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Abstract

The monetary optimization of thermodynamic processes may be approached by inherently thermodynamic frameworks lik
economic analysis, or a rigid direct cost evaluation is applied. This paper, treating the optimization of a combined cycle power plan
the second path. Operation and investment costs are usually treated as a combined value by means of an annualization factor
rather far-stretching time horizon of turbine energy conversion systems, differing behaviour of those contributions with time, and
subjective weighting and assumptions of future developments, this conventional subsumption is not necessarily a sensible one to
best solution for a given decision situation. It is therefore favorable to address both costing goals independently and identify the pa
the problem prior to a final decision on which parametrization of the system should be chosen. A numerical pareto optimization
based on an evolutionary base strategy is discussed that addresses this type of problem in an efficient and easy to adapt manner.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Upon closer scrutiny the optimization of a power pla
like most practical optimization problems, is to be defin
as multi-criterial, i.e., more than one target function is to
pursued in the process of system amelioration.

Addressing this multi-criteriality, the dubiousness of su
jective weight functions is obvious in target values
different scaling, like cost and, e.g., pollutant emission
such a trade-off the relative weighting depends heavily
the attribution of values by the definer and cannot be c
sidered objective. Even when investigating just pure c
of a technical system, annualized investment costs ma
compared to operating costs only after a somewhat arbi
setting of the factor of annualization. It is therefore gen
ally desirable to independently but simultaneously pur
each target function during the optimization process. S
an approach usually does not yield a single optimal s
tion but a tradeoff set of so-called pareto-optimal solutio
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E-mail address: lucas@ltt.rwth-aachen.de (K. Lucas).
1290-0729/03/$ – see front matter 2003 Éditions scientifiques et médicales
doi:10.1016/S1290-0729(03)00021-8
as most target functions show conflicting behaviours w
considered simultaneously. Typical examples are efficie
vs. power output of thermodynamic systems, total costs
pollutant emission of combustion systems, or investmen
operating costs for almost any practical process.

Even though only one system design will be put in
practice, the determination of the pareto set is of prac
importance: Knowing it a relative weighting of the targe
can be questioned with respect to small losses in one
potential great gains in another single target by shiftin
appropriately. Thus pareto optimization puts any particu
selection on a rational basis.

As a demonstration process for the pareto optimiza
approach we investigate the costs of a combined cycle po
generation system, separated into investment and oper
costs, whose performance depends on eight configur
variables. The optimization is performed by an evoluti
ary parameter optimizer coupled black-box-wise to a sys
simulator. The investigated process serves as a computa
ally rather simple test bed for our evolutionary approa
Since only real-valued configuration variables are to be
timized a mostly homogeneous and smooth pareto set
Elsevier SAS. All rights reserved.
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Nomenclature

C investment costs . . . . . . . . . . . . . . . . . . . . . . . US$

ṁ mass flow rate . . . . . . . . . . . . . . . . . . . . . . . kg·s−1

p pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MPa

P mechanical power . . . . . . . . . . . . . . . . . . . . . . . kW

Q̇ heat transfer rate . . . . . . . . . . . . . . . . . . . . . . . . kW

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
�Tln logarithmic mean temperature difference . . . . K

Greek symbols

ηs isentropic efficiency
ΠC compressor pressure ratio
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be anticipated. Nevertheless the woes of optimizer tun
automated population size adaptation, simulator-optim
coupling, treatment of simulator instabilities, and simi
may be investigated with such a problem, with more of th
issues to appear in more difficult cases.

2. The combined cycle power generation process

A combined cycle power generation process has b
chosen to illustrate the pareto optimization approach.
flowsheet of the 100 MW power plant is shown in Fig.
The plant employs a simple gas turbine system fueled
methane, consisting of an air compressor, a combus
chamber and a turbine. The methane is completely bu
at constant air ratio ofλ = 1.1. To adjust the exhaust ga
temperatureT3 at the turbine’s inlet a part of the compress
air bypasses the combustion chamber and is mixed
the hot exhaust gas leaving the combustion chamber.
expanded gas is led to a heat recovery steam gene
(HRSG) with two pressure lines. The feed water is hea
evaporated and superheated at high pressure in the H
After expansion in the high pressure turbine the ste
r

.

is re-superheated in the HRSG and conducted to the
pressure turbine. Finally, the expanded steam is conde
in the condenser. The remaining heat is discharged to
environment by cooling water and a cooling tower. T
mechanical work of the gas turbine and the steam tur
is converted into electricity in one single generator.

In particular the thermodynamic model consists of
independent mass and energy balances and the equ
for evaluating the thermodynamic properties. These h
to be determined for the gaseous substances [7] and
water/steam [14]. Additionally some restrictive conditio
on the basis of the 2nd Law of Thermodynamics
implemented in the thermodynamic simulator, which h
to be checked during process simulation. If at least
restriction is not fulfilled, the values of the target functio
are set to very high pseudo-values in order to render
solution proposition as non-competitive for the evolution
algorithm.

Only eight real-valued configuration variables (tempe
tures and pressures) are to be optimized in the process u
consideration, with the free parameters’ lower/upper bou
aries, due to material and physical restrictions, define
follows:
Fig. 1. Schematic of the investigated 100 MW combined cycle power plant.
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• compressor pressure ratioΠC � 16;
• exhaust gas temperature entering the gas turbineT3 �

1650 K;
• exhaust gas temperature leaving the HRSGT6 � 433 K;
• steam pressure entering the high pressure steam tu

p7 � 200 bar;
• steam temperature entering the high pressure s

turbineT7 � 850 K;
• steam pressure entering the low pressure steam tu

p9 � 200 bar;
• steam temperature entering the low pressure st

turbineT9 � 850 K;
• condenser pressurep10 � 6 kPa.

The investment costs of the power plant are calculate
the basis of functions for each plant component depen
on relevant process parameters [3], see Appendix A.
annual fuel costs are determined using 3 US$/GJ-LHV as
unit cost of fuel based upon the fuel’s lower heating val
which is multiplied by the mass flow rate of fuel.

The simulator includes both the thermodynamic mo
and the calculation of investment costs and fuel co
respectively. The simulator has been implemented as a
software program using classes for certain groups of p
components like heat exchangers etc.

3. Evolutionary pareto optimization

3.1. Concept of pareto set optimization

Multi-criterial optimization in general, and pareto op
mization in particular have been discussed in so many pa
(a collection of more than eight hundred, with a special fo
on evolutionary computation even, may be found at [1]) t
it seems futile to include a basic introduction to the conc
in this paper. Only some non-exhausting and subject-rel
aspects will be given on that subject to alleviate reading

The general idea of pareto optimization is not to weigh
dividual goals of an optimization problem prior to knowin
its pareto set, being defined bythe complete set of paramet-
ric solutions in which one partial target value can only be
improved by compromising on at least one other target. This
property of the pareto set must be viewed in concordanc
the existing boundary conditions of the given problem, in
present case mostly imposed by technical restrictions
maximum temperatures or pressures, minimal flux rates,
the like. It is subject to change if new technical solutions l
improved materials for turbine blades or new cooling me
anisms spring into existence. Therefore any given paret
reflects the momentary state of the (technical) art, and n
to get re-calculated at changes of the latter.

The pareto set is a set and not just the only one solu
for a given practical problem, as multiple target functio
tend to fight each other. It is, however, a solid basis to d
serious conclusions and reflect on individual weightings
e

t

considered targets. In particular it unveils sensitivities
the trade-off of individual goals. As the pareto set of
optimization problem may show regions of stagnation
one target function accompanied by remarkable chang
another one, accepting just a minor change in the slo
varying target function may yield very favourable ones
(one of) the other.

3.2. Evolutionary approach

In contrary to conventional, analysis-based (single
terion) optimization algorithms evolutionary approaches
not try to identify a single (optimally estimated), direct a
proach to the optimal parameter settings of the problem
question. Instead, imitating nature, they utilize a set of s
tem propositions defined by their respective configura
parameter values and characterized by their resulting ta
function value(s). Those system representations may b
terpreted as a kind of biological “individuals”.

Search steps are not calculated from discretized anal
related steepest descent considerations but occur rand
although not blindly, by taking the most promising indivi
uals as originators of generation-wise new parameter
sets. Therefore the usual pitfalls of analytical optimizat
approaches for non-steady, non-derivative functions do
apply for this kind of proceeding. As numerous variants
evolutionary optimization algorithms have been publish
and studied extensively, both for single target function
timization (e.g., [2,8,11–13]) and for multi-criterial proble
sets [1], we will restrict ourselves to the description of
particular evolutionary pareto algorithm chosen here for
combined cycle treatment and its specialties.

The basic toolbox adapted for the combined cycle o
mization is EPO[9]. EPO is a rather simple generation bas
evolutionary optimizer for real-valued parameters. Alrea
in its single-criterion variant it allows for several adaptatio
of the basic evolutionary strategy, though, and thus is a
able basis for a multi-criterial extension.

The most prominent features of EPO are:

• Existence of recombination, i.e.: New parameter
sets are constructed by mixing two promising form
variants, thus allowing for a parameter volume sea
compared to a mutation originated random line sear

• Continuous change in between of “comma strategy”
“plus strategy” [11].

• Simple invocation subroutines for external (black bo
linkage of simulation routines or stand-alone program

Depending on the settings of the applied evolution st
egy parameters, a trade-off of parameter space volum
line search may be defined. It is found that, depending
the topology of the target function and on the maturity
an actual optimization run, differing strategical approac
seem best suited, but cannot be assessed beforehand
main strategy ruler for this decision is the relative remane
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of comparatively well-suited solutions in the set of reprod
ing individuals. Therefore in our approach we regard the
switching between the extremes of comma and plus stra
as rather important, by introducing a general deteriora
factor for parents in their competition with their offsprin
The particular functions of EPO as discussed in [9] hav
proven to be appropriate for other sophisticated optimiza
problems [4–6,10].

EPOs basic strategy was modified for the pareto optim
tion with respect to the following issues:

Variable number of individuals in a generation. In a
monocriterial optimization approach the size of the best
taken as parents for the generation of new paramete
variations mainly serves the purpose of genotypic variabi
It aims at preventing the optimization run to get stuck
suboptimal solutions.

In pareto optimization the best list also serves the purp
of knowledge accumulation about the shape and extensi
the pareto set. In order to represent the pareto set as de
as possible a variability of the size of the best list has b
introduced, with every parameter set proposition exhibit
the pareto property in a given state of convergence b
retained therein.

A new-found well-adjusted parameter set may outp
form several former members of an older pareto set
proximation. In that case it replaces all of the old memb
leading to a shrinking of the best list.

Introduction of a pareto selection method. After determi-
nation of the target function values of all new parameter
propositions, a one-by-one paired comparison would be
essary for each target function to assess the relative mer
all sets correctly. This requires an extensive sorting effor
larger populations. On the other hand, after just some in
generations the detection of the pareto property is the
really interesting sorting criterion.

Therefore a fast classifying algorithm based on a rank
minimization system was developed that is designed
assess true pareto property solutions correctly. After
determination of all target function values for every n
parameter set proposition in a given generational step
ranks of all parameter sets are set to zero. Next, the ta
function values of the first parameter set proposition
compared to those of every other proposition, but only w
respect to being a relative pareto solution or not. In case
solution of the comparison pairs is found to be domina
by the other its rank is set to higher value than both form
values. If neither of the two compared sets dominates
other the maximum value of both former ranks are given
both of them. The second parameter set needs only t
compared to the remainingn − 2 ones and so forth. In th
end, onlyn · (n − 1)/2 comparisons have to be perform
to ascertain that the true pareto front parameter sets hav
lowest possible ranking value of zero. Larger values giv
t

f
ly

f

t

e

rough idea about a parameter set’s ranking with respe
the pareto property but do not claim to be well-defined.

Density balancing along the pareto front. The topological
complexity in target function space and hence the difficu
in finding improved solutions may change along the pa
front. On the other hand, a more or less dense coverag
it is required to characterize it correctly. Therefore offspr
are generated from the members of the best list on a (
of) density of existing solutions basis: After determinat
of the members of the best list this list is sorted for aver
distances to the next neighbors, and individuals are ta
predominantly from the more sparsely populated regio
thus probing those regions more extensively for better pa
front solutions. During the course of an actual optimizat
run one can clearly observe the impact of this strateg
sparsely populated regions become denser and dense
growing generation count.

Since the basic evolutionary algorithm does not dr
any conclusions from the mathematical formulation
the models in question and their steadiness or deriva
properties, it is possible to implement the actual acquisi
of the target function value(s) as a black-box approach. It
be obtained from any simulation tool if an algorithmica
organized interface between simulator and optimize
available.

An important aspect of any numerical optimization a
proach is the tackling of simulation faults. With the e
ception of some very well-established and widely u
computer codes most simulation tools have convergence
numerical stability problems, at least in certain regions of
rameter space. For analysis-based line search strategie
poses a huge problem, as faulty or even no target func
returns will misguide the strategy into wrong interpretatio
or premature terminations. Evolution strategies, howe
can cope with a certain amount of faulty target funct
returns as such settings will only be able to propagate in
combination with others—which usually will not work.

4. Obtaining the pareto set for the combined cycle
process

For the combined cycle power plant optimization EPO

was coupled to a custom simulator program. As both o
mizer and simulator stem from different sources and uti
at least slightly different programming languages (C a
C++) a fully disjunct program coupling via parameter a
result files was preferred over a direct coupling, minimiz
potential interferences of source codes.

As anticipated for such a custom built simulation enviro
ment the program was not completely stable and produ
endless loops for some parameter settings. To overc
respective deadlocks (optimizer waiting for the simulat
engine to return values before submitting a next set of dif
ing parameters for calculation) a runtime inspection faci
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ered as
Fig. 2. Approaching the pareto set of the combined cycle power system in the course of evolutionary generations. The later generations are rendlines
for clarity of presentation although they consist of individual points like the first ones.
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has been introduced into the optimizer, limiting the ma
mum execution time of the simulator. If this is exceeded
simulation process is killed by the optimizer, the respec
parameter set is discarded, and a different one is subm
for calculation instead. Infinite loop problems have been
served for several percent of submitted calculation runs, t
frequency strongly depending on the investigated param
space regions. The cost functions are calculated as det
in Section 2.

The optimization process was started with an ini
parent list size of 400 and an offspring of 200 per generat
The parent list size was allowed to expand to not more t
2000 individuals, with the number of new parameter sets
generation kept constant. The initial generation was defi
by randomly set parameter values in the given allow
ranges.

During an optimization run (see Fig. 2) the first tr
pareto front develops after about 100 generations.
lier generations just exhibit a best list distributed tw
dimensionally in target function space, but more and m
flattening out towards the sought trade-off curve of the ta
functions (Fig. 2, low generation counts). Due to the app
selection algorithm the number of individuals in the best
stays at the defined lower bound until the first true pa
front appears.
r
d

As solutions exhibiting a real pareto property are usu
not eliminated from the best list it starts to grow as
front gets populated more and more densely with increa
generation number. For our problem this growth reduce
and changes into a fluctuation when approaching bes
sizes of about 1500. At that point in convergence minim
changes in target value improvement tend to annihilate a
the same number of former pareto front members as
ones are found.

The absolute improvement of target functions becom
smaller and smaller over the course of generations: W
the advance of the pareto front is quite fast in the first ten
generations, the difference of generation 150 and 730, w
respective number of additional parameter sets having
probed, only provides a marginal improvement in most p
of the pareto set. Test runs with significantly more than 1
generations only exhibited neglegible further improveme
compared to the depicted one.

5. Discussion of the pareto set

The pareto front of the given combined cycle monet
pareto optimization shows a smooth, non-interrupted be
iour when viewed in target function space. This was
necessarily to be expected as some of the target function
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Table 1
Comparison of two parameter settings leading to comparable aggregated cost values. Explanation see text

Target function/variable Low investment cost variant A Low operation cost varia

Annual fuel costs 3.32× 107 US$ 2.20× 107 US$
Total investment costs 1.32× 107 US$ 2.81× 107 US$

Compressor pressure ratioΠC 11.9 11.2
Exhaust gas temperature entering the gas turbineT3 1516 K 1516 K
Exhaust gas temperature leaving the HRSGT6 932 K 461 K
Steam pressure entering the high pressure steam turbinep7 122 bar 84 bar
Steam temperature entering the high pressure steam turbineT7 814 K 805 K
Steam pressure entering the low pressure steam turbinep9 32.1 bar 2.2 bar
Steam temperature entering the low pressure steam turbineT9 820 K 424 K
Condenser pressurep10 0.06 bar 0.06 bar
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tributions behave unsteadily when phase changes of w
are involved in heat exchangers etc. Despite of these ma
matical complications the pareto set was readily compu
At the finally determined pareto front the whole system d
not seem to operate on phase change conditions as th
sulting curve does not show unsteady points.

The shape of the curve represents the expected trad
situation where investment costs are to be judged ag
operation costs. Reducing operation costs below about 2.2×
107 US$ is either not possible or requires huge investm
costs. On the other hand, a reduction of investment co
less than 1× 107 US$ will increase operating costs beyo
sensible limits.

In the given case of pure monetary target functio
one may use familiar economic relationships to aggre
operation and investment costs in the habitual way. A
such aggregation will define a linear superposition of
originally separate cost domains that may be expresse
a tilted new “optimization axis”, equivalently expressed
arbitration iso-lines perpendicular to that axis. The angle
such iso-lines therefore may as well define the individ
cost model. If, as an extreme example, only operation c
would be considered, the arbitration axis would coinc
with the abscissa of our plot, and iso-lines would be para
to the ordinate. Due to the uncertainties of cost mode
and subjective arbitration the superposition of the two c
contributions leaves quite a range of sensible mone
assumptions. Three exemplaric representatives of iso
sets (dashed, dash-dotted, dotted) are given in the p
diagram of the combined cycle process. Each of th
identifies at the respective point of tangential touch
respective “optimal” achievable target function values.

If we start our investigation of the pareto set at
dotted line, which represents a relatively strong stress
investment costs, a slight change in arbitration in fo
of operation costs will shift the relative contribution
target functions and hence the structure of the param
propositions only slightly.

Tilting the arbitration iso-lines even more we eventua
arrive at the dash-dotted situation where we observe a c
cidence of aggregated quality for solutions quite separ
in target function and in parameter space. Although yie
r
-

-

f
t

s

r

ing an identical aggregated quality those solutions di
significantly with respect to the relative contribution of o
erating and investment costs. As expected those solu
have quite different parameter settings, as detailed in
ble 1. Scrutinizing the given parameter sets the plausib
of variant B, especially the low inlet pressurep9 of the low
pressure turbine, might be questioned. This is caused b
simulation model, though. There is no additional restrict
implemented that would limit a further decrease of this f
parameter for economic reasons. Only the thermodyna
feasibility is ensured by comparing this parameter to
condenser pressure. Therefore, the low value of the low p
sure steam in case B is due to uncertainties of the appa
cost modeling in interaction with thermodynamic reason
a side effect of the way the water/steam is guided thro
the HRSG (see Fig. 1). In practice, the low pressure turb
would be omitted in this case.

The reduced fuel costs of the system propositions ly
on the concave, almost linear section of the pareto c
are primarily based on the reduction of the exhaust
temperatureT6 at the outlet of the HRSG. If this value fal
below 600 K, respective low values for the low press
steam are needed to use the exhaust gas optimally.

Laying even more stress on operation costs the pa
set solutions map to the aggregated cost function a
in a rather unspectacular way of slowly shifting relat
weights, the dashed line being a representative of this ra
Here an exponential increase of the investment cost
found for individuals with a constant minimum temperatu
T6 = 433 K. The increase is due to the remaining f
parameter changes that have the greatest effect on
in this constellation, likeT3, ΠC and p7. Finally, all of
them reach their maximum allowed values at the exerg
optimum, which marks the left end of the pareto cur
considering the given restrictions for the free parameters

In our travel of changing relative weightings we nev
experienced a situation, though, where solutions at opera
costs of about 3×107 US$ would be the ones to be chosen
optimal, due to a region of concavity in the trade-off cur
Nevertheless these solutions are members of the pare
and do make sense to be determined and scrutinized: Fo
practical system to be constructed it may be most favor
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to limit both operating and investment costs, even if
resulting solutions are slightly lower rated in a simple lin
overall cost model. It may be a sensible means to bo
the ill effects of uncertainties and flaws in any individu
target function calculation by not following a very point
construction proposition.

The mathematical representation of such a rela
weighting may be constructed by non-linear models on
operation costsfop(�x) and investment costsfinv(�x) for any
investigated parameter set�x, like

Qeff = αfop + βfinv

α + β
+ γ · fop · finv (γ < 0),

taking into account coincidence factors asγ · fop · finv
contributing to the overall solution proposition quali
Resulting arbitration iso-lines are no more straight but m
or less curved into the concave regions of the pareto
depending on the strengths of the non-linearity factor.

In any case, a pareto optimization performed prior to
ing the relative weights of target function attribution w
capacitate the decision makers to reflect on the importa
of the individual targets. It yields, at the same time, an
mediate overview on disadvantages incurred by pronoun
a certain partial target function.

6. Conclusions and outlook

Evolutionary pareto optimization has proven to be
plicable to parametrically defined combined cycle pow
plant models. The optimization method behaved robus
spite of occasional convergence problems of the app
simulation model. With typical model simulation times
less than one minute the problem could be solved du
some hours on a simple single-CPU personal computer
without any in-depth mathematical scrutinization of the
derlying model.

The same pareto set could have been determined in
by sequential application of numerous aggregated individ
weighting sets. In order to assess the merits of coin
ing partial qualities, though, the investigation of pure lin
superimposed relative weights would not suffice, thus r
dering the required efforts for this “simple” approach
quite large. Furtheron the application of faster determini
optimum search methods would have to cope with ma
matical peculiarities of the target functions and would, in
course of a large number of automatically defined optim
tion runs, presumably not always proceed to the respe
global optimum.

The result of the optimization process, the pareto se
the problem, yields an immediate choice of parameter
for whatever relative weighting is considered as the m
appropriate one for the actual design problem by the fi
decision makers. For any relative set of weights the sta
ity of the resulting decision with respect to the configurat
parameter set to be chosen may be investigated with re
t

d

t

to subjective differences and uncertainties of priority s
tings. Even if non-linear cost function superpositions are
be included in the set of sensible attribution the identifi
pareto set allows an estimate of the amount of non-linea
involved to yield further interesting solutions.

With more complex simulative calculations expected
more elaborate models the accumulating computing t
will no doubt rise significantly, but as of now the mo
efficient absolute optimization time reduction potent
parallelization, has not yet been exploited. Every tar
function determination of an individual parameter sett
is completely independet of any other, so the calculati
may well be performed in parallel. With growing simulatio
time requirements the relative part of parallelizable cod
a complete optimization iterative step becomes significa
larger, so according to Amdahl’s law the expected g
in performance grows as well. For demanding simulati
with individual system simulation times of several minute
speedup of several tens to several hundreds is realistic
appropriate number of (cheap consumer system) proce
is available.

Appendix A. Cost functions (see also [3])

Air compressor:

CAC = c11 · ṁair · 1

c12 − ηsC
· ΠC · ln(ΠC)

c11 = 44.71 $·(kg·s)−1

c12 = 0.95

Combustion chamber:

CCC = c21 · ṁair ·
(
1+ ec22·(Tout−c23)

) · 1

0.995− pout/pin

c21 = 28.98 $·(kg·s)−1

c22 = 0.015 K−1

c23 = 1540 K

Gas turbine:

CGT = c31 · ṁgas· 1

c32 − ηsT

· ln

(
pin

pout

)

× (
1+ ec33·(Tin−1570 K)

)
c31 = 301.45 $·(kg·s)−1

c32 = 0.94

c33 = 0.025 K−1

Heat recovery steam generator:

CHRSG= c41 ·
∑

i

(
fp,i · fT,steam,i · fT,gas,i ·

(
Q̇i

�Tln,i

)0.8)

+ c42 ·
∑

fp,j · ṁsteam,j + c43 · ṁ1.2
gas
j
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ti-

lv-
ary
er,

ody-
nos
is of

sse,
rf,
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n to
996)

tion
.

om
om-

ar-
er-
ci.,
fp,i = 0.0971· pi

30 bar
+ 0.9029

fT,steam,i = 1+ exp

(
Tout,steam,i − 830 K

500 K

)

fT,gas,i = 1+ exp

(
Tout,gas,i − 990 K

500 K

)

c41 = 4131.8 $·(kW·K)0.8

c42 = 13380 $·(kg·s)−1

c43 = 1489.7 $·(kg·s)−1.2

Steam turbine:

CST = c51 · P 0.7
ST

(
1+

(
0.05

1− ηsST

)3)

×
(

1+ 5 · exp

(
Tin − 866 K

10.42 K

))

c51 = 3880.5 $·kW−0.7

Condenser and cooling tower:

CC = c61 · Q̇Cond

k · �Tln
+ c62 · ṁCW + 70.5 · Q̇Cond

× (−0.6936· ln(T CW − TWB) + 2.1898
)

c61 = 280.74 $·m−2

c62 = 746 $·(kg·s)−1

k = 2200 W·(m2·K)−1

Feed water pump:

CP = c71 · P 0.71
P

(
1+ 0.2

1− ηsP

)

c71 = 705.48 $·(kg·s)−1
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