Allocating CO₂ Emissions from Cogeneration Systems *Descriptions of Selected Output-Based Methods*

> Marc A. Rosen Professor

Faculty of Engineering and Applied Science University of Ontario Institute of Technology Oshawa, Ontario, Canada

Acknowledgements

Oil, Gas and Energy Branch of **Environment Canada** Manfred Klein C. Strickland and J. Nyober, Canadian Industrial Energy End-Use Data and Analysis Center, Simon Fraser University

Overview

Introduction Background: cogeneration and exergy CO₂ allocation measures Examples Generalizations Closing remarks

Introduction

How would you allocate emissions from a process to the products if there was only one product?

If there were two products?

Introduction

Key Issue - Allocating CO₂ emissions can be confusing:

Easy:

Single product (e.g., electricity)
 Multiple same products

Hard:

Multiple different products

CogenerationCarbon dioxide emissions

Cogeneration

Cogeneration

Simultaneous production of thermal and electrical energy in a single plant

Comparison of CO₂ Emissions from Various Power Generation Plants

kg/MWh

Why do bio processes (i.e., processes that use biomass or other bioresources) have zero carbon dioxide emissions?

What is Exergy?

 Measure of usefulness of a given quantity or flow (maximum work potential in a specified environment)

Some energy forms are more valuable (i.e., more work potential) than others (e.g. kinetic vs. thermal energy) and hence have more exergy

Exergy Analysis

 Evaluates for processes and devices thermodynamic behaviour (e.g., efficiencies, internal/external losses)

Exergy analysis:

 differs from energy analysis
 is based on 2nd Law of Thermodynamics
 relates consumption of exergy (or work potential) to entropy creation

Benefits of Exergy Analysis

 Exergy analysis is advantageous to energy analysis

Energy efficiencies for an ideal system (eg, Carnot cycle) are not necessarily 100% but exergy efficiencies are

 Losses are better characterized (cause, location, type)

Quality of Energy

Electricity & Shaft Power
Industrial Process Heat
Cooling (*depends on temp.*)
High Pressure Steam
Hot Water
Space Heating

High

Low

Why does high-temperature industrial heat have more exergy (or a higher quality) than space heat?

Exergy Energy

CO₂ Allocation Methods for Cogeneration

CO₂ Allocation Methods for Cogeneration

Energy Content of Products Exergy Content of Products Economic Value of Products Incremental Fuel Consumption to Electrical Production Incremental Fuel Consumption to Thermal **Energy Production** Shared Emission Savings Between Electrical and Thermal Energy

- Agreement
- Other Factors

CO₂ Allocation Method for Cogeneration Based on Energy Content of Products

Allocations evaluated in proportion to energy contents of products
Straightforward and simple
Ignores quality of energy (so often underestimates share of emissions allocated to electrical product)

CO₂ Allocation Method for Cogeneration Based on *Exergy* Content of Products

 Allocations evaluated in proportion to exergy contents of products
 Accounts for quality and quantity of energy
 Avoids underestimating share of emissions

allocated to electrical product

CO₂ Allocation Method for Cogeneration Based on Economic Values of Products

Allocations evaluated in proportion to economic values of products
 Problem: economic values can be determined via several measures (eg, costs to produce commodities, prices)
 Not technically rigorous

CO₂ Allocation Method for Cogeneration Based on Incremental Fuel Consumption to Electrical Production

- Emissions allocated by dividing total fuel consumed among products, while considering electricity generation a by-product of thermal energy production
 - 1. Fuel consumption attributed to thermal energy production evaluated as hypothetical fuel consumed by an independent device
 - Fuel consumption attributed to electricity generation evaluated by subtracting this hypothetical fuel from total fuel used

CO₂ Allocation Method for Cogeneration Based on Incremental Fuel Consumption to Thermal Energy Production

- Emissions allocated by dividing total fuel consumed among products, while considering thermal energy production a by-product of electricity generation
 - 1. Fuel consumption attributed to electricity generation evaluated as hypothetical fuel consumed by an independent device
 - Fuel consumption attributed to thermal energy production evaluated by subtracting this hypothetical fuel from total fuel used

CO₂ Allocation Method for Cogeneration Based on Shared Emission Savings Between Electrical and Thermal Energy

Allocations evaluated for each product in proportion to hypothetical fuel that would be used to produce that product independently, relative to the total hypothetical fuel that would be used to produce both products independently Is there any rigorous theoretical reasoning for any of the methods for allocating carbon dioxide emissions in cogeneration?

Examples

 University of Toronto Cogeneration System
 Cornwall Cogeneration and District Energy System

Table 4. Technical Parameters for the Cogeneration Systems Considered		
Parameter	University of Toronto Cogeneration System	Cornwall Cogeneration and District Energy System
Engine type	Gas turbine	Two reciprocating engines
Heat use	Heating of campus using 6 km steam tunnel system	Municipal district heating using 4.5 km hot-water distribution network
Heat quantity and type (base load)	30,000 lb/hr of 200 psi steam	7 MW via 120°C and 1585 kPa steam
Supplemental firing	Heat recovery steam generator can be supplementary-fired to 90,000 lb/hr steam at 200 psi	None
Environmental controls	Water injection to control NOx emissions (to 42 ppm)	Engines use lean-burn technology
Installation date	1993	1995

Allocation of emissions for University of Toronto cogeneration plant (based on data in Table 6)

Emission allocation (%)

Allocation of emissions for Cornwall cogeneration and district heating system

Would the methods for allocating carbon dioxide emissions in cogeneration be important for cap and trade systems for carbon?

Generalizations

Generalizations - 1

Multiple products (beyond cogeneration)
Trigeneration
Different commodities than electricity and

heat (eg, hydrogen and oxygen)

Generalizations - 2

 Allocate costs among products more rationally, yielding better pricing, for cogeneration and related processes How would you use this methodology to allocate costs to the products of cogeneration?

Would it be important?

Closing Remarks

Conclusions

Many methods for allocating carbon dioxide emissions for cogeneration systems Methods differ significantly and results vary Exergy-based method felt to be most meaningful and accurate Important to allocate CO₂ emissions appropriately so environmental benefits of cogeneration better understood and exploited Results may provide basis for a meaningful overall approach for emissions trading