or VIF greater than 10).

5.5  Logistic Regression Model with One Independent 
Variable: Simple Logistic Regression Model

Modeling a binary outcome variable by a regression is different from that of 
continuous outcome that was introduced in the previous sections. Let’s discuss the 
following example.

Figure 5.6 illustrates a set of raw data of a set of binary outcome y (e.g., certain 
disease; illness if y = 1 and y = 0 if illness free) versus a continuous measure of x 

Fig. 5.5 Illustration of multi-colinearity in a multiple regression with two independent variables
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(e.g., x = age in years) in the same way that was adopted to demonstrate the single 
independent variable linear regression model. The linear regression line stretches 
out above 1 and below 0, which is unrealistic. So, the idea of forcing the feasible 
range lies between 0 and 1, the logistic function is adopted and Fig. 5.7 illustrates 
this idea.

It is noted that the observations take values of either 0 or 1 but the regression 
curve does not exceed either 0 or 1, and it is also noted that the vertical axis is the 
probability of observing y = 1 given a particular value of x. This is called logistic 
regression model because the shape of the response curve is characterized by the 
cumulative distribution function of the logistic distribution (simply called logistic 
function). The mathematical expression of this function, where e is the base of natural 
logarithm, is

Probability {y = 1 given x} = 
e

1 e
,

0 1

0 1

x

x

b b

b b

+

++

and Probability {y = 0 given x} = 1 - 
e

1 e
,

0 1

0 1

x

x

b b

b b

+

++

Unlike the linear regression model, the logistic regression model does not need 
the random error term because the transformed outcome variable of this logistic 
regression model specifies the probability of the event (y = 1) and this completely 
characterizes the probability distribution of the original outcomes of y = 1 and y = 0 
(i.e., no other random error terns are necessary). A special emphasis is made here to 
the regression coefficient associated with the independent variable which measures 
the direction (positive or negative) and strength of association. Let’s consider an 

Fig. 5.6 illustration of 
inappropriate linear function 
to predict event probability of 
binary outcome given 
independent variable X

Fig. 5.7 Illustration of 
logistic function to predict 
event probability of binary 
outcome given independent 
variable X
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example of which the outcome variable y is binary (1 = had an event, 0 = did not have 
an event) and independent variable x is a risk scale (1 = low risk, 2 = moderate risk, 
and 3 = high risk), the following probabilities of interests can be expressed via logistic 
equations:

Probability (y = 1 for moderate risk) = [exp (β0 + β1·2)]/[1+ exp (β0 + β1·2)],
Probability (y = 0 for moderate risk) = 1- [exp (β0 + β1·2)]/[1+ exp (β0 + β1·2)],
Probability (y = 1 for high risk) = [exp (β0 + β1·3)]/[1+ exp (β0 + β1·3)], and
Probability (y = 0 for high risk) = 1- [exp (β0 + β1·3)]/[1+ exp (β0 + β1·3)].

These probabilities are less of interest than the following odds ratio (OR see 
Sect. 1.4.3) in applied setting. If we are interested in the odds ratio of the event with 
high risk versus moderate risk then this odds ratio can be derived by a simple 
algebra as below.
 

OR
Probability y for highrisk Probability y for highrisk

=
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Likewise, the OR of moderate- versus low risk is exp (β1·2) - exp (β1·1), and the 
OR of high- versus low risk is exp (β1·3) - exp (β1·1) = exp(β1·2) = 2·exp (β1).

While the OR is the measure of association of our ultimate interest, its inference 
is made on the regression coefficient, β1, because the OR is merely the transformed 
value of the regression coefficient (i.e., OR = eβ

1). The standard method for estimating 
the regression coefficients (i.e., fitting the logistic regression function) is the maxi-
mum likelihood (ML) method. This is a calculus approach to find the solution for 
the following likelihood function which is constructed by β0 and β1 and the observed 
data. The likelihood function, denoted by L, will be proportional to the joint prob-
ability of all observed events, i.e., the product of all probabilities of y = 1 given x for 
all observations with the outcome value 1 and all probabilities of y = 0 given x for all 
observations with the outcome value 0. The following is the spelled out expression 
of the illustrative observation set listed below.

Observation No. Outcome y (0 or 1) Predictor x (0 or 1)
1 1 1
2 1 0
3 1 1
. . .
. . .
. . .
. . .
n-1 0 1
n 0 o
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Each term in the above product is the logistic model-based probability of either 
y = 1 or 0 given x. The maximum likelihood estimation procedure is a calculus 
problem to find the solutions for β0 and β1 that maximize this function. The actual 
computation uses its natural logarithm, ln(L), instead of L by which the computation 
becomes much less burdensome. Letting alone the further detail of mathematical 
statistics aspect not addressed here, it is important and practically useful to note the 
property of the regression coefficients that are obtained from the ML method (aka, 
ML estimators). The property is that the sampling distribution of such an estimator 
follows Gaussian (i.e., normal) distribution as long as the sample size is sufficiently 
large. Relying on this property, similar to the simple linear regression case 
(see Sect. 5.2), a one-sample z-test (aka Wald’s z-test) or t-test, if sample size is not 
large, is a common method for a regression coefficient β1 to be tested for H0: β1 = 0 
versus H1: β1 ≠ 0. For interval estimation, the lower and upper limits of 95 % confi-
dence interval for the regression coefficient (see Sect. 5.2) are obtained first, then 
these limits are transformed to OR limits, i.e., the limits are eLower limit of the regression 

coefficient and eUpper limit of the regression coefficient.
Because the maximum likelihood method does not resort to the least squares 

method, there is no goodness of fit such as the r2 (for one independent variable) or R2 
(for multiple independent variables). Goodness of fit for an estimated logistic regres-
sion equation can be examined by several options. The most common option is to use 
Hosmer–Lameshow statistic, which measures the disagreement between observed 
versus expected events of interest in partitioned deciles (or three to nine if fewer than 
ten observed patterns of the independent variable(s) existed) of the predicted probabil-
ities, and transform it to a Chi-square statistic with g-2 degrees of freedom where g is 
number of ordered partitions of the predicted probabilities (see Sect. 6.1).

5.6  Consolidation of Regression Models

5.6.1  General and Generalized Linear Models

Linear regression models that have more than one independent variable are called 
general linear models. If the regression models with more than one independent 
variable with its model equation is not linear (e.g., logistic) but is transformed into 
a linear form, then such transformed models are called generalized linear models. 
The meaning of “linear” is that the predicted mean value given the independent 
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variables is expressed as a linear combination of the regression coefficients (i.e., simple 
addition of more than one term of which each individual term is the product of a 
regression coefficient and the corresponding independent variable) (see Sect. 5.2). 
For example, a + bx is a linear combination of the two terms a and bx, and c + dx2 is 
also a linear combination of c and dx2. In the case of c + dx2 the linearity is held 
between c and d. What is often confusing is that the resulting value of c + dx2 turns 
out as a quadratic function with respect to x. However, by definition, such a regres-
sion equation is a linear model rather than a nonlinear model because the linearity 
between c and d is held as long as the observed x2 value is viewed as the weight of 
the linear combination.

Unlike the linear models, nonlinear models are the ones that the model equation 
cannot be expressed by linear sum of the products created by the regression coefficients 
and their corresponding independent variables. For example, the logistic regression 
equation is a nonlinear function called logistic function (see Sect. 5.5). Nevertheless, 
the nonlinear function often can be converted to a linear function via algebra (i.e., 
linearization), and such transformed models are called generalized linear models. 
In the case of logistic regression, the logistic function to predict the probability of 
event can be transformed into a linear function to predict the log of the odds.

For the logistic regression equation Probability {y = 1 given x} = 
e

e
,

0 1

0 1

x

x

b b

b b

+

++1

By letting logit [p] denote the transformation loge [odds] = loge [p/(1-p)] = loge 
[Probability of y = 1 given x / (1- Probability of y = 1 given x)], the resulting 
equation becomes Logit [p] = β0 + β1x, which is now a linear function to predict 
the logit (i.e., natural logarithm of the odds) while preserving the interpretation of 
both β0 and β1, the same as that were made in the original form, i.e., OR (x = 1 
versus 0) = eβ

1. Such a linearization makes the computation of the estimation less 
burdensome. The computational detail is beyond the objective of this monograph 
and is not described.

5.6.2  Multivariate Analyses and Multivariate Model

The terminologies Multivariate Analyses and Multivariate Model are very often 
misused by the applied researchers, and such errors appear frequently even in 
 published articles.

A Multivariate Analysis is the simultaneous analysis of two or more related 
numeric outcome variables (i.e., dependent variables). Such methods are commonly 
applied in the social science research, and some popular methods are T2-test for 
simultaneous comparison of two or more related means between two groups (e.g., 
comparison of mean weight and mean height between men and women), Multivariate 
Analysis of Variance (MANOVA) for simultaneous comparison of two or more 
related means among three or more groups (e.g., comparison of mean weight and 
mean height among three ethnic groups), Multivariate Regression Analysis to fit 
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more than one correlated dependent variables by means of more than one related 
regression equations, Factor Analysis and Principal Component analysis to reduce 
a large dimension of linearly correlated variables into a small dimension, Canonical 
Correlation Analysis to examine a set of correlated variables with another set of 
correlated variables, and Linear Discriminant Analysis to build a linear equation by 
a set of linearly correlated random variables to differentiate the individuals into two 
or more groups, etc.

A Multivariate Model refers exclusively to a regression model of a single outcome 
variable with two or more independent variables (e.g., multiple linear regression 
models, ANCOVA models, etc.), and the analysis method is univariate because 
there is only one dependent variable. Note that the multiplicity of the independent 
variables in a model does not mean that the method is multivariate.

5.7  Application of Linear Models with Multiple  
Independent Variables

Figures 5.8 and 5.9 demonstrate a particular type of applications of general linear 
models to predict the mean of dependent variable using multiple independent 
variables. In the first case, the predicted mean given independent variables 

Fig. 5.8 illustration of dummy variable technique without modeling an effect of interaction

Fig. 5.9 Illustration of dummy variable technique applied to model a main effect and an effect of 
interaction
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(i.e., regression equation) is determined by two independent variables, of which the 
first is a continuous variable x and the second, z, is to take either 1 or 0. Such a 
dichotomized independent variable to take either 0 or 1 is called dummy variable.

In Fig. 5.8 the dummy variable was used to fit the two regression lines with the 
same slopes but different intercepts.

In Fig. 5.9, the dummy variable was used to fit the two regression lines with two 
different slopes and intercepts. The last term of the regression equation is 0.2·x·z, of 
which the variable that takes data values is the product of x and z. Such a term is 
called interaction term. The corresponding regression coefficient is the size of the 
difference in slopes between the two subgroups of having z = 1 and having z = 0. 
Note that the product term variable, x·z, is considered as a single variable (e.g., it can 
be renamed as any one letter variable name such as “w,” etc.).

5.8  Worked Examples of General and Generalized Linear 
Modes

5.8.1  Worked Example of a General Linear Model

Four hundred (n = 400) over-weighted adults with age between 35 and 45 years 
participated in a 1:1 randomized 1-year study of a weight loss intervention program 
(i.e., 200 on the invention arm and 200 on control arm). The study collected the 
baseline weight and the weight change after the completion of the study.

The baseline mean (± standard deviation) weight (in lb) among all participants 
was 201.6 (±32.9) and their mean values of the 1-year weight changes were −3.74 
(±9.34) and 4.82 (±7.12) in the intervention and control group, respectively. A gen-
eral linear model analysis was applied to determine the intervention effects on the 
mean weight change without and with adjusting for the individual participant’s age 
(Table 5.2 and Fig. 5.10). The dependent variable was the 1-year weight change 
(WC: post 1 year weight – baseline weight), and the independent variables were 
intervention (I: 1 = yes, 0 = no) and age (AGE: continuous. Note that intervention (I) 
is a dummy variable.

Table 5.2 Summary of general linear model analysis: weight loss intervention study

Model Independent variables b̂ SE ( b̂ ) p-Value

Model 1 Intercept   4.82 0.59 <0.0001
Intervention (I) − 8.56 0.83 <0.0001

Model 2, R2 = 0.76 Intercept −78.55 4.77 <0.0001
Intervention (I) −49.32 6.92 <0.0001
Age (AGE)   2.09 0.12 <0.0001
Interaction of intervention and age (I × AGE)   0.98 0.17 <0.0001
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In Model 1, the estimated intercept value of 4.82 lb is the mean weight change 
among the control participants, and the estimated parameter value of the interven-
tion variable (I), -8.56 (p < 0.0001), directly offers the significant estimated differ-
ence (i.e., effect) in the mean weight changes between the two groups. With these 
two regression coefficients, the mean change in the intervention group can be esti-
mated by 4.82 – 8.56 = −3.74, which is the same as the group-specific descriptive 
summary statistics presented above (before performing the general linear model 
analysis). Model 2 was constructed in order to predict the mean weight change not 
only by the given intervention status but also by the age. The main effect of age as 
well as its interaction with the intervention (i.e., whether or not the age effects were 
different between the intervention and control subjects) were added to this model. 
Note that the estimated parameter value of the intervention (I) does not directly 
offer the difference in the mean weight changes between the intervention and con-
trol groups because the additional variables are included now and those effects must 
be taken into account simultaneously. The estimated parameter value of −49.32 
(p < 0.0001) is the group difference of the mean weight changes only for the persons 
with age 0. The age of 0 is unrealistic. So, if we chose a particular age of 40 for a 
meaningful interpretation, then the intervention group’s mean weight change is pre-
dicted by −78.55 – 49.32 × 1 + 2.09 × 40 + 0.98 × 1 × 40 = −5.07, and that of the con-
trol group is −78.55 – 49.32 × 0 + 2.09 × 40 + 0.98 × 0 × 40 = 5.05, thus the estimated 
effect (i.e., the mean difference) at age 40 is −5.07 – (−5.05) = −10.12, which is the 
conditional effect of the intervention for 40-year-old participants. As shown in 
Fig. 5.10, the conditional effect decreased as the age increased.

5.8.2  Worked Example of a Generalized Linear Model 
(Logistic Model) Where All Multiple Independent 
Variables Are Dummy Variables

A large survey study investigated if the college students in California are less 
involved in binge drinking (Wechsler et al. 1997). The survey sample comprised 

Fig. 5.10 Illustration of 
effect of interaction between 
intervention and age
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1864 college students from California and 17,592 from elsewhere in the USA. 
The logistic regression analysis was performed as below.

Dependent variable – Binge drinking (1 vs. 0).
Independent variables – California student (1 vs. 0); Age < 24 (1 vs. 0); Male 

gender (1 vs. 0); Never married (1 vs. 0); White ethnicity (1 vs. 0); Non-commuter 
(1 vs. 0); Smoker (1 vs. 0) (Table 5.3).

Unlike the result summary of the general linear model (Table 5.2), the result sum-
mary of this generalized linear model analysis did not show the estimated parameter 
values of the intercepts (Table 5.3) because the intercept is the nuisance parameter 
for the odds ratio (see Sect. 5.5). The simple logistic regression model of binge drink-
ing solely on the California residency indicator variable (1 = live in California, 
0 = elsewhere) showed that there was significant decrease in binge drinking among 
the California college students ( OR

!
 = 0.52, p < 0.0001). However, after simultane-

ously adjusting for other demographic variables and other risk factors (every variable 
was dichotomized as 1 = yes and 0 = no), this effect was no longer significant 
(Adjusted OR

!
 = 1.20, not significantly different from 1 at a 5 % significance level) 

while all the other covariates were significantly associated with the binge drinking in 
that students under 24 years old (Adjusted OR

!
 =2.24, p < 0.0001), male students 

(Adjusted OR
!

 =1.56, p < 0.0001), never married students (Adjusted OR
!

 =3.58, 
p < 0.0001), students with white ethnic background (Adjusted OR

!
 =2.95, p < 0.0001), 

non-commuter students (Adjusted OR
!

 =1.97, p < 0.0001), and smoker students 
(Adjusted OR

!
 =4.38, p < 0.0001) were involved more in binge drinking.

5.9  Study Questions

 1. The estimated least square linear regression equation (simple or multiple regres-
sion) does not predict an individual’s specific outcome value given the subject’s 
value(s) of the independent variable(s)? What value does the regression equation 
predict?

 2. What is the quantitative interpretation of the regression coefficient (i.e., the slope) 
of a least square linear regression equation?

Table 5.3 Summary of generalized linear model analysis: California college 
students binge drinking study

Model Independent variables b̂ SE ( b̂ ) OR
!

 = exp( b̂ ) p-Value

Model 1 California −0.66 0.053 0.52 <0.0001
Model 2 California 0.18 0.19 1.20  0.353

Age < 24 0.81 0.05 2.24 <0.0001
Male 0.44 0.03 1.56 <0.0001
Never married 1.27 0.06 3.58 <0.0001
White 1.08 0.05 2.95 <0.0001
Non-commuter 0.68 0.04 1.97 <0.0001
Smoker 1.54 0.04 4.38 <0.0001
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 3. What value does a logistic regression equation predict given an individual’s 
value(s) of the independent variable(s)?

 4. What is the quantitative interpretation of the regression coefficient of a logistic 
regression equation?

 5. What are the definitions of the following?

Odds ratio
General linear model
Generalized linear model

 6. Explain why the multiple linear regression and multiple logistic regression are 
not multivariate analyses.
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