

Intro to Pinch Analysis

Pinch Analysis (PA) is a method for optimization of heat exchanger networks.

PA finds its typical applications when heat and cooling loads cover different temperature ranges.

The objective of PA is to minimize interactions with external heat or cooling resources: these are called "Hot Utilities" (HU) if they represent heat to be provided at high temperature, and "Cold Utilities" (CU) if heat must be removed from the system.

Minimization of interactions outside of the system Q_{hu} (external HU) and Q_{cu} (external CU) leads to the development of an internal heat recovery network which substitutes partially external loads.

PA determines a matching between Hot Streams (to be cooled) and Cold Streams (to be heated) which is effectively minimizing the temperature difference inside heat exchangers. This is also the condition which determines the lowest heat transfer exergy destruction.

However, PA does not deal explicitly with the **friction losses** encountred to produce the necessary flow conditions inside the heat exchanger. This can be a relevant issue when dealing with low-pressure gas streams and for fluids (liquids or two-phase) commonly encountered in the Oil&Gas or chemical industry. Under these conditions, a **trade-off bewteen heat transfer and fluid friction exergy destruction** is often determined.

An analysis of viscous flow effects can be anyway performed after optimizing the temperature profile with PA. To this end, reference books (*A. Bejan: Entropy Generation through Heat and Fluid Flow*) and advanced methodologies are available.

Chemical production plants typically have diversified needs for process heating (HU= Hot Utility) – applied to "Cold streams" or cooling (CU = Cold Utility) applied to "Hot Streams".

 Q_{hu} (external HU) is often provided by steam or heat generators using fossil fuels, while Q_{cu} (external CU) is dealt using cooling equipment (e.g.: condensers, cooling towers, refrigeration units).

This is called an **Open Problem**, because the purpose of PA is to effectively minimize Q_{hu} and Q_{cu} and to provide thus a direct economy in terms of fuel, heat release to the environment, or electricity.

Other situations lead to **Closed Problems**, that is, conditions where the heat recovery from a stream is blocked by external constraints, as can be also for the heat to be released to the environment (sensible heat and exergy loss).

This is for example the case of **HRSGs for CCGTs**, where the gas flow rate and inlet/outlet temperature conditions are blocked.

In the case of an **unfired HRSG**, $Q_{hu} = 0$ and Q_{cu} is constrained (usually because of corrosion or environmental concern connected to the release of a cold plume = lower limit to stack temperature).

The purpose of PA becomes here to determine the **minimum surface** of the heat transfer tube bundles in order to produce the required conditions (pressure/temperature, flow rates) for the water/steam circuit.

In some cases (e.g., Aero-derivative GTs with high pressure ratio) it can be useful to consider a **Fired HRSG**, in order to solve pinch problems in the high-temperature section; then, $Q_{hu} \# 0$ (should be minimized) while Q_{cu} is still constrained (stack temperature).

Optimization of Heat Recovery Steam Generators - multi pressure - pinch analysis

Optimization of Heat Recovery Steam Generators

- Cold streams inventory (steam/water)

Optimization of Heat Recovery Steam Generators

- Composite curves: Hot (gas) and Cold (Steam/Water)

In complex Unfired HRSGs for CCGTs (3-pressure level with 1 or 2 reheats, possibly including process heat production) more than 15 tube bundles can be necessary, and often a series/parallel branching is determined.

PA leads to the solution minimizing heat transfer surface and, thus, the **production cost of the HRSG**. This represents a major issue both for the market competitiveness of equipment suppliers, and for the conservation of resources (see LCA section).

A similar situation occurs in **Geothermal Power Plants**, where constraints are determined by the production well specs (flow rate, temperature) and by conditions for reservoir reinjection (temperature, in order to avoid scaling and/or preserve the long-term operability of the reservoir). However, the heat transfer network is generally simpler at the present level of development of Geothermal Plants, even if combined heat and power units represent a promising field for application of PA.

Temperature-Enthalpy (or Heat Rate, kW) diagrams are the core of the PA methodology. The following pictures represent the basic situation potentially occurring with two streams (one cold CF and one hot CC):

A = Disaccoppiamento Totale

Starting conditions (Trivial solution)

The cooling load (cooling the hot stream CC) is provided by external removal of Q_{cu_Max} .

Heat is also supplied externally (e.g.: combustion) in order to heat the cold stream CF with a heat rate $Q_{hu Max}$.

These heat or cooling rate loads represent large running and capital costs for the plant.

The different slopes of the CC and CF curves are determined by different

Heat Capacities $C = m c_p$

Evaluation of external Hot and Cold Utilities:

$$Q_{hu_max} = Q_h = m_c (h_{cu} - h_{ci}) = m_c c_{pc} (T_{cu} - T_{ci}) = (\Delta H)_c$$

$$Q_{cu_max} = Q_c = m_h (h_{hi} - h_{hu}) = m_h c_{ph} (T_{hi} - T_{hu}) = (\Delta H)_h$$
Heat Capacities C

C = Massimo accoppiamento

IntroducingaRegenerativeHeatExchanger(RHE)allowstoreduceconsiderablythe heat and cooling loads.

The figure below shows that $Q_{cu}Min}$ and $Q_{hu}Min}$ are reached when the CC and CF streams achieve a **Pinch Condition**, that is, a local point where the temperatures of the two streams (CC and CF) are the same.

Under this condition, the RHE heat duty Q_R is maximized. Q_{cu} and Q_{hu} are minimized (external heat interactions).

Reaching Pinch conditions involves the use of an **HRE of infinite surface** – which is not a viable solution.

In the **real case**, the Regenerative Heat Exchanger (HRE) works with a finite temperature difference $\Delta T_{pp} = \Delta T_{min}$ at the pinch point.

 ΔT_{pp} is a design variable (ΔT_{min}), reflecting the limit to the investment which is allowed for heat transfer enhancement.

 Q_{cu} and Q_{hu} lie between the minimum and maximum value determined before.

 $0 < Q_R < Q_{R Max}$

In this specific case $C_c > C_h$ and the pinch takes place at the Cold Side of the HRE.

Heat Capacities represent a key issue in PA.

Streams with **small heat capacities** appear nearly **vertical**: large temperature variations are produced with limited heat rates.

Streams with **large heat capacities** appear nearly **horizontal**: large heat rates are needed to produce a small variation of temperature.

The **mismatch** between the **heat capacities** of **hot and cold streams** represents a limit to heat transfer performance, and is reflected by a large production of irreversibility (or, by an extensive rate of exergy destruction).

Locating the Pinch

The Location of the Pinch depends on the values of the heat capacities of the hot and cold streams, $(C = m c_p)$:

- a) if $\mathbf{m_h} c_{ph} > \mathbf{m_c} c_{pc}$ the pinch is located at $\mathbf{T_{cu}}$, on the **hot side** of the HRE (Figure A)
- b) if $\mathbf{m}_{c} \mathbf{c}_{pc} > \mathbf{m}_{h} \mathbf{c}_{ph}$ the pinch is located at \mathbf{T}_{ci} , on the **cold side** of the HRE (Figure A)
- c) if the heat capacities of the hot and cold streams are the same, the two curves evolve in parallel; in the limit case (∞ surface) the temperature difference between the cold and hot streams becomes zero everywhere.

The Maximum Recoverable heat is given by:

$$Q_{R_max} = (m c_p)_{min} (T_{hi} - T_{ci})$$

The Hot Stream cannot be cooled below T_{ci} interacting with the Cold Stream.

The Cold Stream cannot be heated beyond T_{hi} interacting with the Hot Stream.

In order to achieve Q_{R_max} , curve contact is required at the Pinch: that is, infinite surface.

(b) $m_c c_{nc} > m_h c_{nh}$

Fundamental Assumptions:

- Constant heat capacity of all streams
- Perfect insulation

(a) $\underline{m}_h \underline{c}_{nh} > \underline{m}_c \underline{c}_{nc}$

- Absence of structural conduction effects from hot to cold side

Pinch analysis becomes an interesting tool when more than 2 streams (1) Hot and 1 Cold) are involved.

The following example (taken from Bejan, Tsatsaronis e Moran (1996) deals with 2 Hots Streams and 2 Cold Streams and introduces the graphical interpretation (construction of the **Composite Curve**).

<u>Stream</u> ID	T _i [K]	T _u [K]	m c _p [kW/K]	∆H [kW]
1 - h	400	310	2.0	180
2 – c	300	390	1.8	162
3 – c	330	370	4.0	160
4 - h	450	350	1.0	100
h = hot stream t	a he cooled (hot)	c = colc	l stream to be hea	ited (cold)

A) Separate Plotting of Hot and Cold Streams

B) Identifying Temperature Intervals for Hot and Cold Streams

The Analysis of this figure allows to identify **Temperature Intervals**.

It is better to separate Hot and Cold streams, determining 3 intervals for the hot streams and 3 intervals for the Cold streams. (**6 intervals total**). The results are summarized in the following table:

Temp. Interval	High <u>Value</u>	Low <u>Value</u>	<u>Streams</u>	<u>Heat</u> Rate, <u>formal</u>	m c _p (kW/K)	Heat Rate, kW	Graph Id. Of Heat Rate (Composite Curve)
450-400	Ti4	Ti1	4H	m4 c _p 4 (450-400)	1	50	ΔH ₃
400-350	Tit	Tu4	4H, 1H	(m4 c _p 4 + m1 c _p 1) (400-350)	3	150	ΔH_4
350-310	Tu4	Tu1	1H	m1 cp1 (350-310)	2	80	ΔH5+ΔH6+Qcu
390-370	Tu2	Tu3	<u>2C</u>	m ₂ c _{p2} (390-370)	1,8	36	ΔH_1
370-330	Tu3	T _i 3	<u>2C, 3C</u>	(m ₂ c _{p2} + m ₃ c _{p3}) (370-330)	5,8	232	Δ H ₂ + Δ H ₃ + Δ H ₄ + Δ H ₅
330-300	T _{i3}	T _{i2}	2C	m ₂ c _{p2} (330-300)	1,8	54	ΔH_6

m₂ c_{p2} (330-300) 54 1.8 The origin of the X axis can be set arbitrarily.

Graph Id. Of Heat

Rate

(Composite Curve)

 ΔH_3

 ΔH_4

 $\Delta H_5 + \Delta H_6 + Q_{cu}$

 ΔH_1

 $\Delta H_{2} + \Delta H_{3} + \Delta H_{4} + \Delta H_{5}$

 ΔH_6

Heat

Rate.

kW

50

150

80

36

232

m c_p

(kW/K)

1

3

2

1.8

5,8

It is convenient to set it at the cold end of the **Hot Composite Curve**

The Cold Composite **Curve CCC** is shifted horizontally to adjust the desired temperature difference at the Pinch

Shifting the Cold **Composite Curve CCC** from left to right allows to adjust the Pinch Temperature difference at the desired value (10 °C in the present case, solid blue line).

C) Visual representation of Q_{hu} and Q_{cu}

Q_{hu} is represented by the uncovered x segment of the Cold Composite Curve at the right side of the diagram.

Q_{cu} is represented by the uncovered x segment of the Hot Composite Curve at the left side of the diagram.

- The graphical representation of the CC is very effective, but in order to represent it on a plot one needs to determine some unknowns, so that quantitative results can be produced.
- This must be applied both on the Y axis (Temperatures) and X axis (heat exchanger Heat Rates).
- The solution always starts from the Pinch and requires the local application of energy balances (direct or indirect). $Q_{cu} \stackrel{AH_{6}}{\longrightarrow} AH_{6} \stackrel{AH_{6}}{\longrightarrow} AH_{4} \stackrel{AH_{6}}{\longrightarrow} AH_{4}$

T_{i4} 450 T (K)

450

T (K)

Visual inspection of the plot, and application of the heat capacity rules allow to easily **identify the Pinch** at **point i3 (inlet, stream n. 3, CCC)**:

D) Proceeding Left and Right of the Pinch....

 $\Delta H_5 = 80 - \Delta H_6 - Q_{cu} = 80 - 54 - 6 = 20 \text{ kW}$ $\Delta H_2 = 232 - (\Delta H_3 + \Delta H_4 + \Delta H_5) = 232 - (50 + 150 + 20) = 12 \text{ kW}$ $Q_{hu} = \Delta H_1 + \Delta H_2 = 36 + 12 = 48 \text{ kW}$ Other ∆H known, see original streams table.

c) ... Right of the Pinch (Cold Composite Curve):

$$T_{c3} = T_{pinch} + \Delta H_5 / (m_2 c_{p2} + m_3 c_{p3}) = 330 + 20/5, 8 = 333,45 \text{ K}$$

 $T_{c2} = T_{pinch} + (\Delta H_4 + \Delta H_5)/(m_2 c_{p2} + m_3 c_{p3}) = 330 + (150+20)/5,8 = 359,31 \text{ K}$

 $\mathbf{T_{c1}} = \mathbf{T_{pinch}} + (\Delta H_3 + \Delta H_4 + \Delta H_5) / (m_2 c_{p2} + m_3 c_{p3}) = 330 + (50 + 150 + 20) / 5,8 = 367,93 \text{ K}$

Once all temperatures are known on the HCC and CCC, one can calculate the logmean temperature difference across the local section of the RHE:

$$[(T_{hH} - T_{cH}) - (T_{hL} - T_{cL})]$$

 $\Delta T_{\rm ml} = \frac{1}{ln[(T_{\rm hH} - T_{\rm cH})/(T_{\rm hL} - T_{\rm cL})]}$

E) Representing Composite Curve results in a Table

	<u>Heat</u> Rate, <u>formal</u>	KW	ThH (K)	ThL (K)	T _{cH} (K)	T _{cL} (K)	ΔT _{ml} (K)	S (m ²)
Ohu	$\Delta H_1 = m_2 c_{p2} (T_{u2} - T_{u3})$	36			390	370		
48 kW	$\Delta H_2 = (m_2 c_{p2} + m_3 c_{p3}) * (T_{u3} - T_{c1})$	12			370	T _{c1} = 367, 93		
ΔH_3	$(m_4 \ c_{p4}) \ (T_{i4} - T_{i1})$	50	450	400	T _{c1} = 367, 93	T _{c2} = 359, 31	58,97	1,70
ΔH_4	$(m_4 c_{p4} + m_1 c_{p1}) (T_{i1} - T_{u4})$	150	400	350	T _{c2} = 359, 31	T _{c3} = 333, 45	26,84	11,18
ΔH_5	$(m_1 c_{p1}) (T_{u4} - T_{h1})$	20	350	T _{h1} = 340	T _{c3} = 333, 45	330	13,00	3,08
ΔH_{δ}	$(m_1 c_{p1}) (T_{h1} - T_{h2})$	54	T _{h1} = 340	T _{h2} = 313	330	300	11,43	9,45
Qcu			$T_{h2} =$					
=ΔH ₇ 6 kW	$(m_1 c_{p1}) * (T_{h2} - T_{u1})$	6	313	310				

...from the Heat Rate and the ΔT_{ml} , it is possible – assuming a value for the overall heat transfer coefficient, K = 0,500 kW/(m²°C) in this example – to evaluate the **surface** needed for each section of the RHE

F) Proposing solutions for Q_{hu} and Q_{cu}

The external Heating and Cooling duties have been successfully identified.

Now, it is possible to say that to provide the 48 kW of Q_{hu} , it could be recommended to chose a **heat source** slightly higher than 368-370 K, and having a heat capacity of about 48/22 = 2,2 kW/K.

	Heat Rate, formal	KW	ThH (K)	ThL (K)	T _{cH} (K)	T _{cL} (K)	ΔT _{ml} (K)	S (m ²)
Ohu	$\Delta H_1 = m_2 c_{p2} (T_{u2} - T_{u3})$	36			390	370		
48 kW	$\Delta H_2 = (m_2 c_{p2} + m_3 c_{p3}) * (T_{u3} - T_{c1})$	12			370	T _{c1} = 367, 93		
ΔH_3	$(m_4 \ c_{p4}) \ (T_{i4} - T_{i1})$	50	450	400	T _{c1} = 367, 93	T _{c2} = 359, 31	58 ,9 7	1,70
ΔH_4	$(m_4 c_{p4} + m_1 c_{p1}) (T_{i1} - T_{u4})$	150	400	350	T _{c2} = 359, 31	T _{c3} = 333, 45	26,84	11,18
ΔH_5	$(m_1 \ c_{p1}) \ (T_{u4} - T_{h1})$	20	350	T _{h1} = 340	T _{c3} = 333, 45	330	13,00	3,08
ΔH_{δ}	$(m_1 \ c_{p1}) \ (T_{h1} - T_{h2})$	54	T _{h1} = 340	T _{h2} = 313	330	300	11,43	9,45
$ \begin{array}{c} Q_{cu} \\ = \Delta H_7 \\ 6 \text{ kW} \end{array} $	$(m_1 c_{p1}) * (T_{h2} - T_{u1})$	6	T _{h2} = 313	310				

The Cold Utility $Q_{cu} = 6$ kW, on the other hand, should be best provided by a **cooling stream** having a heat capacity of 6/3 = 2 kW/K, at temperatures just below 313 - 310 K.

A trivial solution for Q_{hu} is a combustion system or heat generator.

This heat is potentially generated at very high temperature, and its use is not recommended from the thermodynamics/exergy point of view.

<u>Possible solutions for Q_{hu} (including CHP, beneficial in industrial plants)</u>:

- Gas turbine exhausts (large flow rates and heat capacity)
- Reciprocating engine exhaust (small flow rate and heat capacity)
- Use of condensing steam extractions (infinite heat capacity)
- Use of heat pumps to upgrade heat available below the pinch (if possible; heat capacity adptable)

Possible solutions for Q_{cu}:

... + Temperature range matching ...!

- Direct cooling with liquid water stream (adjustable heat capacity, limits to temperature difference)
- Cooling towers (large heat capacity)
- Absorption (large heat capacity) or refrigeration units (small heat capacity)

Pinch Analysis can be programmed instead of using a graphical solution. The programming rules were set by Bodo Linnhoff in his early works.

Data:

- Number of hot streams (CC) to be cooled N_h
- Number of cold streams (CF) to be heated N_c
- For each stream (Hot or Cold): flow rate, specific heat, Inlet Temperature T_i, Outlet Temperature T_n
- Design Pinch Temperature difference ΔT_{min}
- Approximate values of the overall heat transfer coefficient

Outputs:

- Composite Curve with recommended solution for Regenerative Heat Trasnfer Section
- Hot Utility $Q_{hu,min}$ for the given Pinch ΔT_{min}
- Cold Utility $Q_{cu,min}$ for the given Pinch ΔT_{min}
- Heat Rate for each section of the RHE network
- ΔT_{ml} for each section of the RHE network
- Approximate surface for each section of the RHE network
- Grand Composite Curve (new)

Programming steps:

- Calculate the Heat Capacities for each hot and cold stream $m c_p$ and the Heat Rates $(mc_p) (T_u - T_i)$
- Reduce the temperature of all hot streams of $\Delta T_{min}/2$
- Increase the temperature of all cold streams of $\Delta T_{min}/2$
- Build a vector diagram of Modified Temperatures T_{mod}, allowing to identify a set of relevant Temperature Intervals.

Programming steps (2):

Starting from the highest temperature interval, calculate the heat to be transferred on that interval:

$$Q_{i} = \left[\sum_{cold} (m_{C_{p}})_{cold} - \sum_{hot} (m_{C_{p}})_{hot}\right] \Delta T_{i}$$

$$Q_{i} = \left[\sum_{cold} \left(m_{C_{p}}\right)_{cold} - \sum_{hot} \left(m_{C_{p}}\right)_{hot}\right] \Delta T_{i}$$

A negative value of Q_i implies that there is an excess of energy available from the hot streams in the reference interval ΔT_i ; this excess heat can be used to heat cold streams at lower temperature. The designer should propose a use for this excess

heat (transfer to external users of heat, space heating, sanitary water,...).

Recovery of low-grade heat becomes critical below the pinch.

A Positive value of \mathbf{Q}_{i} implies that there is an energy defect on the hot streams side in the reference interval ΔT_{i} ; this energy defect should be if possible satisfied recovering heat available at higher temperature; otherwise, one should propose a correct external heat integration \mathbf{Q}_{hu} : exhaust of an IC engine or Gas Turbine, or connection to other nearby processes generating hot sensible heat effluents.

A smart solution could be a Heat Pump able to upgrade heat available at low temperature at the higher temperature level where it is needed (also possible across the pinch).

$$Q_{i} = \left[\sum_{cold} \left(m_{C_{p}}\right)_{cold} - \sum_{hot} \left(m_{C_{p}}\right)_{hot}\right] \Delta T_{i}$$

1. The following table shows in the **first three columns** the calculation steps applied to the example at study:

Column 1	Column 2	Column 3	Column 4	Column 5
ΔT#	T _{up/low} K	Q _i kW	$\Sigma Q_i kW$	$\Sigma Q_i^* kW$
			0	-48
1	445/395	-50	-50	-98
2	395/375	-24	-74	-122
3	375/345	84	+10	-38
4	345/ <u>335</u>	38	+48	0
5	335/305	-6	+42	-6

3. The largest value in Column 4 identifies the result for Q_{hu} .

2. **Column 4** is calculated with the following formula:

 $\Sigma Q_i = \sum_{j=1}^i Q_j$

Taking care of the signs of heat fluxes in Column 3.

Programming Approach to PA - Example - 2

Column 1	Column 2	Column 3	Column 4	Column 5	$\Delta T_5 \Delta T_4 \Delta T_3 \Delta T_2 \Delta T_1$
ΔT#	T _{up/low} K	Q _i kW	$\Sigma Q_i kW$	$\Sigma Q_i^* kW$	$\begin{array}{c c} & & & & & \\ \hline 2 & & & \\ & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & &$
			0	-48	300 325 350 375 400 425 T 450
1	445/395	-50	-50	-98	mod
2	395/375	-24	-74	-122	4. Column 5 is calculated
3	375/345	84	+10	-38	subtracting Q _{hu} from all
4	345/ <u>335</u> ◀━	→ 38	+48	0	values in Column 4.
5	335/305	-6	+42	-6	i
					$\Delta Q_i * = \sum_{j=1}^{i} Q_i - Q_{hu}$

5. The value in the last cell of Column 4 identifies the result for Q_{cu} .

6. The lower temperature in the interval for which $\Sigma Q_i^* = 0$ is called the <u>Average</u> <u>Pinch Temperature (335 K in this example)</u>. Of course \pm 5 K should be added/subtracted to get the real HCC or CCC temperature values.

PA - The Grand Composite Curve

The **shaded area** represents the possibility of internal covering the needs of heating load for the cold streams using heat recovery from the hot streams. The **Pinch Temperature** is clearly identified by the Temperature condition when $-\Sigma Q_i^* = 0$.

Bejan, A., Entropy Generation through Heat and Fluid Flow, Wiley, 1994.Bejan A., Tsatsaronis G., Moran M., Thermal design and optimization.Wiley, 1996, New York.

Kemp, I.C., Pinch Analysis and Process Integration, AiChE, Elsevier, 2007. Linnhoff March, Introduction to Pinch Technology, Copyright 1998.

Linnhoff, B., et al. User Guide on Process Integration for the Efficient

Use of Energy, Pergamon Press Ltd., Oxford, 1982.

Linnhoff, B., Hindmarsh, E., The pinch design method for heat exchanger networks. *Chem. Eng. Sci.*, 1983, *38* (5), 745–763.

Linnhoff, B., Flower, J. R., Synthesis of heat exchanger networks, *AIChE J.*, 1978, *24* (4), 633–654.

Linnhoff, B. Pinch analysis-a state of the art overview. *Trans. Inst. Chem. Eng., Part A*, 1993, *71*, 503–522.