
3
Graphics to Display the Data
Distribution

As the Kola Project progressed, chemical analyses for c. 50 chemical elements in four differ-
ent sample materials collected at about 600 sample sites were received. These needed to be
summarised, compared and mapped; now we enter the realms of statistical data analysis. For
data collected in space, two types of distribution need to be considered: the spatial distribution
of the data in the survey area and the statistical data distribution of the measured values. At
the beginning of data analysis the focus is on the statistical distribution, temporarily setting
the spatial component aside (see Chapter 5, where the spatial data distribution is studied).

The statistical data distribution can be explained using some small artificial data sets. The
data are simply plotted against a straight line as a scale for the data values. Depending on the
data, the distribution of the values can look symmetrical (Figure 3.1, upper left, the data are
distributed symmetrically around the value 20). The data could fall into two groups, i.e. be
bimodal, and show a gap around the value 20 (Figure 3.1, upper right). The data could show a
single extreme outlier (Figure 3.1, lower right). The data could show an asymmetrical distri-
bution with a high density of points at the left side and a decreasing density towards the right
side (Figure 3.1, lower right). All these different characteristics, or a mixture thereof, define
the statistical data distribution. For further statistical treatment of the data it is essential to get
a good idea about the data distribution. Many statistical methods are, for example, based on
the assumption of a certain model for the data distribution (see Section 4.1, Figure 4.1 for a
number of different model distributions).

With more than 600 measurements it will not be sufficient to simply plot the measured
values along an axis as in Figure 3.1, because many data values will plot at the same point.
Other graphics are needed to visualise the data distribution. These will be introduced on the
following pages.

3.1 The one-dimensional scatterplot

Plotting the data along a straight line works fine as long as the data set is small and the data
do not plot too close to, or on top of, one another. Figure 3.2, upper diagram, demonstrates
the problem using the analytical results of Sc in the Kola C-horizon. Many more data points
may be hidden behind one point plotted along the line. To view samples that have the same
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Figure 3.1 Some possible data distributions. Upper left: symmetric; upper right: bimodal with a gap
around 20; lower left: left skewed; lower right: right skewed

value it is, however, possible to add a second dimension and add such values as additional
symbols against the y-axis (Figure 3.2 middle, stacked scatterplot). With many values at the
same position the y-axis starts to dominate the plot. With some further modifications the
one-dimensional scatterplot is obtained (see, e.g., Box et al., 1978); an informative and simple
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Sc in C−horizon [mg/kg], points jittered

Figure 3.2 Evolution of the one-dimensional scatterplot demonstrated using Sc as measured by
instrumental neutron activation analysis (INAA) in the samples of the Kola C-horizon
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graphic to study the data distribution. This plot is typically displayed as an elongated rectangle.
Each value is plotted at its correct position along the x-axis and at a position selected by chance
(according to a random uniform distribution) along the y-axis (Figure 3.2, lower diagram). This
simple graphic can provide important insight into structure in the data.

In Figure 3.2 (stacked and one-dimensional scatterplot) a significant feature is apparent that
would be important to consider if this variable were to be used in a more formal statistical
analysis. The data were reported in 0.1 mg/kg steps up to a value of 10 mg/kg and then rounded
to full 1 mg/kg steps – this causes an artifical “discretisation” of all data above 10 mg/kg.

3.2 The histogram

One of the most frequently used diagrams to depict a data distribution is the histogram. It is
constructed in the form of side-by-side bars. Within a bar each data value is represented by
an equal amount of area. The histogram permits the detection at one glance as to whether a
distribution is symmetric (i.e. the same shape on either side of a line drawn through the centre
of the histogram) or whether it is skewed (stretched out on one side – right or left skewed). It is
also readily apparent whether the data show just one maximum (unimodal) or several humps
(multimodal distribution). The parts far away from the main body of data on either side of the
histograms are usually called the tails. The length of the tails can be judged. The existence or
non-existence of straggling data (points that appear detached from the main body of data) at
one or both extremes of the distribution is also visible at one glance. The Kola C-horizon data
set provides some good examples.

Figure 3.3 shows four example histograms plotted for the variable Ba (aqua regia extraction)
from the Kola C-horizon data set. The x-axis is scaled according to the range of the data, the
starting point is usually a “nice looking” value slightly below the minimum value. Intervals
along the x-axis are adapted to the number of classes it is required to display, and the number
of classes is chosen such that the whole data range of the variable is covered (several rules of
thumb exist for the “optimum” interval length or number of classes, one of the easiest is

√
n

for the number of classes, where n is the number of individuals/samples in the data set). The
y-axis shows the number of observations in each class or, alternatively, the relative frequency
of values in percent.

In theory, when dealing with a very large data set, the length of the intervals could be
decreased so much by increasing the number of classes that the typical histogram steps disap-
pear. This results in a plot of a smooth function, the density function. This smooth function is
thought to represent the distribution from which the data are sampled by chance. If the data
were drawn from a normal distribution the density function would take on the classical bell
shape (see Figure 4.1).

One situation that often arises with environmental (geochemical) data is that the distributions
are strongly right-skewed. In addition, extreme data outliers occur quite frequently. In such
cases a histogram plotted with a “linear” scale may appear as a single bar at the left hand side
and a far outlier at the right hand side of the graphic. Such histograms contain practically no
information of value about the shape of the distribution (see upper left histogram, Figure 3.3).
Statisticians will usually solve such problems via scaling the data differently. In the case at hand
it appears advisable to reduce the influence of the high values and to focus on the main body of
data that lie in the first bar of the histogram. One solution that meets these requirements is to
scale the data logarithmically (lower right histogram, Figure 3.3). This re-scaling is called log-



32 GRAPHICS TO DISPLAY THE DATA DISTRIBUTION

Ba in C−horizon [mg/kg]

F
re

qu
en

cy

0 200 400 600 800 1000 1200

0
10

0
20

0
30

0
40

0
50

0

Ba in C−horizon [mg/kg]

F
re

qu
en

cy

0 50 100 150 200 250

0
50

10
0

15
0

20
0

Maximum = 1300 mg/kg

Ba in C−horizon [mg/kg]

F
re

qu
en

cy

0 50 100 150 200 250

0
20

40
60

80
10

0

Maximum = 1300 mg/kg

F
re

qu
en

cy

0.5 1.0 1.5 2.0 2.5 3.0

0
50

10
0

15
0

5 10 20 50 100 200 500 2000

log10(Ba) and Ba in C−horizon [mg/kg]

Figure 3.3 Histograms for Ba (aqua-regia extraction) from the C-horizon of the Kola data set. Upper
left: original data; upper right: truncated data; lower left: truncated data as upper right but with double
the number of classes; and lower right: log-transformed data. The lower right histogram has two scales
to demonstrate the logarithmic transformation, the upper scale indicating the logarithms and the lower
scale the original untransformed data

transformation of the data; a variety of data transformations are used in statistics to improve the
visibility (or more generally, the behaviour) of the data (see Chapter 10). In geochemistry the
log-transformation is the transformation that is most frequently used. Note that in the example
the log-transformation results in an almost symmetrical distribution of the strongly right-
skewed original data and that the range (i.e. maximum value − minimum value) of the data is
drastically reduced because the influence of the outliers has been reduced. Plotting a histogram
of the log-transformed values has, however, the disadvantage that the direct relation to the
original data is missing (upper scale on the x-axis). This can be overcome by using a logarithmic
scale for the x-axis (lower scale on the x-axis), this is the procedure adopted by DAS+R.

To permit scaling in the original data units, which are easier to read than a log-scale, it is also
possible to plot a histogram for a certain part of the data only, e.g., for a certain data range (upper
right histogram, Figure 3.3, range 0 to 250 mg/kg). In that case the outliers are not displayed;
and the “real” maximum value should be indicated in the plot so that an unsuspecting reader
does not gain an erroneous impression about the complete data distribution from the truncated
histogram. Plotting more classes will result in a better resolution of the distribution (lower left)
and will often considerably change the histogram’s shape. Plotting too many classes will result
in ugly gaps in the histogram.
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The choice of starting point and class interval will substantially influence the appearance
of the resulting histogram. This is shown in the lower left, where the only difference from
the histogram in the upper right position is that the number of classes was increased from
13 to 26 (according to the simple

√
n rule of thumb, 25 would be the “optimum” number

of classes for the Kola Project C-horizon data). While the lower right histogram could be
taken as an indication that a lognormal distribution is present (i.e. the log-transformed data
follow a normal distribution), the more detailed histogram suggests that this may be in fact
a multimodal distribution, approaching symmetry if log-transformed. The histogram could
clearly be misused to demonstrate a “lognormal” distribution by reducing the number of classes
(a statistical test of the distribution – see Chapter 9 – will indicate that even the log-transformed
data for Ba do not follow a normal distribution). It may also be possible that the spikes in the
distribution only appear because too many classes were chosen for the number of samples –
the spikes might then be artefacts of the way the data were reported by the laboratory, e.g., to
the nearest 1, 2, 5, or 10 mg/kg. This demonstrates how important the choice of the optimum
interval length (number of classes) is when constructing histograms. Modern software packages
will automatically use more sophisticated mathematical models than the

√
n rule of thumb for

that purpose (see, e.g., Venables and Ripley, 2002).
It can be concluded that by studying or displaying just one histogram, important aspects of

the distribution may be missed. It may thus be necessary to plot a series of histograms for a
variable (as above), or the histogram should be augmented with some other graphics displaying
the data distribution and showing additional features.

One possibility is to combine the histogram with the one-dimensional scatterplot
(Figure 3.4).
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Figure 3.4 One-dimensional scatterplot for Sc (total concentrations as determined by INAA) in the
Kola C-horizon data set, combined with the histogram
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3.3 The density trace

The density trace (kernel density estimate – Scot, 1992) is on first inspection a “smoothed line,
tracing the histogram” (Figure 3.5). It is another approximation of the underlying density func-
tion of the data. Each point along the curve is calculated from data within a defined bandwidth
using a “weight function” (in most packages; including R, these parameters are chosen by
default but can be changed manually). Choice of bandwidth and weight function will crucially
determine how the final density trace appears (compare Figure 3.5 density trace upper right with
density trace lower left). Although at first glance the density trace is a more “objective” graphic
to display the data distribution than the histogram, it can also be manipulated substantially. Den-
sity traces are better suited for comparing data distributions than histograms because they can
easily be plotted on top of one another (e.g., in different line styles or colours – see Chapter 8).
The plots (Figure 3.5) are for the distribution of Ba from the Kola C-horizon data set previ-
ously displayed as histograms (Figure 3.3). Compared to the histogram not much information is
gained. More or less the same problems are experienced as above when plotting the histograms.
Note that for plotting the density trace of the log-transformed data in the lower right display,
a log-scale was used to preserve the direct relation to the original data range (Figure 3.5).

A density trace can also be combined with a histogram to give a more realistic impression
of the data distribution.
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Figure 3.5 Density traces for Ba (aqua regia extraction) from the C-horizon of the Kola data set.
Compare to Figure 3.3
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3.4 Plots of the distribution function

Plots of the distribution function, e.g., the cumulative probability plot, were originally intro-
duced to geochemists by Tennant and White (1959), Sinclair (1974, 1976) and others. They
are one of the most informative graphical displays of geochemical distributions. There exist
several different plots of the distribution function that all have their merits.

3.4.1 Plot of the cumulative distribution function (CDF-plot)

Histogram and density trace are based on the density function. However, the percentage of
samples plotting above or below a certain data value x could be of interest. The percentage
equals an area under the curve of the density function. Percentages can also be expressed as
probabilities, i.e. the probability that a value smaller than or equal to the chosen data value x1
(Figure 3.6) appears is p1. This probability can be taken as a point in a new plot, where the
data values along the x-axis are plotted against probabilities along the y-axis (Figure 3.6). By
varying the chosen value x, additional probabilities are obtained that can then be drawn as new
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Figure 3.6 Construction of the cumulative distribution function (CDF-plot). The graphic to the left
shows the density function and the graphic to the right shows the resulting cumulative distribution
function
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points in the right hand plot for the corresponding x values (e.g., p2 for the data value x2). If
this is carried out for the whole x-range, a new plot is generated, the cumulative distribution
function or CDF-plot (right hand diagrams).

If the data follow a normal distribution (bell shape in the left hand plot), the distribution
function will have a typical symmetrical, sigmoidal S-shape (right hand plot).

3.4.2 Plot of the empirical cumulative distribution function (ECDF-plot)

Just like trying to approach the density function via plotting histograms or density traces,
it is possible to approach the distribution function by displaying the empirical cumulative
distribution function (the ECDF-plot). The ECDF-plot is a discrete step function that jumps
with each data value by 1

n , where n is the number of data points. As n becomes increasingly
large, to infinity, this function will approximate the underlying distribution function.

The ECDF-plot shows the variable values along the x-axis (either scaling according to
non-transformed data or following a transformation, e.g., logarithmic). The y-axis shows the
probabilities of the empirical cumulative distribution function between 0 and 1 (which could
also be expressed as percentages 0–100 percent).

As an example, the gold (Au) results for the Kola Project C-horizon soils are displayed
(Figure 3.7). The histogram and density trace demonstrate that the distribution is not nor-
mal but extremely right skewed, as a result the typical S-shape mentioned above for the
CDF-plot (Figure 3.7, upper right) is not present. Two very high values dominate the plot.
The ECDF-plot of the original data is still informative because it graphically displays the
distance of these two high values from the main body of the data. However, to provide a
more useful visualisation of the main body of data, a log-transformation should be applied.
Following log-transformation, the histogram and density trace still show a slight right skew
(Figure 3.7, middle left). The resulting ECDF-plot begins to display an S-shape (Figure 3.7,
middle right), however, the right skew is still clearly reflected. Instead of using a log-transform,
the plotting range of the data could be limited to focus on the main body of data (Figure 3.7,
lower left and right). This permits the study of the main body of data in far greater detail
than in the upper plot. Displaying the data in this manner requires that the viewer be re-
minded that the diagrams are displaying only a limited part of the range of the complete data
set.

One of the main advantages of the ECDF-plot is that every single data point is visible. A
geochemist would now start to search for any unusually high (or low) values and breaks in the
distribution. Very high values might, for example, indicate a mineral deposit or anthropogenic
contamination source. A break in the distribution could be caused by the presence of different
natural factors like geology, weathering and climate, or different contamination sources influ-
encing the data. In a large regional survey, the data may reflect both multiple natural processes
and anthropogenic sources. The ECDF-plot can be used with advantage to identify classes for
geochemical mapping that have a direct relation to the underlying statistical data distribution
via assigning class boundaries to these breaks (see Chapters 5 and 7).

3.4.3 The quantile-quantile plot (QQ-plot)

It is often quite difficult to judge whether the S-shape as displayed in the ECDF-plot indicates a
normal or a lognormal (or some other) distribution. When it is necessary to judge the underlying
distribution of the empirical data, a different plot is required, and it is advantageous to change
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Figure 3.7 Combination of histogram, density trace, and one-dimensional scatterplot (left hand side)
and ECDF-plot (right hand side) used to study the distribution of Au in the Kola Project C-horizon soil
data set. Upper diagrams: original scale, middle diagrams: log-scale, lower diagrams: truncated plotting
range

the y-axis scaling while keeping the x-axis the same. It is easiest to detect changes from an
expected distribution if the points fail to follow a straight line. Thus the best approach is to
change the y-axis in such a way that the plotted points fall on a straight line if they follow
the assumed distribution (normal, lognormal, or any other). To achieve this, the cumulative
distribution function must be transformed. A non-linear transformation, the inverse of the
expected distribution function of the y-axis, is used for this purpose. The values of the inverse
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Figure 3.8 QQ-plots for Au in the Kola Project C-horizon soil data set as shown in Figure 3.6. Left
hand side: x-axis non-transformed data, y-axis quantiles of the lognormal distribution; right hand side:
x-axis log-transformed data, y-axis quantiles of the normal distribution

of the expected distribution function are called quantiles. The sorted data values along the
x-axis can be considered as the quantiles of the empirical data distribution.

Quantiles are the linear measure underlying the non-linear distribution of the probabilities.
Quantiles are expressed as positive and negative numbers, they can be compared to standard
deviation units (see Chapter 10). This plot is called the quantile-quantile (QQ-) plot because
quantiles of the data distribution are plotted against quantiles of the hypothetical normal or
lognormal distribution. Figure 3.8 shows the QQ-plot for the Kola C-horizon Au data. In the
left hand diagram the original data are plotted along the x-axis. In the right hand diagram the
log-transformed values are plotted along the x-axis to reduce the impact of the two extreme
values. By changing the scaling of the y-axis, it is possible to check the distribution for log-
normality in both diagrams. When plotting the original data, the y-axis is scaled according
to the quantiles of the lognormal distribution. When plotting the log-transformed data, the
y-axis is scaled according to the quantiles of the normal distribution. This is possible because
the lognormal distribution is simply the logarithm of the normal distribution. For the standard
normal distribution 0 corresponds to the MEDIAN and the RANGE [−1, 1] indicates the
inner two-thirds of the data distribution. Unfortunately, the construction and interpretation
of the QQ-plot for different data distributions requires statistical knowledge about these data
distributions and their quantiles that is far beyond the scope of this book. The interested reader
can consult Chambers et al. (1983).

In general, when checking for other distributions (e.g., Poisson or gamma distributions), the
x-axis is always scaled according to the original data, and only the y-axis is changed according
to the quantiles of the expected distribution.

When plotting empirical data distributions in the QQ-plot, it may still be quite difficult to
determine whether the data points really follow a straight line. A simple and robust way to plot
a straight line into the diagram is to connect first and third quartiles of both axes. In addition
to the straight line 95 percent confidence intervals around that line can also be constructed.

The confidence interval encloses 95 percent of the data points that could have been drawn
from the hypothetical distribution. These limits can be used to support a graphical decision
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Figure 3.9 QQ-plots as shown in Figure 3.8 with a straight line indicating the hypothetical distribution
and the 95 percent confidence intervals as dashed lines

as to whether the empirical data originate from the hypothetical distribution. The width of
the confidence interval varies because the “allowed” deviation of data points from the straight
line depends on the number of samples. In the example plot (Figure 3.9) the upper tail of the
distribution clearly deviates from log-normality.

3.4.4 The cumulative probability plot (CP-plot)

The examples above demonstrate that a scale forcing the points in the plot to follow a straight
line is useful. Because in the QQ-plot the scaling of the y-axis is different from distribution
to distribution, it would be much easier if the y-axis were expressed in probabilities. In the
pre-computer times such a plot was constructed on probability paper that was especially de-
signed for a normal (or lognormal) distribution. This procedure was originally introduced to
geochemists by Tennant and White (1959), Sinclair (1974, 1976) and others. The graph in the
plot is exactly the same as in the QQ-plot. When using a computer, it is no longer necessary to
limit the QQ-plot to a normal (lognormal) distribution. Any other distribution could be intro-
duced for scaling the y-axis. If the scale on the y-axis is expressed in probabilities rather than in
quantiles, the plot is generally named the cumulative probability plot (CP-plot) (Figure 3.10).
Note that when checking for normality, the probabilities as expressed along the y-axis can
never reach zero or one because these values would correspond to quantiles of minus infinity
or plus infinity, respectively.

The CP-plot with log-scale for the data (Figure 3.10, right hand side) is especially use-
ful because it allows direct visual estimation of the MEDIAN (50th percentile) or any
other value from the x-axis or the percentage of samples falling below or above a cer-
tain threshold (e.g., a maximum admissible concentration (MAC)) from the y-axis. It also
allows the assigning of a percentage to any break in the curve; in the example several
breaks in the Au data are visible, the first one occurs at about 85 per cent (c. 1.5 !g/kg
Au), the next at 95 per cent (c. 3 !g/kg Au) of the data. Just as in the QQ-plot, the
straight line to judge whether the empirical data follow the hypothetical distribution can be
shown.
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Figure 3.10 CP-plots for Au in the Kola Project C-horizon soil data set as shown in Figures 3.6, 3.7
and 3.8. Left hand side: x-axis non-transformed data, y-axis probabilities in per cent; right hand side:
x-axis log-transformed data, y-axis probabilities in per cent

3.4.5 The probability-probability plot (PP-plot)

Yet another version of these diagrams is the probability-probability (PP-) plot. Instead of
plotting quantiles of the hypothetical distribution against the quantiles of the data distribution
at fixed probabilities (QQ-plot), the probability of the hypothetical distribution is plotted against
the probability of the empirical data distribution at fixed quantiles (PP-plot). The advantage
of the PP-plot is that while the QQ-plot and the CP-plot can be dominated by extreme values,
these cannot dominate the PP-plot because of their low probability. The PP-plot will thus focus
the attention on the main body of data. In the example plot (Figure 3.11) an additional flexure
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Figure 3.11 PP-plots for Au in the Kola Project C-horizon soil data set as shown in Figures 3.7, 3.8, 3.9,
and 3.10. Left hand side x-axis: probabilities referring to the non-transformed data, y-axis: probabilities
for lognormal distribution; right hand side x-axis: probabilities referring to the log-transformed data,
y-axis: probabilities for the normal distribution
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at about 20 percent of the Au distribution becomes visible. This is visible as a weak flexure
in the ECDF-plot (Figure 3.7) at 0.5 !g/kg Au. The main disadvantage of the PP-plot is that
the relation to the original data is completely lost, whereas it is retained in the ECDF- and
CP-plot. It is of course possible to use the PP-plot in combination with the CP-plot to identify
the data value for 20 percent. A combination of CP-plot and ECDF- or PP-plot may thus be
quite powerful in obtaining a more complete picture of the data distribution. Single extreme
values are of course hardly visible in the PP-plot though they are in the ECDF-plot. Just as in
the QQ- and CP-plot, a straight line can be introduced in the PP-plot to check for agreement
with a hypothetical distribution.

3.4.6 Discussion of the distribution function plots

Depending on the empirical data distribution of a given variable, the different versions of
these plots all have their merits, especially when the task is to detect fine structures (breaks
or flexures) in the data. If only one plot is to be presented, it is advisable to look first at the
different possibilities and then select the most informative for the variable under study because
this will depend on the actual data distribution of each variable. In applied geochemistry the
CP-plot with logarithmic x-axis is probably the most frequently used (Figure 3.10, right).
In combination with the less frequently used ECDF-plot and the almost never used PP-plot
(Figure 3.11, right), it holds the potential to provide a very realistic picture of the complete
data distribution.

As mentioned above, one of the main advantages of these diagrams is that each single data
value remains observable. The range covered by the data is clearly visible, and extreme outliers
are detectable as single values. It is possible to directly count the number of extreme outliers
and observe their distance from the core (main mass) of the data.

When looking at a selection of these plots for As (Figure 3.12), several data quality
issues can be directly detected; for example, the presence of discontinuous data values at the
lower end of the distribution. Such discontinuous data are often an indication of the method
detection limit or too-severe rounding, discretisation, of the measured values reported by the
laboratory. The PP-plot corresponding to the log-transformed data shows most clearly how
serious an issue this data discretisation due to rounding of the values by the laboratory can
become.

Values below the detection limit, set to some fixed value, are visible as a vertical line at
the lower end of the plots, and the percentage of values below the detection limit can be
visually estimated. The CP-plot with logarithmic scale (middle right figure) displays this best.
The detection limit for As was 0.1 mg/kg, about two per cent of all values plot below the
detection limit (Figure 3.12). From 0.1 to 1 mg/kg the As values were reported in 0.1 mg/kg
steps – obviously a too-harsh discretisation for the data at hand, causing artificial data structures
(Figure 3.12). The presence of multiple populations results in slope changes and breaks in the
plots (Figure 3.12).

3.5 Boxplots

The boxplot is one of the most informative graphics for displaying a data distribution. It is
built around the MEDIAN (see Chapter 4), which divides any data set into two equal halves.
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Figure 3.12 Six different ways of plotting distribution functions. Upper row: empirical cumulative
distribution function plots (ECDF-plots); middle row: cumulative probability plots (CP-plots); lower
row: probability-probability plots (PP-plots). Left half of diagram: data without transformation; right
half of diagram: plots for log-transformed data

3.5.1 The Tukey boxplot

Tukey (1977) introduced the boxplot to exploratory data analysis. The construction of the
Tukey boxplot is best demonstrated using a simple sample data set, consisting of only nine
values:

2.3 2.7 1.7 1.9 2.1 2.8 1.8 2.4 5.9.
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The data are sorted to find the MEDIAN:

1.7 1.8 1.9 2.1 2.3 2.4 2.7 2.8 5.9.

After finding the MEDIAN (2.3), the two halves (each of the halves includes the MEDIAN)
of the data set are used to find the “hinges”, the MEDIAN of each remaining half:

1.7 1.8 1.9 2.1 2.3 2.4 2.7 2.8 5.9.

These upper and lower hinges define the central box, which thus contains approximately
50 percent of the data. In the example the “lower hinge” (LH) is 1.9, the “upper hinge” (UH)
is 2.7. The “inner fence”, a boundary beyond which individuals are considered extreme values
or potential outliers, is defined as the box extended by 1.5 times the length of the box towards
the maximum and the minimum. This is defined algebraically, using the upper whisker as an
example, as

Upper inner fence (UIF) = UH(x) + 1.5 · HW(x).
Upper whisker = max(x[x ≤ UIF]).

where HW (hinge width) is the difference between the hinges (HW =upper hinge–lower hinge),
approximately equal to the interquartile range (depending on the sample size), i.e. Q3−Q1
(75th − 25th percentile); and the square brackets, [. . . ] indicate the subset of values that meet
the specified criterion.

The calculation is simple for the example data:

Hinge width, HW = UH − LH = 2.7 − 1.9 = 0.8.

Lower inner fence, LIF = LH − (1.5 · HW) = 1.9 − (1.5 · 0.8) = 0.7.

Upper inner fence, UIF = UH + (1.5 · HW) = 2.7 + (1.5 · 0.8) = 3.9.

By convention, the upper and lower “whiskers” are then drawn from each end of the box to
the furthest observation inside the inner fence. Thus the lower whisker is drawn from the box
to a value of 1.7, the lower whisker and minimum value are identical, and the upper whisker is
drawn to the value of 2.8. Values beyond the whiskers are marked by a symbol, in the example
the upper extreme value of (5.9) is clearly identified as an extreme value or data outlier (see
Chapter 7) and is at the same time the maximum value.

Figure 3.13 shows a “classical” Tukey boxplot for Ba in the Kola C-horizon samples. No
lower extreme values or outliers are identified. The lower inner fence is lower than the minimum
value, and thus the lower whisker terminates at the location of the minimum value. The upper
inner fence and termination of the upper whisker fall together in this example, and all values
to the right of the upper whisker are identified as upper extreme values or outliers.

In summary, the Tukey boxplot – one of the most powerful EDA graphics – shows in
graphical form:

! the “middle” (MEDIAN) of a given data set, identified via the line in the box;! spread (see Chapter 4) by the length of the box (the hinge width);! skewness (see Chapter 4) by the symmetry of the box and whisker extents about the median
line in the box;! kurtosis (see Chapter 4) by the length of the whiskers in relation to the width of the box;! the existence of extreme values (or outliers – see Chapter 7), identified by their own
symbol.
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Figure 3.13 Tukey boxplot for Ba in the Kola C-horizon soil samples

Furthermore, because the construction of the boxplot is based on quartiles, it will not be
seriously disturbed by up to 25 percent of “wild” data at either end of the distribution. It is not
even seriously influenced by widely different data distributions (Hoaglin et al., 2000).

3.5.2 The log-boxplot

It is important to recognise that the calculation of the whiskers in the above formula assumes
data symmetry, lack of which is easily recognised by the median line not being close to the
middle of the box. The recognition of extreme values and outliers is based on normal theory,
and the standard deviation (SD) of the distribution is estimated via the hinge width (HW)
or interquartile range (IQR). So for the estimate of SD to be appropriate, there has to be
symmetry in the middle 50 percent of the data (see Chapter 4). Thus for strongly right-skewed
data distributions, as frequently occur in applied geochemistry, the Tukey boxplot based on
untransformed data will tend to seriously underestimate the number of lower extreme values
and overestimate the number of upper extreme values.

Figure 3.13 demonstrates that the boxplot detects a high number of upper extreme values
for the Ba data and no lower extreme values. The reason for this is due to the right-skewed
data distribution, indicated by the MEDIAN falling only one-third of the hinge width (HW)
above the lower hinge (LH). This feature was also apparent in the histogram and density
trace (Figures 3.3 and 3.5). These figures demonstrate that the Ba distribution approaches
symmetry when the data are log-transformed. The Tukey boxplot of the log-transformed data
will thus be suitable for providing a realistic estimate of the extreme values at both ends of the
data distribution. Figure 3.14 shows the Tukey boxplot for the log-transformed Ba data. As
expected, the number of upper extreme values is drastically reduced, and one lower extreme
value is now identified (Figure 3.14, upper diagram). It is of course possible to plot a log-scale
for the original data to regain the desirable direct relationship (Figure 3.14, middle). Because
the boxplot is reliable for symmetric distributions, it is appropriate to calculate the values for
the whiskers for the log-transformed distribution and then back-transform the values for the
fences to the original data scale (Figure 3.14 lower diagram). Note that the MEDIAN and
hinges will not be changed by log- and back-transformation because they are based on order
statistics. This version of the boxplot is called the log-boxplot and should be used when the
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Figure 3.14 Boxplots for Ba. Upper diagram: the boxplot of the log-transformed data. Middle diagram:
the same but scaled according to the original data. Lower diagram: log-boxplot of the original data
with whiskers calculated according to the symmetrical log-transformed data and back-transformed to
the original data scale – compare with the Tukey boxplot in Figure 3.13

original data are strongly skewed and it is still desirable to preserve the data scale. Comparison
of Figure 3.13 with Figure 3.14 (lower diagram) demonstrates that the limits of the box are not
changed; however, the extent and position of the whiskers and the number of extreme values
has changed dramatically.

In conclusion, the Tukey boxplot should not be applied to strongly skewed data distributions
without an appropriate data transformation because it will result in a wrong impression about
the upper and lower extreme values. Thus for applied geochemical data, the data distribution
should always be checked for symmetry before drawing either a Tukey boxplot or the log-
boxplot. In the majority of cases the log-boxplot (Figure 3.14, lower plot) will be better suited
to identify the number and position of extreme values.
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If the log-transformed data still deviate from symmetry, versions of the boxplot exist that
can deal with strongly skewed data sets and will still provide useful fences for extreme values
at both ends of the data distribution. They are based on a robust measure of skewness (Section
4.4) for the calculation of the fences for the lower and upper whiskers (Vandervieren and
Hubert, 2004).

3.5.3 The percentile-based boxplot and the box-and-whisker plot

The data symmetry problems with the Tukey boxplot are probably the reason why some workers
prefer to use a modified version, the percentile-based boxplot, where all definitions are based
on percentiles (see Chapter 4): MEDIAN and 25th and 75th percentile for the box and 2nd (or
5th to 20th) and 98th (or 80th to 95th) percentile for the whiskers.

However, when using a percentile-based boxplot, one of the major advantages of the Tukey
boxplot is lost, i.e. the “automatic” identification of extreme values. The percentile boxplot
will always identify a certain percentage of extreme values while it is possible that no extreme
values will be identified with the Tukey boxplot. When studying boxplots, it is essential to be
aware of the exact conditions used for their construction.

Because the Tukey boxplot, log-boxplot, and percentile-based boxplot all look the same to
the unsuspecting reader (compare Figures 3.13, 3.14 and 3.15), it should be good practice to
explain in the figure caption which version of the plot was used.

In the box-and-whisker plot (see, e.g., Garrett, 1988) the whiskers are drawn to stated
percentiles, e.g., the 5th and 95th, and the minima and maxima plotted as crosses. No attempt
is made to identify extreme values. The box-and-whisker plot is simply a graphical summary
of the data based on the order statistics (percentiles) with no assumptions concerning the

0 200 400 600 800 1000 1200

Ba [mg/kg]

0 200 400 600 800 1000 1200

Ba [mg/kg]

Figure 3.15 Percentile-based boxplot using the 5th and 95th (upper boxplot) and 2nd and 98th

percentile (lower boxplot) for drawing the whiskers. Variable Ba, Kola Project C-horizon; compare with
Figures 3.13 and 3.14
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Figure 3.16 Box-and-whisker plot of the variable Ba, Kola Project C-horizon

underlying statistical model. Figure 3.16 is the box-and-whisker plot for Ba in Kola Project
C-horizon soils. The resulting plot is the same as the boxplot shown in Figure 3.15, upper
boxplot, without identifying all outliers or extreme values.

3.5.4 The notched boxplot

Often the information included in the Tukey boxplot is extended by adding an estimate of the
95 percent confidence bounds on the MEDIAN. This leads to a graphical test of comparability
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Figure 3.17 Histogram, density trace, one-dimensional scatterplot, and boxplot in just one display,
combined with the ECDF-plot. Variable Ba, Kola Project C-horizon. Upper diagrams: original data (with
log-boxplot); lower diagrams: log-transformed data
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– much like the more formal t-test (see Chapter 9) – of MEDIANS via notches in the boxplot.
This use of boxplots is discussed in Section 9.4.1.

3.6 Combination of histogram, density trace, one-dimensional scatterplot,
boxplot, and ECDF-plot

Several of the plots named so far – one-dimensional scatterplot, histogram, density trace and
boxplot – can advantageously be combined into just one display (Reimann, 1989). Figure 3.17
(left) shows this combined graphic for Ba. The ECDF-plot is another graphic that will reveal
interesting properties of the data distribution (Figure 3.17, right). In contrast to the QQ-, CP-,
or PP-plot, the ECDF-plot is not based on the assumption of any underlying data distribution.
It is thus ideally suited as an exploratory data analysis tool in the first stages of data analysis.

In combination these graphics provide an excellent first impression of the data, as each of
them highlights a different aspect of the data distribution (Figure 3.17). Figure 3.17 shows that
Ba is strongly right skewed for the original data. It displays an almost symmetrical distribution
for the log-transformed data. For the log-transformed data both the one-dimensional scatterplot
and ECDF-plot show some minor disturbances at the lower end of the Ba distribution. For
further work with most statistical methods requiring symmetrical data, the log-transformed
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Figure 3.18 Combination of histogram, Tukey boxplot, ECDF-, and CP-plot for the variable Ba, Kola
Project C-horizon
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values of this variable should obviously be used. One could also conclude that the log-boxplot
should be used for further work with this variable for a realistic identification of extreme values
whenever the data are kept in the original scale.

3.7 Combination of histogram, boxplot or box-and-whisker plot,
ECDF-plot, and CP-plot

A different combination of the plots in this chapter has also proven informative in a single
display (Figure 3.18). Using the data for Ba in Kola C-horizon soils, the histogram in the
upper left is the same as in Figure 3.17. The upper right display is either a Tukey boxplot
or a box-and-whisker plot, the user’s choice. The lower left display is an ECDF-plot and the
lower right a CP-plot. The ECDF-plot and CP-plot permit easy inspection of the middle and
extreme parts of the data distribution, respectively. The choice of Tukey boxplot or box-and-
whisker plot depends on whether the user wishes to identify potential outliers or simply have
an order statistics based replacement for the histogram. The plotting of the Tukey boxplot
above the CP-plot permits easy comparison of the two plots. Figure 3.18 indicates that all plots
are dominated by some few extreme values. Thus the whole display should be plotted using
logarithmic scaling (Figure 3.19).
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Figure 3.19 The same plot as Figure 3.18 using logarithmic scales
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3.8 Summary

When working with a new data file it is highly advisable to study the data distribution in detail
before proceeding to all subsequent statistical analyses. Many statistical methods are based
on assumptions about the data distribution. A documentation of the data distribution will help
to decide which statistical methods are appropriate for the data at hand. A histogram alone is
not sufficient to get a good impression of the data distribution. The impression gained from
histogram and density trace alone depends strongly on the choice of parameters. A combination
of different graphics will often provide greater insight into the data distribution. All variables
should thus be documented in a combination of summary plots, e.g., histogram combined with
density trace, boxplot and one-dimensional scatterplot and ECDF- or CP-plots.

It is advisable to have copies of a number of distribution graphics for all variables under
study at hand for easy reference when more advanced data analysis methods are applied.


