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Modeling Biogeochemical Cycles 

Henning Rodhe 

4.1 Introductory Remarks 

To formulate a model is to put together pieces of 
knowledge about a particular system into a 
consistent pattern that can form the basis for (1) 
interpretation of the past history of the system 
and (2) prediction of the future of the system. To 
be credible and useful, any model of a physical, 
chemical or biological system must rely on both 
scientific fundamentals and observations of the 
world around us. High-quality observational 
data are the basis upon which our understand-
ing of the environment rests. However, observa-
tions themselves are not very useful unless the 
results can be interpreted in some kind of model. 
Thus observations and modeling go hand in 
hand. 

This chapter focuses on types of models used 
to describe the functioning of biogeochemical 
cycles, i.e., reservoir or box models. Certain 
fundamental concepts are introduced and some 
examples are given of applications to biogeo-
chemical cycles. Further examples can be found 
in the chapters devoted to the various cycles. 
The chapter also contains a brief discussion of 
the nature and mathematical description of 
exchange and transport processes that occur in 
the oceans and in the atmosphere. This chapter 
assumes familiarity with the definitions and 
basic concepts listed in Section 1.5 of the intro-
duction such as reservoir, flux, cycle, etc. 

Modeling biogeochemical cycles normally 
involves estimating the spatial and temporal 
averages for concentrations and fluxes in and 
out of reservoirs (i.e., reservoir modeling). The 

spatial average (i.e., the physical size of the 
reservoir itself) often has a horizontal size 
approaching that of a continent, or larger, i.e., 
> 1000 km. The time scales corresponding to this 
spatial average are months, or longer. This 
means that day-to-day variations in weather 
and ocean currents are not generally considered 
explicitly when modeling biogeochemical cycles. 

The advent of fast computers and the avail-
ability of detailed data on the occurrence of 
certain chemical species have made it possible 
to construct meaningful cycle models with a 
much smaller and faster spatial and temporal 
resolution. These spatial and time scales corre-
spond to those in weather forecast models, i.e. 
down to 100 km and 1 h. Transport processes 
(e.g., for CO2 and sulfur compounds) in the 
oceans and atmosphere can be explicitly 
described in such models. These are often 
referred to as "tracer transport models." This 
type of model will also be discussed briefly in 
this chapter. 

4.2 Time Scales and Single Reservoir Systems 

4,2,1 Turnover Time 

Consider the reservoir shown in Fig. 4-1. The 
turnover time is the ratio between the content 
(M) of a substance (tracer) in the reservoir and 
the total flux out of it (S): 

^0 = - ^ (1) 
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Fig. 4-1 Schematic illustration of a single reservoir 
with source flux Q, sink flux S, and content M. 

The turnover time may be thought of as the time 
it would take to empty the reservoir if the sink 
(S) remained constant while the sources were 
zero (TQS = M). This time scale is also sometimes 
referred to as "renewal time" or "flushing 
time." In the common case when the sink is 
proportional to the reservoir content (S = kM), 
the turnover time is the inverse of the propor-
tionality constant (fc~^), which is analogous to 
first-order chemical kinetics. 

In fluid reservoirs like the atmosphere or the 
ocean, the turnover time of a tracer is also 
related to the spatial and temporal variability of 
its concentration within the reservoir; a long 
turnover time corresponds to a small variability 
and vice versa Qunge, 1974; Hamrud, 1983). 
Figure 4-2 shows a plot of measured trace gas 
variability in the atmosphere versus turnover 
time estimated by applying budget considera-
tions as indicated by Equation (1). An inverse 
relation is obvious, but the scatter in the data 
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Fig. 4-2 Inverse relationship between relative stan-
dard deviation of atmospheric concentration and 
turnover time for important trace chemicals in the 
troposphere. (Modified from Junge (1974) with per-
mission from the Swedish Geophysical Society.) 

implies some departure from this simple rela-
tion. 

If material is removed from the reservoir by 
two or more separate processes, each with a flux 
S/, then turnover times with respect to each 
process can be defined as: 

M 
(2) 

Since Yl ^t — S/ these time scales are related to 
the turnover time of the reservoir, TQ, by 

To^^E^o;-' (3) 
As an application of the turnover time con-

cept, let us consider the model of the carbon 
cycle shown in Fig. 4-3. This diagram is different 
from the one used in the chapter on the carbon 
cycle (Chapter 11), because it serves our pur-
poses better for this chapter. The values given 
for the various fluxes and burdens are very 
similar to the corresponding figure in Chapter 
11 (Fig. 11-1). 

The turnover time of carbon in biota in 
the ocean surface water is 3 x 10^^/(4 + 36) x 
10^^ yr ;^ 1 month. The turnover time with 
respect to settling of detritus to deeper layers is 
considerably longer: 9 months. Faster removal 
processes in this case must determine the turn-
over time: respiration and decomposition. 

The equation describing the rate of change of 
the content of a reservoir can be written as 

^=° To 
(4) 

If the reservoir is in a steady state (dM/df = 0) 
then the sources (Q) and sinks (S) must balance. 
In this case Q can replace S in Equation (1). 

4,2.2 Residence Time (Transit Time) 

The residence time is the time spent in a reservoir 
by an individual atom or molecule. It is also the 
age of a molecule when it leaves the reservoir. If 
the pathway of a tracer from the source to the 
sink is characterized by a physical transport, the 
word transit time can also be used. Even for a 
single chemical substance, different atoms and 
molecules will have different residence times in 
a given reservoir. Let the probability density 
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Fig. 4-3 Principal reservoirs and fluxes in the carbon cycle. Units are 10^^ g (Pg) C (burdens) and Pg C/yr 
(fluxes). (From Bolin (1986) v^ith permission from John Wiley and Sons.) 

function of residence times be denoted by (/)(T), 
where 0(T)dT describes the fraction of the tracer 
having a residence time in the interval to i to 
T + dr. The average residence time (average transit 
time) Tr is defined by: 

Jo 
T(/)(T)dT (5) 

In many cases the word "average" is left out and 
this quantity is simply referred to as "residence 
time." 

The shape of the probability density function, 
(j){x), depends on the system. Some examples are 
shown in Fig. 4-4. This figure also contains 
probability density of age (see Section 4.2.3). 
Figure 4-4a might correspond to a lake with 
inlet and outlet on opposite sides of the lake. 
Most water molecules will then have a residence 
time in the lake roughly equal to the time it takes 
for the mean current to carry the water from the 

inlet to the outlet, i.e., x^- Very few molecules 
will have a residence time much greater than or 
much less than ij., as illustrated in the 0 curve. 
Another example is a human population where 
most people live to attain mature age. The 0 
curve in this case can be interpreted as the 
frequency function for the age at which people 
die; few die very young and few survive the 
average age of death by more than 50%. 

Figure 4-4b illustrates exponential decay. A 
simple example could be the reservoir of all "̂̂ Û 
on Earth. The half-life of this radionuclide is 
4.5 X 10^ years. Since the Earth is approximately 
4.5 X 10^ years old, this implies that the content 
of the ^^^U reservoir today is about half of what 
it was when the Earth was formed. The prob-
ability density function of residence time of the 
uranium atoms originally present is an expo-
nential decay function. The average residence 
time is 6.5 x 10^ years. (The average value of 
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residence times, the probability density function 
of ages, I/^(T), has a shape that depends on the 
situation. In a steady-state reservoir, however, 
\I/{T) is always a nonincreasing function. The 
shapes of II/{T) corresponding to the three resi-
dence time distributions discussed above are 
included in Fig. 4-4. 

The average age of atoms in a reservoir is given 
by 

3 T 

Fig. 4-4 The age frequency function II/{T) and the 
residence time frequency function (J)(T) and the corre-
sponding average values la and î  for the three cases 
described in the text: (a) ig > ir; (b) Ta = ir; (c) la > Tr-
(Adapted from Bolin and Rodhe (1973) with permis-
sion from the Swedish Geophysical Society.) 

time for an exponential decay function is the 
half-life divided by In 2.) In a well-mixed reser-
voir all particles always have the same prob-
ability of being removed. In such situations the 
frequency function for the residence time is also 
exponential. 

In the reservoir corresponding to Fig. 4-4c the 
removal is biased towards "young" particles. 
This might occur when the sink is located close 
to the source (the "short circuit" case). 

423 Age 

The age of an atom or molecule in a reservoir is 
the time since it entered the reservoir. As with 

/•OO 

= / T\l/{T)dT 
Jo 

(6) 

4.2.4 Relations Between TQ, T^ and Ta 

It can be shown that for a reservoir in steady 
state. To is equal to ir, i.e. the turnover time is 
equal to the average residence time spent in the 
reservoir by individual particles (Eriksson, 1971; 
Bolin and Rodhe, 1973). This may seem to be a 
trivial result but it is actually of great signifi-
cance. For example, if TQ can be estimated from 
budget considerations by comparing fluxes and 
burdens in Equation (1) and if the average 
transport velocity (V) within the reservoir is 
known, the average distance (L = VT^) over 
which the transport takes place in the reservoir 
can be estimated. 

The relation between TQ and T^ is not as 
simple. Ta may be larger or less than TQ depend-
ing on the shape of the age probability density 
function (as shown in Fig. 4-4). For a well-mixed 
reservoir, or one with a first-order removal 
process, Ta = TQ (Fig. 4-4b). 

In the case of a human population corre-
sponding to Fig. 4-4a, Ta is only about half of 
TQ. This example applies to the average age of 
all Swedes, which is around 40 years, whereas 
the average residence time, i.e., the average 
length of life (average age at death) is almost 
80 years. 

In the situation where most atoms leave the 
reservoir soon and few of them remain very 
long (Fig. 4-4c), Ta is larger than TQ (the "short 
circuit" case). Some further examples of age 
distributions and relations between Ta and TQ 
are given in Lerman (1979). 

When equating TQ and Tr it must be made clear 
that the flux, S, which defines TQ (see Equation 
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(1)) is the gross flux and not a net flux. For 
example, removal of water from the atmosphere 
occurs both by precipitation and dry deposition 
(direct uptake by diffusion to the surface). Dry 
deposition is not normally explicitly evaluated 
but subtracted from the gross evaporation flux 
to yield the net evaporation from the surface. 
The turnover time of water in the atmosphere 
calculated as the ratio between the atmospheric 
content and the precipitation rate (about 10 
days) is thus not equal to the average residence 
time of water molecules in the atmosphere. The 
actual value of the average residence time of 
individual water molecules is substantially 
shorter. 

4,2,5 Response Time 

The response time (relaxation time, adjustment 
time) of a reservoir is a time scale that charac-
terizes the adjustment to equilibrium after a 
sudden change in the system. A precise defini-
tion is not easy to give except in special circum-
stances like in the following example. 

Consider a single reservoir, like the one 
shown in Fig. 4-1, for which the sink is propor-
tional to the content (S = kM) and which is 
initially in a steady state with fluxes Qo = So 
and content MQ. The turnover time of this 
reservoir is 

^0 
Mo 

(7) 

Suppose now that the source strength is sud-
denly changed to a new value Qi. How long 
would it take for the reservoir to reach a new 
steady state? The adjustment process 
described by the differential equation 

IS 

dM ^ 
S = Qi-kM (8) 

with the initial condition M{t = 0) = Mo. 
The solution 

M{t) - Ml - (Ml - Mo) exp{-kt) (9) 

approaches the new steady-state value 
(Ml = Qi/k) with a response time equal to k~^ 
or TQ. The change of the reservoir mass from the 
initial value MQ to the final value Mi is illus-

Mass 

( M i - M o ) « ^ 

Fig. 4-5 Illustration of an exponential adjustment 
process. In this case, the response time is equal to k"^. 

trated in Fig. 4-5. In this case, with an exponen-
tial adjustment, the response time is defined as 
the time it takes to reduce the imbalance to 
e"^ = 37% of the initial imbalance. This time 
scale is sometimes referred to as ''e-folding 
time.'' Thus, for a single reservoir with a sink 
proportional to its content, the response time 
equals the turnover time. 

As a specific example, consider oceanic sul-
fate as the reservoir. Its main source is river 
runoff (pre-industrial value: 100 Tg S/yr) and 
the sink is probably incorporation into the 
lithosphere by hydrogeothermal circulation in 
mid-ocean ridges (100 Tg S/yr, McDuff and 
Morel, 1980). This is discussed more fully in 
Chapter 13. The content of sulfate in the oceans 
is about 1.3 X lO^TgS. If we make the (un-
realistic) assumption that the present runoff, 
which due to man-made activities has increased 
to 200 Tg S/yr, would continue indefinitely, 
how fast would the sulfate concentration in the 
ocean adjust to a new equilibrium value? The 
time scale characterizing the adjustment would 
be To ̂  1.3 X 10^ Tg/(10^ Tg/yr) ^ 10^ years 
and the new equilibrium concentration even-
tually approached would be twice the original 
value. A more detailed treatment of a similar 
problem can be found in Southam and Hay 
(1976). 

4.2,6 Reservoirs in Non-steady State 

Let us analyze the situation when one observes a 
change in reservoir content and wants to draw 



1 
-̂ 0 

(or) Q^ 
M 
^0 

conclusions regarding the sources and sinks. We 
rewrite Equation (8) as 

1 d M _ Q 1 
M dt ~M~T^ 

where TQ = l/fc is the turnover time in the steady 
state situation. Let us denote the left side of the 
equation (the observed rate of change of the 
reservoir content) as lobs- If the mass were 
observed to increase by, say, 1% per year, lobs 
would be 100 years. Two limiting cases can be 
singled out: 

1- Tobs > 'ẑ o- In this case there has to be an 
approximate balance between the two terms 
on the right-hand side of the equation. 

M ' 

This means that the observed change in M 
mainly reflects a change in the source flux Q 
or the sink function. As an example we may 
take the methane concentration in the atmos-
phere, which in recent years has been increas-
ing by about 0.5% per year. The turnover 
time is estimated to be about 10 years, i.e., 
much less than lobs (200 years). Conse-
quently, the observed rate of increase in 
atmospheric methane is a direct consequence 
of a similar rate of increase of emissions into 
the atmosphere. (In fact, this is not quite true. 
A fraction of the observed increase is prob-
ably due to a decrease in sink strength caused 
by a decrease in the concentration of hydrox-
yl radicals responsible for the decomposition 
of methane in the atmosphere.) 

2. Tobs < 'ẑ o- In this case dM/dt ^ Q which 
means that there is an increase in reservoir 
content about equal to the source flux with 
little influence on the part of the sink. The 
reservoir is then in an accumulative stage and 
its mass is increasing with time largely as a 
function of Q, irrespective of whether Q itself 
is increasing, decreasing or constant. A good 
example of this situation is sulfur hexafluo-
ride (SFe) whose concentration in the atmos-
phere is currently increasing by about 0.5% 
per year (lobs = 200 years) as a result of 
various industrial emissions (IPCC, 1996). 
Because of inefficient removal processes (SF^ 
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is a very stable molecule) the turnover time of 
SFe is as large as 3000 years. The rate of 
increase is thus a reflection of an imbalance 
between sources and sinks rather than an 
increase in the source flux Q. 

In situations where Tobs is comparable in 
magnitude to TQ, a more complex relation pre-
vails between Q, S, and M. Atmospheric CO2 
falls in this last category although its turnover 
time (3-4 years, cf. Fig. 4-3) is much shorter than 
Tobs (about 300 years). This is because the atmos-
pheric CO2 reservoir is closely coupled to the 
carbon reservoir in the biota and in the surface 
layer of the oceans (Section 4.3). The effective 
turnover time of the combined system is actu-
ally several hundred years (Rodhe and Bjork-
strom, 1979). 

4.3 Coupled Reservoirs 

The treatment of time scales and dynamic be-
havior of single reservoirs given in the previous 
section can easily be generalized to systems of 
two or more reservoirs. While the simple system 
analyzed in the previous section illustrates 
many important characteristics of cycles, most 
natural cycles are more complex. The matrix 
method described in Section 4.3.1 provides an 
approach to systems with very large numbers of 
reservoirs that is at least simple in notation. The 
treatments in the preceding section and in Sec-
tion 4.3.1 are still limited to linear systems. In 
many cases we assume linearity because our 
knowledge is not adequate to assume any other 
dependence and because the solution of linear 
systems is straightforward. There are, however, 
some important cases where non-linearities are 
reasonably well understood. In such cases ana-
lytical mathematical solutions, corresponding to 
those given in Section 4.3.1, normally do not 
exist and the mathematical expressions describ-
ing the dynamics of the cycle have to be replaced 
by finite difference expressions that may be 
solved by computer. A few of these cases are 
described in Section 4.3.2. 

As important as coupled reservoirs and non-
linear systems are, the less mathematically 
inclined may want to read this section only for 
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its qualitative material. The treatment described 
here is not essential for understanding the mate-
rial later in the book. However, an excellent 
overview of solving differential equations by 
the eigenvalue-eigenvector method used in the 
next section appears in Section 3.6 of Braun 
(1983). 

M, 
^ 2 ^ , 

k2,M2 Mg 

Fig. 4-6 A coupled two-reservoir system with fluxes 
proportional to the content of the emitting reservoirs. 

4,3.1 Linear Systems 

A linear system of reservoirs is one where the 
fluxes between the reservoirs are linearly 
related to the reservoir contents. A special case, 
that is commonly assumed to apply, is one 
where the fluxes between reservoirs are propor-
tional to the content of the reservoirs where 
they originate. Under this proportionality 
assumption the flux f̂ y from reservoir i to 
reservoir ; is given by 

(10) kijMi 

The rate of change of the amount M, in reservoir 
/ is thus 

dM, 
"dT for j^i (11) 

where n is the total number of reservoirs in the 
system. 

This system of differential equations can be 
written in matrix form as 

dM 
"dT kM (12) 

where the vector M is equal to (Mi,M2,. . . ,M„) 
and the elements of matrix k are linear combina-
tions of the coefficients kij. The solution to 
Equation (12) describes the adjustment of all 
reservoirs to a steady state by a finite sum of 
exponential decay functions (Lasaga, 1980; 
Chameides and Perdue, 1997). The time scales 
of the exponential decay factors correspond to 
the nonzero eigenvalues of the matrix k. The 
response time of the system, icycie/ niay be 
defined by 

'̂ cycle = TTTT (13) 

where £i is the nonzero eigenvalue with smal-
lest absolute value (Lasaga, 1980). The treatment 

can be generalized by adding an external forcing 
function on the right-hand side of Equations (11) 
and (12). 

As an illustration of the concept introduced 
above, let us consider a coupled two-reservoir 
system with no external forcing (Fig. 4-6). The 
dynamic behavior of this system is governed by 
the two differential equations 

dMi 
dt 

dM2 
~dr 

= -kuMi + k2iM2 

= kuMi - /C21M2 
(14) 

the expression of conservation of mass 

Ml + M2 = M T 

and the initial condition 

Mi(f = 0 ) = M i o 
M2{t = 0) = M T - Mio 

Equations (14) can be written in matrix form as 

dM 
"dT kM 

(15) 

(16) 

(17) 

where M is the vector (Mi,M2) describing the 
contents of the two reservoirs and k the matrix: 

-fcl2 
ku 

ki\ 
-hi 

The eigenvalues of k are the solutions to the 
equation 

-ku - ^ k2i 
hi -k2i - X 

{-h2-^^){-hi-^)-h2k2i^0 (18) 

Ai = 0 and h = -(^12 + hi). The general solu-
tion to Equation (17) can be written as 

M(f) = (Ai exp(.^if) + xl/2 exp(220 (19) 
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where ij/i and 1/̂2 are the eigenvectors of the 
matrix k. In our case, we have 

M{t) = lAi + ^A2exp(-(fci2 + k2i)t) (20) 

or, in component form and in terms of the initial 
conditions: 

l^ll + l<^ll 

+ I Mio - P ^ ^ ] exp[-(fci2 + fc2i)^] 
hi + k 12 ^ 1^21 

M2{t) \Yl 

\Y1 -t- /C21 
- M T 

(21) 

+ M T - Mio 
kyiMi 

hi + hi 
X exp[-fci2-f fc2i)t] 

It is seen that in the steady state the total mass 
is distributed between the two reservoirs in 
proportion to the sink coefficients (in reverse 
proportion to the turnover times), independent 
of the initial distribution. 

In this simple case there is only one time scale 
characterizing the adjustment process, that is 
{hi+hi)~ ' This is also the response time, 
'̂ cycie/ as defined by Equation (13). 

1 
'̂ cycle = 7 r ~ 7 i r ~ v^^) hi+k 21 

or, if expressed in terms of the turnover times of 
the two reservoirs: 

''cycle ''01 + T, 02 (23) 

The response time in this simple model will 
depend on the turnover times of both reservoirs 
and will always be shorter than the shortest of 
the two turnover times. If TQI is equal to T02, then 
'̂ cycie will be equal to half of this value. 

An investigation of the dynamic behavior of a 
coupled three-reservoir system using the tech-
niques described above is included in the prob-
lems listed at the end of the chapter. 

It should be noted that the steady-state solu-
tion of Equation (12) is not necessarily unique. 
This can easily be seen in the case of the four-
reservoir system shown in Fig. 4-7. In the steady 
state all material will end up in the two accumu-
lating reservoirs at the bottom. However, the 
distribution between these two reservoirs will 

Fig. 4-7 Example of a coupled reservoir system 
where the steady-state distribution of mass is not 
uniquely determined by the parameters describing 
the fluxes within the system but also by the initial 
conditions (see text). 

depend on the amount initially located in the 
two upper reservoirs. 

Before turning to nonlinear situations, let 
us consider two specific examples of coupled 
linear systems. The first describes the dynamic 
behavior of a multireservoir system; the second 
represents a steady-state situation of an open 
two-reservoir system. 

Example 7. As a specific example of a time-
dependent linear system we may take the 
model of the phosphorus cycle shown in Fig. 4-
8. This is a duplicate of the figure shown in the 
chapter on the phosphorous cycle (Fig. 14-7). 
The authors used a computer to solve the system 
of equations in Equation (11) with a time-depen-
dent source term added to represent the tran-
sient situation with an exponentially increasing 
industrial mining input (7% increase per year). 
Lasaga (1980) studied the same situation in a 
more elegant way using matrix algebra. The 
evolution of the phosphorus content of the 
various reservoirs (except in sediments) during 
the first 70 years is shown in Table 4-1. Within 
this time frame, the only noticeable change is 
seen to occur in the land reservoir. Lasaga 
showed that the adjustment time scale of the 
system, icycie/ is 53000 years. This is much 
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Fig. 4-8 The global phosphorus cycle. Values shown 
are in Tmol and Tmol/yr. (Adapted from Lerman et 
al (1975) and modified to include atmospheric trans-
fers. The mass of P in each reservoir and rates of 
exchange are taken from Jahnke (1992), MacKenzie 
et al (1993) and FoUmi (1996).) 

shorter than the turnover time of the sediment 
reservoir (2 x 10^ years) but much longer than 
the turnover times of all other reservoirs. This 
cycle is described in greater detail in Chapter 14. 

Example 2. As a much simpler example let us 
consider a system consisting of two connected 
reservoirs as depicted in Fig. 4-9. Steady state is 
assumed to prevail. Material is introduced at a 
constant rate Q into reservoir 1. Some of this 
material is removed (Si) and the rest (T) is 
transferred to reservoir 2, from which it is 

Figure 4-9 An open two-reservoir system. 

removed at a rate S2. The turnover times (aver-
age residence times) of the two reservoirs and of 
the combined reservoir (defined as the sum of 
the two reservoirs) are easily calculated to be 

Ml Ml 
(24) 

(25) 

To = 

A/Ti Mn ,So Mi Mo T 
TOl - h CCT02 

(26) 

where (x = T/Q is the fraction of the material 
passing through reservoir 1 that is transferred to 
reservoir 2. An example application of this two-
reservoir model is that it has been used to study 
the oxidation of sulfur in the atmosphere where 
S02-sulfur was treated as one reservoir and 
sulfate-sulfur as the other (Rodhe, 1978). In the 

Ml 
Si 

Ml 

L 

+ M2 
+ S2 

M2 

ui — 

T02 

M 

S2 

T + Si 

M2 

1 + M 2 

Q 
Ml 

Q 
M2 

M2 

sT' 

) 

T 
Q 

Table 4-1 Response of phosphorus cycle to mining output. Phosphorus amounts are given in TgP 
(1 Tg = 10̂ ^ g). Initial contents and fluxes as in Fig. 4-7 (system at steady state). In addition, a perturbation is 
introduced by the flux from reservoir 7 (mineable phosphorus) to reservoir 2 (land phosphorus), which is given 
by 12 exp(0.070 in units of Tg P/yr 
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special case where Si = 0, T = Q and a = 1 (all 
material introduced in reservoir 1 is transferred 
to reservoir 2) the turnover time of the combined 
reservoir equals the sum of the turnover times of 
the individual reservoirs. 

4J,2 Non-linear Systems 

In many situations the assumption about linear 
relations between removal rates and reservoir 
contents is invalid and more complex relations 
must be assumed. No simple theory exists for 
treating the various non-linear situations that 
are possible. The following discussion will be 
limited to a few examples of non-linear reser-
voir/flux relations and cycles. For a more com-
prehensive discussion, see the review by Lasaga 
(1980). 

Consider a single reservoir with a constant 
rate of supply and a removal rate proportional 
to the square of the reservoir content. The 
equation governing the rate of change of the 
reservoir content is 

dM 
Q-BM^ (27) 

If M(0) = 0, the solution to this equation is 

M: 
JQ l-exp(-2^/QBI) 
B ' 1 + exp{-2^/QBi) 

(28) 

This is graphically illustrated in Fig. 4-10. Ini-
tially, the mass increases almost linearly with 
time. After the time {2^/QB) ~ the removal term 
becomes effective and the mass begins to level 
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off. M eventually reaches a steady state equal to 
y/QjB but the response time scale is not as 
easily defined as in the linear case. Relative to a 
simple exponential relaxation process the 
adjustment given by Equation (28) is more 
rapid initially, and slower as time progresses. 

In general, if the removal flux is dependent 
upon the reservoir content raised to the power a 
(a 7̂  1), i.e., S = BM", the adjustment process 
will be faster or slower than the steady-state 
turnover time depending on whether a is larger 
or smaller than unity (Rodhe and Bjorkstrom, 
1979). 

A similar simple non-linear adjustment pro-
cess is described by the equation 

dt 
(29) 

which is a common model for the growth of 
biological systems (it is called logistical growth). 
The term AM represents exponential growth 
(unlimited supply of space and nutrients) and 
the term BNf is a removal term, a negative 
feedback effect of "crowdedness." Initially 
(where AMQ > BM§), the growth will be close 
to exponential and will then gradually level off 
to the equilibrium value A/B (Fig. 4-11). 

A sink flux that has a weaker than propor-
tional dependence on the content M of the 
emitting reservoir is often described by the 
Michaelis-Menten equation: 

S = - ^ ^ (30) 
{M + D) ^ ^ 

where C is a rate coefficient and D a term 

Mass 4 

Time 

Fig. 4-10 The shape of the function given in Equa-
tion (28). 

Mass 

B 

Time 

Fig. 4-11 Shape of 'logistical growth.'' The rate of 
change increases slowly initially. The rate of growth 
reaches a maximum and eventually drops to zero as 
the mass levels off, approaching the value A/B. 
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(Michaelis constant) which determines the 
deviation from proportionality; a small D (com-
pared to M) corresponds to a weak dependence 
of S on M and a large D corresponds to a near 
proportional dependence. 

An important example of non-linearity in a 
biogeochemical cycle is the exchange of carbon 
dioxide between the ocean surface water and the 
atmosphere and between the atmosphere and 
the terrestrial system. To illustrate some effects 
of these non-linearities, let us consider the sim-
plified model of the carbon cycle shown in Fig. 
4-12. Ms represents the sum of all forms of 
dissolved carbon (CO2, H2CO3, HCO3 and 

col 
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i 
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• 
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TA 

Terrestrial System 

M-r 
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' 
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layer 
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r 
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Fig. 4-12 Simplified model of the biogeochemical 
carbon cycle. (Adapted from Rodhe and Bjorkstrom 
(1979) with the permission of the Swedish Geophysi-
cal Society.) 

). The ocean to atmosphere flux, which is 
dependent on the concentration of the dissolved 
species C02(aq), is related to the total carbon 
content in the surface layer (Ms) by 

f SA = ksAMl'- (31) 

where the exponent asA (the buffer, or Revelle 
factor) is about 9. The buffer factor results from 
the equilibrium between C02(g) and the more 
prevalent forms of dissolved carbon. This effect 
is discussed further in Chapter 11. As a conse-
quence of this strong dependence of f SA on Ms, 
a substantial increase in CO2 in the atmosphere 
is balanced by a small increase of Ms. 

Similarly, the flux from the atmosphere to the 
terrestrial system may be represented by the 
expression 

FAT = kAjMr (32) 

The exponent aAx is considerably less than unity 
owing to the fact that CO2 generally is not the 
limiting factor for vegetation growth. This 
means that even a substantial increase in M A 
does not produce a corresponding increase in 
FAT-

Assuming that the carbon cycle of Fig. 4-12 
will remain a closed system over several thou-
sands of years, we can ask how the equilibrium 
distribution within the system would change 
after the introduction of a certain amount of 
fossil carbon. Table 4-2 contains the answer for 
two different assumptions about the total input. 
The first 1000 Pg corresponds to the total input 
from fossil fuel up to about the year 2000; the 
second (6000 Pg) is roughly equal to the now 

Table 4-2 Steady-state carbon contents (unit: Pg = 10^^ g) for the four-reservoir model of Fig. 4-11: (a) during 
the unperturbed (pre-industrial) situation; (b) after the introduction of 1000 Pg carbon; and (c) after the 
introduction of 6000 Pg carbon 

Atmosphere 
Terrestrial system 
Ocean surface layer 
Deep ocean 

Pre-industrial 
content (Pg) 

700 
3000 
1000 

35000 

After 1000 Pg 

Content (Pg) 

840 
3110 
1020 

35 730 

% increase 

20 
4 
2 
2 

After 6000 Pg 

Content (Pg) 

1880 
3655 
1115 

39050 

% increase 

170 
22 
12 
12 
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known accessible reserves of fossil carbon (Keel-
ing and Bacastow, 1977). 

If all fluxes are proportional to the reservoir 
contents, the percentage change in reservoir 
content will be equal for all the reservoirs. The 
non-linear relations discussed above give rise to 
substantial variations between the reservoirs. 
Note that the atmospheric reservoir is much 
more significantly perturbed than any of the 
other three reservoirs. Even in the case with a 
6000 Pg input, the carbon content of the oceans 
does not increase by more than 12% at steady 
state. 

However, with "only" 1000 Pg emitted into 
the system, i.e. less than 3% of the total amount 
of carbon in the four reservoirs, the atmospheric 
reservoir would still remain significantly 
affected (20%) at steady state. In this case the 
change in oceanic carbon would be only 2% and 
hardly noticeable. The steady-state distributions 
are independent of where the addition occurs. If 
the CO2 from fossil fuel combustion were col-
lected and dumped into the ocean, the final 
distribution would still be the same. 

If all fluxes were proportional to the reservoir 
content, i.e., if asA and aAx were unity, all 
reservoirs would be equally affected; 15% in the 
6000 Pg case and 2.5% in the 1000 Pg case. 

4.4 Fluxes Influenced by the Receiving 
Reservoir 

There are some important situations in which a 
flux between two reservoirs is determined not 
only by the mass of the emitting reservoir but 
also by the mass of the receptor. Uptake of CO2, 
or indeed any other nutrient by a plant commu-
nity depends also on the magnitude of its bio-
mass because that determines the size of the 
surfaces where photosynthesis take place. Con-
sider, for example, the uptake of atmospheric 
CO2 by terrestrial biota. A reasonable parame-
terization of this flux would be 

AT 
^AT^MAAITB 

M A + D 
(33) 

where the notations follow those in Fig. 4-12 
with MTB being the content of carbon in terres-
trial biota and D, a Michaelis constant. One 

problem with an expression like this is that 
mathematically speaking, the flux FAT and the 
mass MTB nnay grow without bounds; the larger 
MTB/ the larger the flux to it, i.e., exponential 
growth. To avoid such a mathematical explo-
sion, Williams (1987) suggested that the factor 
MTB in Equation (33) be replaced by 

MTB(MTB̂ ax - M T B ) 

where MTB̂ ax î  ^^ upper limit to the size of MTB-
Once MTB approaches the value MTB̂ ax/ the flux 
diminishes to zero and MTB is kept limited. 

4.5 Coupled Cycles 

An important class of cycles with non-linear 
behavior is represented by situations when 
coupling occurs between cycles of different ele-
ments. The behavior of coupled systems of this 
type has been studied in detail by Prigogine 
(1967) and others. In these systems, multiple 
equilibria are sometimes possible and oscilla-
tory behavior can occur. There have been sug-
gestions that atmospheric systems of chemical 
species, coupled by chemical reactions, could 
exhibit multiple equilibria under realistic 
ranges of concentration (Fox et ah, 1982; White, 
1984). However, no such situations have been 
confirmed by measurements. 

The cycles of carbon and the other main plant 
nutrients are coupled in a fundamental way by 
the involvement of these elements in photosyn-
thetic assimilation and plant growth. Redfield 
(1934) and several others have shown that there 
are approximately constant proportions of C, N, 
S, and P in marine plankton and land plants 
("Redfield ratios"); see Chapter 10. This implies 
that the exchange flux of one of these elements 
between the biota reservoir and the atmosphere 
- or ocean - must be strongly influenced by the 
flux of the others. 

Williams (1987) has pointed out that there are 
two main approaches to the treatment of such 
couplings. The first is to apply flux expressions 
like the one described for CO2 in Section 4.4, in 
Equation (33), and let both the rate coefficient {k) 
and the upper limit of the biota reservoir size 
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(MTB^^J be explicit functions of the available 
concentrations of the other nutrients. This 
approach allows for a pronounced interdepen-
dence between the fluxes of the different nutri-
ents but it does not ensure that the Redfield 
ratios are maintained. In the second approach 
the contents of the nutrients in the biota reser-
voir are forced to remain close to the Redfield 
ratios. This method was used by Mackenzie et al 
(1993) in their study of the global cycles of C, N, 
P, and S and their interactions. They were able to 
demonstrate how a human perturbation in one 
of these element cycles could influence the 
cycles of the other elements. 

4.6 Forward and Inverse Modeling 

In most cases models describing biogeochemical 
cycles are used to estimate the concentration (or 
total mass) in the various reservoirs based on 
information about source and sink processes, as 
in the examples given in Section 4.4. This is often 
called forward modeling. If direct measurements 
of the concentration are available, they can be 
compared to the model estimates. This process 
is referred to as model testing. If there are sig-
nificant differences between observations and 
model simulations, improvements in the model 
are necessary. A natural step is then to recon-
sider the specification of the sources and/or the 
sinks and perform additional simulations. 

Inverse modeling represents a situation when a 
model is used, in a systematic fashion, to esti-
mate the magnitude of sources or sinks from 
observed concentrations (mass). In the simplest 
case with a single reservoir (Fig. 4-1) in steady 
state, the formal solution of the inverse problem 
follows directly from the relations Q — kM or 
k = Q/M, depending on whether Q or fc is the 
quantity being sought. In a situation when con-
centrations vary in space and time and the 
model consists of several reservoirs the inverse 
modeling becomes more complex and statistical 
methods, such as minimizing the squares of 
deviations between observations and simula-
tions, have to be employed. For example, Prinn 
et al (1992) used an eight-box model of the 
atmosphere (four latitude bands and two 
height layers) together with observations of 

methyl chloroform (CH3CCI3) from a global 
network and information about its emission 
rate to estimate the removal rate of this gas in 
the atmosphere. Since the only removal process 
for methyl chloroform is the reaction with 
hydroxyl radical and the rate of this chemical 
reaction is well established, their result also 
provided an estimate of the concentration of 
hydroxyl radical in the atmosphere. This esti-
mate of the atmospheric concentration of hy-
droxyl radical has been very useful in 
connection with later (forward) modeling of 
many other chemical compounds that are also 
removed by reaction with the hydroxyl radical, 
e.g., CO, CH4, SO2, etc. 

4.7 High-Resolution Models 

So far the focus of this chapter has been on 
relatively simple box models with each box 
representing a reservoir with well-defined 
boundaries in terms of its physical, chemical or 
biological characteristics, e.g., the ocean surface 
layer, the atmosphere, the terrestrial biota, etc. 
In many situations it is also important to model 
the distribution of a species within such a 
reservoir, especially the fluid reservoirs (atmos-
phere and water bodies) where transport pro-
cesses are rapid. A common tool for modeling 
such processes is a gridpoint model in which the 
fluid space is divided into smaller boxes, each 
one of them represented mathematically in the 
model by a single gridpoint. The physical trans-
port of the species in question, by mean motions 
as well as by turbulence, can then be described 
according to Equations (40) and (41) in Section 
4.8.1 if the spatial derivatives are approximated 
by finite differences between adjacent grid-
points. 

The simplest kind of gridpoint model is one 
where only one spatial dimension is considered, 
most often the vertical. Such one-dimensional 
models are particularly useful when the condi-
tions are horizontally homogeneous and the 
main transport occurs in the vertical direction. 
Examples of such situations are the vertical 
distribution of CO2 within the ocean (except for 
the downwelling regions in high latitudes, Sie-
genthaler, 1983) and the vertical distribution of 
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ozone and other trace gases in the stratosphere 
(Ko et fl/., 1989). 

Two-dimensional gridpoint models enable 
more realistic descriptions of transport pro-
cesses in that circulation cells like the Hadley 
cell in the tropical and subtropical troposphere 
(cf. Section 10.5.2) can be explicitly modeled. 
Models of this kind, with height vs. latitude 
dimensions, have been very useful for improv-
ing our understanding of the global-scale dis-
tributions of long-lived gaseous components in 
the atmosphere. For species with an atmos-
pheric lifetime that is short compared to the 
characteristic time for mixing longitudinally 
around the globe, i.e., several weeks, two-
dimensional (height/latitude) models are less 
useful. This is the case for reactive gases like 
SO2 and NOx as well as for species carried by 
aerosol particles, which have average atmos-
pheric lifetimes of only a few days. For such 
species the concentration also exhibits large 
variations in the longitudinal direction, so 
three-dimensional models (height / latitude / 
longitude) are required. 

In three-dimensional models many more 
oceanic and atmospheric motion systems can be 
explicitly described, including ocean currents 
and monsoon circulations and extratropical 
cyclones in the atmosphere. The drawback is 
that these models quickly become very complex 
and require large computer facilities. This lim-
itation has recently become less of a problem 
because of the rapid development of computers 
and the increasing number of high-quality 
observations for model testing. Indeed, regional 
and global scale three-dimensional models have 
become a standard tool for studies of biogeo-
chemical cycles, especially their atmospheric 
component. 

Although many important features of oceanic 
and atmospheric circulation can be explicitly 
resolved in three-dimensional gridpoint 
models, there will always be many processes 
that occur on the sub-gridscale level that 
cannot. The effects of these sub-gridscale pro-
cesses must be parameterized, i.e., summarized 
in a statistical fashion in a way related to the 
large-scale flow. The purpose of parameteriza-
tion is to describe the combined effect of sub-
gridscale processes on the larger-scale 

variables. For example, convective motion sys-
tems in the oceans and in the atmosphere occur 
on spatial scales of a few km or less and there-
fore cannot be resolved explicitly in large-scale 
models with a grid size of 100 km or more. 
However, the combined effect of such motions 
is of fimdamental importance for vertical 
energy transport. Parameterization schemes 
therefore have to be used to describe how 
convection develops under certain conditions 
and how they influence the large-scale flow in 
the ocean and in the atmosphere. 

Figure 4-13 shows an example from a three-
dimensional model simulation of the global 
atmospheric sulfur balance (Feichter et ah, 
1996). The model had a grid resolution of about 
500 km in the horizontal and on average 1 km in 
the vertical. The chemical scheme of the model 
included emissions of dimethyl sulfide (DMS) 
from the oceans and SO2 from industrial pro-
cesses and volcanoes. Atmospheric DMS is oxi-
dized by the hydroxyl radical to form SO2, 
which, in turn, is further oxidized to sulfuric 
acid and sulfates by reaction with either hydrox-
yl radical in the gas phase or with hydrogen 
peroxide or ozone in cloud droplets. Both SO2 
and aerosol sulfate are removed from the atmos-
phere by dry and wet deposition processes. The 
reasonable agreement between the simulated 
and observed wet deposition of sulfate indicates 
that the most important processes affecting the 
atmospheric sulfur balance have been ade-
quately treated in the model. 

In gridpoint models, transport processes such 
as speed and direction of wind and ocean 
currents, and turbulent diffusivities (see Section 
4.8.1) normally have to be prescribed. Informa-
tion on these physical quantities may come from 
observations or from other (dynamic) models, 
which calculate the flow patterns from basic 
hydrodynamic equations. Tracer transport 
models, in which the transport processes are 
prescribed in this way, are often referred to as 
off-line models. An on-line model, on the other 
hand, is one where the tracers have been incor-
porated directly into a dynamic model such that 
the tracer concentrations and the motions are 
calculated simultaneously. A major advantage 
of an on-line model is that feedbacks of the 
tracer on the energy balance can be described 
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Fig. 4-13 Calculated and observed annual wet deposition of sulfur in mg S/m^ per year. (Reprinted from 
"Atmospheric Environment," Volume 30, Feichter, J., Kjellstrom, E., Rodhe, H., Dentener, P., Lelieveld, J., and 
Roelofs, G.-J., Simulation of the tropospheric sulfur cycle in a global climate model, pp. 1693-1707, Copyright 
© 1996, with permission from Elsevier Science.) 

realistically. Examples of such dynamically 
interactive tracers that are important for the 
climate system are CO2 and the other green-
house gases, as well as aerosols. Diie to the great 
complexity of global models that combine in an 
interactive fashion tracer transport and explicit 
hydrodynamics, few such simulations have yet 
been carried out. 

Dynamic models based on gridpoint or spec-
tral discretization have been used by meteorol-
ogists to forecast weather for several decades. 
Today, the climate issue has stimulated rapid 
development of models .designed for simula-
tions of climate and its variations on time 
scales of decades and centuries. Unlike weather^ 
forecast models, global-scale climate models -
general circulation models (GCMs) - must 
include descriptions of ocean circulation, the 
distribution of ice, snow and vegetation, and 
especially the exchange of heat, water and 
momentum (friction) between the atmosphere 
and the underlying surface. Figure 4-14 is a 

schematic of the components considered in a 
GCM. 

4.8 Transport Processes 

So far we have not gone in-depth into the nature 
of the transport processes responsible for fluxes 
of material between and within reservoirs. This 
section includes a very brief discussion of some 
of the processes that are important in the context 
of global biogeochemical cycles. More compre-
hensive treatments can be found in textbooks on 
geology, oceanography and meteorology and in 
reviews such as Lerman (1979) and Liss and 
Slinn (1983). 

4.8.1 Advection^ Turbulent Flux and Molecular 
Diffusion 

Let us consider a fluid in which a tracer / is 
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Fig. 4-14 Schematic diagram showing the components of a global climate model (GCM). (Reprinted from 
Hartmann (1994), with permission from Academic Press.) 

mixed. A flux of the tracer within the fluid can 
be brought about either by organized fluid 
motion or by molecular diffusion. These two 
flux processes can be written as 

and 

F/i = V^/p = Vci 

F/2 = -DipVqi 

(34) 

(35) 

where F̂ i and F/2 denote the flux vectors of the 
tracer (dimension: M/(L^T)), V the fluid velocity 
vector (L/T), p the density of the fluid (M/L^), qi 
the tracer mixing ratio (M/M), c/ the mass 
concentration of the tracer (M/L^), D the mole-
cular diffusivity (L^/T) and V the gradient 
operator (L~^). The expression Wqf. denotes the 
vector (dqi/dx, dqi/dy, dqi/dz). 

The continuity of tracer mass is expressed by 
the equation 

^ = -V-F,- + Q - S = -V . (F . i+F ,2 ) + Q - S 

- - V . (VQ) + V . {Dip^Wqi) + Q-S (36) 

where Q and S represent production and 
removal of the tracer (M/(L%)). Here V • F, 
denotes the scalar quantity 

dx dy dz 9y 

If variations in fluid density and diffusivity 
can be neglected we have 

| i = -V-(Vc,)+DV2c, Q-S (37) 

In most situations a fluid would be turbulent 
implying that the velocity vector, as well as the 
concentration c/, exhibits considerable variabil-
ity on time scales smaller than those of prime 
interest. This situation can be described by writ-
ing these quantities as the sum of an average 
quantity (normally a time average) and a per-
turbation 

V - V + V 
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From Equation (34), the transport flux F/i, then 
becomes 

Fa = (V + V)(c + c;.) = VQ + vc; + VQ + w ; 
(38) 

and its average value 

F,i = Vc; + Vc' (39) 

Note that the averages of V and d are equal to 
zero. The continuity equation can now be writ-
ten as 

|^-v,w,: V • (Vc;.) + DV% + Q~S 

(40) 

The first two terms on the right side of 
Equation (40) describe the contributions from 
transport by advection and by turbulent flux, 
respectively. The separation of the motion flux 
into advection and turbulent flux is somewhat 
arbitrary; depending upon the circumstances 
the averaging time can be anything from a few 
minutes to a year or even more. 

Since in most situations the perturbation 
quantities (V' and c-) are not explicitly resolved, 
it is not possible to evaluate the turbulent flux 
term directly. Instead, it must be related to the 
distribution of averaged quantities - a process 
referred to as parameterization. A common 
assumption is to relate the turbulent flux vector 
to the gradient of the averaged tracer distribu-
tion, which is analogous with the molecular 
diffusion expression. Equation (35). 

(F, !2Jturb = Vc' -fcturbVc,- (41) 

The coefficient /cturb introduced in Equation (41) 
(dimension: L^/T) is called the turbulent, or 
eddy diffusivity. In the general case the eddy 
diffusivity is given separate values for the three 
spatial dimensions. It must be remembered that 
the eddy diffusivities are not constants in any 
real sense (like the molecular diffusivities) and 
that their numerical values are very uncertain. 
The assumption underlying Equation (41) is 
therefore open to question. 

In most cases, the term expressing the diver-
gence of the molecular flux in Equation (40) 
(DV^Ci) can be neglected compared to the 
other two transport terms. Important excep-

tions occur, e.g. in a thin layer of the atmos-
phere close to the surface and in similar layers 
of the oceans close to the ocean floor and to 
the surface (viscous sublayers). Molecular dif-
fusion is also an important transport process in 
the upper atmosphere, at heights above 
100 km. 

Order-of-magnitude values for the vertical 
eddy diffusivity in the atmosphere and the 
ocean are shown in Fig. 4-15. The values for the 
viscous layers represent molecular diffusivities 
of a typical air molecule like N2. 

Development in recent years of fast-response 
instruments able to measure rapid fluctuations 
of the wind velocity (V) and of the tracer 
concentration (c^, has made it possible to calcu-
late the turbulent flux directly from the correla-
tion expression in Equation (41), without 
having to resort to uncertain assumptions 
about eddy diffusivities. For example, Grelle 
and Lindroth (1996) used this eddy-correlation 
technique to calculate the vertical flux of CO2 
above a forest canopy in Sweden. Since the 
mean vertical velocity (w) has to vanish above 
such a flat surface, the only contribution to the 
vertical flux of CO2 comes from the eddy-
correlation term {c'w^). In order to capture the 
contributions from all important eddies, both 
the anemometer and the CO2 instrument must 
be able to resolve fluctuations on time scales 
down to about 0.1 s. 

A type of motion that is often very important 
in both the oceans and the atmosphere is convec-
tion. This is a vertical mixing process where 
parcels of water (or air) are rapidly transported 
in the vertical direction due to their buoyancy. 
In the oceans, this occurs when the surface water 
becomes denser than the underlying water - by 
cooling and/or increased salinity due to evap-
oration - ai;id parcels of water sink down within 
days to depths of up to several km. In the 
atmosphere, convective motions occur when 
surface air is heated by conduction from the 
underlying surface. Air parcels having a hor-
izontal dimension on the order of 1 km then rise 
and sometimes reach a height as high as 10-
15 km within less than an hour, especially in 
tropical areas. Cumulus and cumulonimbus 
clouds are visible manifestations of convection 
in the atmosphere. In some circumstances, con-
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Fig. 4-15 Orders of magnitude of the average vertical molecular or turbulent diffusivity (whichever is largest) 
through the atmosphere, oceans, and uppermost layer of ocean sediments. 

vection may contribute to a very rapid vertical 
mixing. 

4,8,2 Other Transport Processes 

Under some circumstances transport processes 
other than fluid motion and molecular diffusion 
are important. One important example is sedi-
mentation due to gravity acting on particulate 
matter submerged in a fluid, e.g., removal of 
dissolved sulfur from the atmosphere by pre-
cipitation scavenging, or transport of organic 
carbon from the surface waters to the deep 

layers and to the sediment by settling detritus. 
The rate of transport by sedimentation is deter-
mined essentially by the size and density of the 
particles and by the counteracting drag exerted 
by the fluid. 

Geochemically significant mixing and trans-
port can sometimes be accomplished by biologi-
cal processes. An interesting example is 
redistribution of sediment material caused by 
the movements of w^orms and other organisms 
(bioturbation). 

Exchange processes between the atmosphere 
and oceans and between the oceans and the 
sediments are treated below in separate sections. 
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4,8,3 Air-Sea Exchange 

4.83.1 Gas transfer 

The magnitude and direction of the net flux 
density, F, of any gaseous species across an air-
water interface is positive if the flux is directed 
from the atmosphere to the ocean. F is related to 
the difference in concentration (Ac), in the two 
phases by the relation 

F = KAc (42) 

Here Ac = Ca - KH^W with Ca and Cw represent-
ing the concentrations in the air and water 
respectively and K^ the Henry's law constant. 
The parameter X, linking the flux and the con-
centration difference, has the dimension of a 
velocity. It is often referred to as the transfer (or 
piston) velocity. The reciprocal of the transfer 
velocity corresponds to a resistance to transfer 
across the surface. The total resistance {R — K~^) 
can be viewed as the sum of an air resistance 
(Ka) and a water resistance (Kw)' 

CONCENTRATION 

R = i?a + i?v 1 + ^ (43) 

The parameters k^ and k\ are the transfer veloc-
ities for chemically unreactive gases through the 
viscous sublayers in the air and water, respec-
tively. They relate the flux density F to the 
concentration gradients across the viscous sub-
layers through expressions similar to Equation 
(42): 

r — /Ca(Ca — Ca^i) 

f = fcl(Cw,i - Cw) 
(44) 

Here Ca,i and Cw,i are the concentrations right at 
the interface (cf. Fig. 4-16). They are related by 

The parameter a in Equation (43) quantifies 
any enhancement in the value of k\ due to 
chemical reactivity of the gas in the water. Its 
value is unity for an unreactive gas; for gases 
with rapid aqueous phase reactions (e.g., SO2) 
much higher values can occur. 

A comparison of the resistance in air and 
water for different gases shows that the resis-
tance in the water dominates for gases with low 
solubility that are unreactive in the aqueous 
phase (e.g., O2, N2, CO2, CH4). For gases of 

Cw,i " VISCOUS 
SUBLAYERS 

Fig. 4-16 A simplified model of flux resistances and 
concentration gradients in the viscous sublayers at the 
air-sea interface. 

high solubility or rapid aqueous chemistry (e.g., 
H2O, SO2, NH3) processes in the air control the 
interfacial transfer. 

The numerical values of the transfer velocity 
X for the different gases are not well established. 
Its magnitude depends on such factors as wind 
speed, surface waves, bubbles and heat transfer. 
A globally averaged value of K often used for 
CO2 is about 10 cm/h. Transport at the sea-air 
interface is also discussed in Chapter 10; for a 
review see Liss (1983). 

4.8.3.2 Transfer of particles 

Liquid water, including its soluble and insoluble 
constituents, is transferred from the oceans to 
the atmosphere when air bubbles in the water 
rise to the surface. These bubbles form from air 
trapped by breaking waves, "whitecaps." As 
the bubbles burst at the surface, water droplets 
are injected into the atmosphere. These water 
droplets are small enough to remain airborne for 
several hours. Whitecaps begin to form in winds 
common over the oceans, and a significant 
amount of seasalt made airborne in this way is 
transported to the continents and deposited in 
coastal areas. 

The flux of particles in the other direction, 
deposition on the ocean surface, occurs intermit-
tently in precipitation (wet deposition) and 
more continuously as a direct uptake by the 
surface (dry deposition). These flux densities 
may be represented by a product of the concen-
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tration of particulate matter in air close to the 
surface and parameters often referred to as 
deposition velocities: 

f = Fw + Fd = (î w + Vd)c^ (45) 

The deposition velocities depend on the size 
distribution of the particulate matter, on the 
frequency of occurrence and intensity of precip-
itation, the chemical composition of the parti-
cles, the wind speed, nature of the surface, etc. 
Typical values of Vy^ and v^ for particles below 
about 1 ^m in diameter are in the range 0.1 to 
1 cm/s (Slinn, 1983). The average residence time 
in the atmosphere for such particles is a few 
days. 

4,8,4 Sediment-Water Exchange 

The sediment surface separates a mixture of 
solid sediment and interstitial water from the 
overlying water. Growth of the sediment results 
from accumulation of solid particles and inclu-
sion of water in the pore space between the 
particles. The rates of sediment deposition vary 
from a few millimeters per 1000 years in the 
pelagic ocean up to centimeters per year in lakes 
and coastal areas. The resulting flux density of 
solid particles to the sediment surface is nor-
mally in the range 0.006 to 6 kg/m^ per year 
(Lerman, 1979). The corresponding flux density 
of materials dissolved in the trapped water is 
10~^tolO~^ kg/m^ per year. Chemical species 
may also be transported across the sediment 
surface by other transport processes. The main 
processes are (Lerman, 1979): 

1. Sedimentation of solids (mineral, skeletal and 
organic materials). 

2. Flux of dissolved material and water into 
sediment, contributing to the growth of the 
sediment column. 

3. Upward flow of pore water and dissolved 
material caused by pressure gradients. 

4. Molecular diffusional fluxes in pore water. 
5. Mixing of sediment and water at the interface 

(bioturbation and water turbulence). 

An estimate of the advective fluxes (processes 1, 
2, and 3) requires knowledge of the concentra-
tion of the species in solutions and in the solid 

particles as well as of the rates of sedimentation 
and pore water flow. The diffusive type pro-
cesses, 4 and 5, depend on vertical gradients of 
the concentrations of the species as well as on 
the diffusivities. In regions where bioturbation 
occurs, the effective diffusivity in the uppermost 
centimeters of the sediments can be more than 
that due to molecular diffusion in the pore water 
alone (cf. Fig. 4-15). 

4.9 Time Scales of Mixing in the Atmosphere 
and Oceans 

It is often important to know how long an 
element spends in one environment before it is 
transported somewhere else in the Earth system. 
For example, if a time scale characterizing a 
chemical or physical transformation process in 
a region has been estimated, a comparison with 
the time scale characterizing the transport away 
from the region will tell which process is likely 
to dominate. 

The question of residence time and its defini-
tion in a steady-state reservoir was discussed 
earlier in this chapter. The average residence 
time in the reservoir was shown to be equal to 
the turnover time TQ = M/S where M is the mass 
of the reservoir and S the total flux out of it. It is 
important to note that if one considers the 
exchange between two reservoirs of different 
mass, the time scale of exchange will be different 
depending upon whether the perspective is 
from the small or the big reservoir. An interest-
ing example is that of mixing between the tropo-
sphere and stratosphere in the atmosphere. 
Studies of radioactive nuclides injected into the 
lower stratosphere by bomb testing have shown 
that the time scale characterizing the exchange 
between the lower stratosphere and troposphere 
is one to a few years. This means that a "parti-
cle" injected in the lower stratosphere will stay 
for this time, on average, before entering the 
troposphere. On the other hand, a gas molecule 
like N2O, which is chemically stable in the 
troposphere, will spend several decades in the 
troposphere before it is mixed up into the lower 
stratosphere, where it is decomposed by photo-
chemical processes. So although the gross flux of 
air from the troposphere to the stratosphere, f, is 
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equal to the gross flux of air from the strato-
sphere to the troposphere, the time scale of 
mixing between these two reservoirs is very 
different. From the tropospheric point of view, 
the time scale TJ is several decades, but the time 
scale of mixing as seen from the stratosphere (TS) 
is only a few years. The reason for the difference 
is the small mass of the stratosphere, Ms as 
compared to the troposphere, Mj. Formally, we 
can write 

TS 

TT 

Ms/F 
Mj/F • 

Ms 
0.1 

Time scales of transport can also be applied to 
situations when no well-defined reservoirs can 
be defined. If the dominant transport process is 
advection by mean flow or sedimentation by 
gravity, the time scale characterizing the trans-
port between two places is simply ladv = L/V 
where L is the distance and V the transport 
velocity. Given a typical wind speed of 20 m / s 
in the mid-latitude tropospheric westerlies, the 
time of transport around the globe would be 
about 2 weeks. 

In situations where the transport is governed 

by diffusive processes a time scale of transport 
can be defined as 

_ L 2 
'̂ turb — yr (46) 

where L is the distance and D is the diffusivity 
(molecular or turbulent). Applying this defini-
tion to the vertical mixing through the surface 
mixed layer of the ocean, assuming the depth of 
the layer to be 50 m and the turbulent diffusivity 
0.1 m^/s, we get 

'^turb 
(50)^ 
0.1 

7h 

Some important time scales characterizing the 
transport within the oceanic and atmospheric 
environments are summarized in Fig. 4-17. In 
view of the somewhat ambiguous nature of the 
definitions of these time scales, the numbers 
should not be considered as more than indica-
tions of the magnitudes. 
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Fig. 4-17 Rough estimates of characteristic time for exchange of air and water respectively, between dfferent 
parts of the atmosphere and oceans. 
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Questions 

4-1 Consider a reservoir with two separate sources 
Qi and Q2 and a single sink S. The magnitudes of 
Qi and S and their uncertainties have been 
estimated to be 75 ± 20 and 100 ± 30 (arbitrary 
units). Assuming that there is no direct way of 
estimating Q2, how would you derive its magni-
tude and uncertainty range from budget consid-
erations? What assumption must be made 
regarding the reservoir? 

4-2 Calculate the turnover time of carbon in the 
various reservoirs given in Fig. 4-3. 

4-3 What is the relation between the turnover time TQ 
the average transit time ir, and the average age 
la, in a reservoir where all ''particles'' spend an 
equal time in the reservoir? 

4-4 Consider a reservoir with a source flux Q and 
two sink fluxes Si and S2. Si and S2 are propor-
tional to the reservoir content M with propor-
tionality constants ki and k2. The values of ki 
and k2 are (1 yr~^) and (0.2 yr~^), respectively. 
The system is initially in steady state with 
M == Mo and Q = Sio + S20. Describe the change 
in time of M if the source is suddenly reduced to 
half its initial value. What is the response time of 
the reservoir? 

4-5 Consider the water balance of a lake with a 
constant source flux Q. The outlet is the "thresh-
old" type where the sink is proportional to the 
mass of water above a threshold value Mi; 
S = k(M - Ml). Calculate the turnover time of 
water at steady state and the response time 
relative to changes in Q. 

4-6 For the more mathematically inclined: Investi-
gate the dynamic behavior of a coupled linear 
three reservoir model using the technique out-
lined in Section 4.3.1. 

Answers can be found on p. 509. 
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