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Just as the constant increase of entropy is the
basis law of the universe, so it is basic law of
life to be ever more highly structured and to

struggle against entropy

Vaclav Havel
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Preface

The increasing demand for power and material product, driving by the increase
of population and a rising standard of live, on one hand and the adverse impact
of the current energy conversion technologies, due to emissions, waste disposal
and the sign of global earth warning, on the other hand, has been created an
energy crisis that is going to decades to come. The long- lasting energy crisis result
from the absence of alternative energy resources and conversion technologies that
are both friendly to the environment and economically competitive to the present
ones. Until new competitive or emerging technologies become available, the cost-
effective increase of the conversion efficiencies of current technologies is the only
option to reduce the impact of the crisis.

The traditional approaches to the synthesis and the design of energy-intensive sys-
tems relied in the past on the intuition of experienced engineers and designers.
A low concern was given to fuel consumption and no concern was given to the
environment. Today both concerns are increased, this situation did rise to a global
level and did pose a hard challenge to the designer and the operators of energy in-
tensive systems. Cost-effective fuel saving became a focus of attention in the design
and operation of these systems. The design aspects became a complex multidisci-
plinary process requiring specialized knowledge in each discipline. The operation
aspect became more responsive to any mismanagement of energy emission and
waste disposal.

This book provides a rigorous introduction to thermoeconomic analysis, a group
of methodologies that study the relationship between cost and efficiency of the
energy conversion technologies and which main objective is to lay the foundations
of a science of energy resource saving.

The book is intended to use in a course for the doctoral program in renewable energy
and energy efficiency at the university of Zaragoza, called Thermoeconomics with a
duration of forty hours.

Our development is aimed at imparting an understanding on the process of cost
formation of the energy conversion systems and its mathematical basis, with a ma-
jor focus on its main applications: cost accounting, optimal design and malfunction
diagnosis.

Thus, Chapter 1 presents an overview of the basic concepts of Thermoeconomics,
explaining the relationships between the Second Law of Thermodynamics and
Economy trough the concept of cost. An historical review of more than a 20 year
development is used to explain the main subjects on Thermoeconomics.

Chapter 2 presents the Exergy Cost Theory a methodology that combines the
general theory of systems, the exergy concept of thermodynamics and economic
principles of cost accounting. This methodology identify the real cost sources at
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component level: the capital, operation, and maintenance cost, the cost of energy
resources and the cost of exergy losses or irreversibilities. The numerical methods
for calculating the exergy and thermoeconomic costs are explained in detail.

The topics initiated in Chapter 2 continues in Chapter 3 with the development
of the Symbolic Exergoeconomics based on the Fuel-Product model. It is a powerful
and a systematic approach that studies in-depth the process of cost formation and
provide the tools to obtain the mathematical relationship between cost, efficiency
and irreversibility. The cost of residues and its impact in the cost of the product is
also dealt.

Chapters 4 and 5 deal with the applications of thermoeconomics, based on the re-
sults obtained in previous chapter. The design and optimization of thermal systems
is discussed in Chapter 4. The development is based on decomposition strategies
that consider the optimization problem of a system as a set of sub-optimization
problems. The energy audit and thermoeconomic diagnosis is dealt in Chapter
5. The principle non-equivalence of irreversibilities and the fuel impact formula,
introduced in chapter 3, are used to identify the malfunction of the individual
components and the dysfunctions that produces in the whole system.

To end the main matter of the book Chapter 6 presents the Structural Theory of
Thermoeconomics a general theory of cost-accounting, that analyzes the different
thermoeconomic methodologies and unifies it in a common framework.

The different concepts introduces along the book are illustrated with practical
examples, and several thermal plant as a gas turbine cycle for power and steam
cogeneration, and a Rankine cycle.

We assume readers have had introductory courses in engineering thermodynamics.
For readers with limited backgrounds in thermodynamics s review is provided in
Appendix A. Appendix B provides a review of Linear Algebra subjects which
are used in the book. Appendix C presents a review of analytical and numerical
optimization techniques. The algorithms of the cost-accounting methods presented
in the book are explained in detail in Appendix D.

The development and evolution of this books have benefited substantially from
the advice of the colleges of CIRCE, the department of Mechanical Engineering
of the University of Zaragoza and other researches colleges on thermoeconomics.
We also indebted for the comments, questions and revisions of our students of the
doctorate course along these years

César Torres Cuadra
Antonio Valero Capilla

iv



Contents

1 The Process of Cost Formation 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Exergy analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Irreversibility and exergy cost . . . . . . . . . . . . . . . . . . . 5

1.1.3 Thermoeconomic analysis . . . . . . . . . . . . . . . . . . . . . 6

2 The Exergy Cost Theory 7

2.1 The Thermoeconomic Model . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Definitions and concepts . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Cost accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Calculation of average exergy cost . . . . . . . . . . . . . . . . 11

2.1.4 Calculation of exergoeconomic costs . . . . . . . . . . . . . . . 14

2.1.5 External assessment and additional concepts . . . . . . . . . . 14

2.2 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Symbolic Exergoeconomics 17

3.1 The Fuel-Product Model . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Cost Model Equations . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 The FP Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Distribution Ratios . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Cost and Efficiency Formulae . . . . . . . . . . . . . . . . . . . 22

3.2.3 Irreversibility and Cost . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.4 Exergoeconomic Cost . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 The PF Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Junction Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Unit Exergy Consumption . . . . . . . . . . . . . . . . . . . . . 27

3.3.3 Cost Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.4 FP and PF Relationships . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Impact of resources consumption . . . . . . . . . . . . . . . . . . . . . 30

3.5 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



4 Structural Theory of Thermoeconomics 33

4.1 Marginal Cost and Charecteristic Equations . . . . . . . . . . . . . . . 35

4.1.1 Characteristic Equations . . . . . . . . . . . . . . . . . . . . . . 35

4.1.2 General Equation of Marginal Cost . . . . . . . . . . . . . . . . 36

4.1.3 Generalized Fuel Impact . . . . . . . . . . . . . . . . . . . . . . 39

4.1.4 Lagrange Multipliers and Marginal Costs . . . . . . . . . . . . 39

4.2 Structural Theory of Thermoeconomics . . . . . . . . . . . . . . . . . 40

4.2.1 Linear Model of Characteristic Equations . . . . . . . . . . . . 40

4.2.2 Average and Marginal Costs . . . . . . . . . . . . . . . . . . . 41

4.3 Standards for Thermoeconomics . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Structural Theory and Exergy Cost Theory . . . . . . . . . . . 43

4.3.2 General rules for cost assessments . . . . . . . . . . . . . . . . 45

4.3.3 Structural Theory and the Fuel–Product Model . . . . . . . . . 46

4.3.4 Structural Theory and TFA . . . . . . . . . . . . . . . . . . . . 47

4.4 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Thermoeconomic Diagnosis 49

5.1 Thermoeconomic Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Technical Exergy Saving and Fuel Impact . . . . . . . . . . . . 51

5.2 Malfunction and Disfunction Analysis . . . . . . . . . . . . . . . . . . 52

5.3 Malfunction Causes Analysis . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A Exergy Analysis Fundamentals 61

A.1 Engineering thermodynamics principles . . . . . . . . . . . . . . . . . 61

A.2 Defining Exergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.2.1 Chemical Exergy . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.3 Exergy Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B Review of Lineal Algebra 73

B.1 Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.3 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

vi



Chapter 1
The Process of Cost Formation

In this chapter is analyzed in detail the process of cost formation, which has physical
roots provided by Second Law of thermodynamics. It is also presented a global
outlook of thermoeconomics as a resources saving science connecting physics and
economics. The fundamental concepts and tools utilized by thermoeconomics and
its scope is fully described

Thermoeconomics is in its widest possible sense the science which connect ther-
modynamics and economics. An economic analysis can calculate the cost of fuel,
investment, operation and maintenance for the whole plant but provide no means
to evaluate the single process taking place in subsystem nor how to distribute
cost among then. On the other hand, thermodynamic analysis calculates the effi-
ciency of the subsystems and locates and quantifies the irreversibilities but cannot
evaluate their significance in terms of the overall production process.

Thermoeconomic analysis combines economic and thermodynamic analysis, by
applying the concept of cost. The physical magnitude that connecting physic
and economics is entropy generation or more specifically, irreversibility. This
represent the “useful” energy or exergy lost or destroyed in a physical process.
All real process in a plant are non reversible and as consequence, some exergy
is destroyed and some natural resources are consumed and lost forever, which
involves a cost in economic terms. All natural resources have an economic cost: the
more irreversible a process, the more natural resources consumed and the higher
required investment. If one can measure this thermoeconomic cost by identifying,
locating and quantifying the causes of inefficiencies in real process, it is possible to
provide an objective economic basis using the cost concept.
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2 The Process of Cost Formation

1.1 Introduction

Nicholas Georgescu-Roegen pointed out in his seminal book, The Entropy Law and
the Economic Process, that ”. . . the science of thermodynamics began as a physics
of economic value and, basically, can still be regarded as such. The Entropy Law
itself emerges as the most economic in nature of all natural laws... the economic
process and the Entropy Law is only an aspect of a more general fact, namely, that
this law is the basis of the economy of life at all levels. . .”. Might the justification
of thermoeconomics be said in better words?

Since Georgescu-Roegen wrote about the entropic nature of the economic process,
no significant effort was made until the 1980s to advance and fertilize thermody-
namics with ideas taken from economics. At that time most thermodynamicists
were polishing theoretical thermodynamics or studying the thermodynamics of
irreversible processes.

But the Second Law tells us more than about thermal engines and heat flows at
different temperatures. One feels that the most basic questions about life, death,
fate, being and nonbeing, and behavior are in some way related to Second Law.
Nothing can be done without the irrevocable expenditure of natural resources, and
the amount of natural resources needed to produce something is its thermody-
namic cost. All the production processes are irreversible, and what we irreversibly
do is destroy natural resources. lf we can measure this thermodynamic cost by
identifying, locating, and quantifying the causes of inefficiencies of real processes,
we are giving an objective basis to economics through the concept of cost.

The search for the cost formation process is where physics connects best with eco-
nomics, and thermoeconomics can be defined as a general theory of useful energy
saving, where conservation is the cornerstone. Concepts such as thermodynamic
cost, purpose, causation, resources, systems, efficiency, structure and cost forma-
tion process are the bases of thermoeconomics.

Unlike thermodynamics, thermoeconomics is not closed and finished. lt is open
for new researchers to improve its bases and extend its applications. As in the way
thermodynamics was born, thermoeconomics is now closely related to thermal
engineering. Cost accounting, diagnosis, improvement, optimization, and design
of energy systems are the main uses for thermoeconomics. But thermoeconomics
and its content could and should go beyond microeconomic analysis of thermal
systems.

Thermoeconomics could one day fulfil the old economists’ dream of providing
physical roots for economics. It is located in the transition between cost as physical
and measurable destruction of resources and cost as analytical accounting of the
direct and indirect monetary flows needed to produce a specific product or service.

Thermoeconomics, thus understood, has an integrating and explanatory function.
It attempts to integrate and take in the methodologies of energy analysis such as
“energy accounting”, “embodied energy accounting”, “exergy analysis”, “emergy
analysis”, the “analysis of cumulative exergy consumption”, “life cycle analysis”,
“input–output analysis”, the “theory of complex energy systems” and “energy
optimization”, among others. In its analysis it also gives physic–mathematical
reasons, or at least attempts to find them, to explain the analogies and discrepancies
between the different methodologies. This science gives answers based on the
logical application of the second law of thermodynamics in the search for cause–
effect relations and chains of causality and finally in a mathematical apparatus
common to the conventional economic analysis.
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We live in a finite and small world for the people we are and will be, and natural
resources are scarce. If we want to survive, we must conserve them. In this
endeavour, thermoeconomics plays a key role. We must know the mechanisms by
which energy and resources degrade; we must learn to judge which systems work
better and systematically improve designs to reduce the consumption of natural
resources and we must prevent residues from damaging the environment. These
are the reasons for thermoeconomics and its application to engineering energy
systems.

1.1.1 Exergy analysis

It is well-known that to have something with a high potential to carry out an action
has a great value. In terms of physics this intensive potential is measured using
pressure, temperature, high, chemical potential,. . . . In economy we use terms as
richness, density of information,. . . . The real value of the things isn’t to have or to
know something but to know or to have more than our environment.

If we liberate the bounds that maintain the high potential of our system, it will
evolve toward the environment conditions, without producing any useful work.
The energy and the mass of our system will not change, but we will note something
has change. In the case of the economy the cash flow won’t have modified, but my
moneybag will.

To quantify these changes the entropy concept is used. The entropy of a system is
a function of its intensive potentials, and it is defined in such a way that its entropy
increases as much as less useful effects take place when it evolving toward its
environment. Therefore, we have introduced the Second Law of Thermodynamics
and we have related the concepts of entropy and usefulness.

What is the usefulness from the point of view of the Physics? On one hand, the
thermodynamic usefulness or availability always has a reference. The usefulness is
measured with regard to a reference level, the more far away the intensive potentials
from the reference level are, more usefulness the process has. On the other hand,
the magnitude we use in physics to account the availability to do something is the
energy (kilowatts per hour). Although, in accordance with the First Principle of
Thermodynamic the energy that we pay in our electricity bill is the same one that
the heat vanished by a stove that consumes those kilowatts per hour.

Not all the energy types have the same quality, for that reason the thermodynamic
usefulness will have to measure in some type of magnitude that indicate quality
and quantity at the same time. We could chose the mechanical work or the electric
energy as unit.

Therefore we could define the thermodynamic usefulness as the maximum quan-
tity of work that we could obtain from a flow that evolves toward the reference
environment, using a ideal machine. We will call it available energy or exergy.

A first law, energy, analysis generally fails to identify energy waste or effective use
of fuels and resources. For instance, the first law does not recognize any waste in
an adiabatic throttling process, one of the worst processes from the thermodynamic
point of view.

The second law of thermodynamics shows that, in some energy carriers (e.g.,
enthalpy of a flow stream) a part of the energy is useless. Exergy is the part of energy
that can be converted into any other form of energy. An exergy analysis based on
both the first and second laws of thermodynamics, calculates the useful energy
associated with thermodynamic system or with each flow stream in the process.



4 The Process of Cost Formation

It also identify and evaluates the inefficiencies of a energy system. This analysis
shows that useful energy is destroyed during any step of an energy conversion
process, while the total energy remains constant. An energy analysis is the way
to unmask the high irreversibilities in process such as combustion, heat transfer
throttling or mixing. The causes of irreversibilities or exergy destruction could be
located and quantified and the effects of inefficiencies of other components could
be detected. Thus, the interdependence of component inefficiencies and the effect
of performance deviations from the design conditions can be easily demonstrated.
For example any change in the irreversibilities in the mixing device shows in Figure
1 will cause changes in the exergy destruction in the pump and throttling valve,
assuming constant conditions for stream 5.

Throttling 
Valve

3 

�

�� Mixing 
Devic
e 

�

Pump 

Figure 1.1. Group of components in a energy system

Exergy not only is an objective measure of the thermodynamic value of an energy
carrier but also is related closely to the cost of the exergy carrier, because users
should pay only for the useful part of energy. Consider two energy carries that
consist of the same material (e.g. water) and have the same pressure and the same
total energy; one operates at high temperature (superheated steam) an the other
at a low temperature (saturated liquid water). The second carrier must have a
larger mass. A thermal engineer would probably be willing to pay more for the
first carrier than the second one because the cost of the heat exchanger, where
the thermal energy would be used, will be lower if the high temperature energy
carrier were used instead the lower temperature carrier. This example indicates
that exergy rather than mass or energy should serve as a basis for assigning cost to
energy carriers.

For the throttling valve shown in Figure 1, the first law of thermodynamics detects
no loses in the process from state 3 to state 4. Thus, if we base the cost calculation on
the energy content, the cost per unit will be the same before and after the throttling
valve, if the capital cost is ignored. The second law of thermodynamics, however
quantify the exergy destruction during the throttling process and, with the aid
of a cost balance, concludes that the cost per unit of exergy must be higher after
the throttling process (flow 4) than before it (flow 3). An increase in the exergy
destruction in the throttling valve leads to an increase in the cost per unit of exergy
between the valve inlet and the valve outlet and consequently between fuels and
final products for the entire system. Thus, the second law sheds light on the cost
formation process while the first law could lead erroneous conclusions.

The operation of a pulverized-coal steam power plant offers a third example. If we
assume a plant efficiency of 33.33 % and exclude the contribution of the capital cost,
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then a unit of electricity will cost three times more than a unit of coal energy. The
first law would indicate that the condenser is mainly responsible for this increase
while the second law would correctly identify the boiler. The first law cannot reveal
that the energy rejected to the condenser has an extremely low exergy content or
that the exergy of the superheated steam entering the high pressure turbine is
approximately half of the coal exergy. That is, about 50% of the coal useful energy
is destroyed in the boiler alone. The values of the first and second law efficiencies
of the total plant would be close to equal because the exergy content for both
electricity and coal is either identical or close to the corresponding energy content.
The first law, however, gives a distorted picture of the losses and cost sources.
Similar examples can be found in any energy system.

1.1.2 Irreversibility and exergy cost

How much exergy is dissipated if we break a glass? Almost none is dissipated,
because glass is in a meta-stable state near thermodynamic equilibrium with the
environment. We cannot save useful energy where none exists. However, if a glass
is broken, we make useless all the natural resources used for its production. What
is important is not the exergy content of the glass but its exergy cost. Therefore,
we will say that the exergy cost of a functional product is the amount of exergy
needed to produce it. And a functional product, according to Le Goff ”is the
product obtained in the energy transformation of its manufacture and defined by
the function to which it is destined.” The set of manufactured objects that allows
the manufacturing of other functional products is named a unit or device. And the
procedure for fabricating a functional product from a set of functioning units and
from other functional products is named a process or industrial operation. These
processes usually produce residues and/or by-products.

Knowing the resources sacrificed in making functional products would be a pow-
erful incentive for optimizing processes. First Law analyses discern as losses only
the amounts of energy or materials that cross the boundaries of the system. Friction
without energy loss, a spontaneous decrease in temperature, or a mixing process
are not considered losses. Second Law ascertains losses in energy quality. Com-
bining both laws allows losses in processes to be quantified and localized. The
laws can be combined in many ways. However, production takes materials from
the environment and returns products and residues. lt is therefore reasonable to
analyze exergy, which measures the thermodynamic separation of a product from
environmental conditions.

Unfortunately, exergy analysis is necessary but not sufficient to determine the
origin of losses. For instance, if the combustion process in a boiler is not well
controlled, the volume of air and gases will increase and the fans to disperse
them will require additional electricity. The increase in exergy losses from the
fans is due to a malfunction of the boiler and not to the fans themselves. Quite
commonly, irreversibilities hide costs. Therefore, exergy balances allow localization
of losses, but processes and outcomes must also be analyzed. We will term these
causality chains processes of cost formation, and their study -an additional step to
the conventional exergy analysis - we will term exergy cost accounting.

What is important is not the exergy, E in (kilowatts), that the functional products
may contain but the exergy cost E∗, that is the exergy plus all the accumulated
irreversibilities needed to get those products.



6 The Process of Cost Formation

1.1.3 Thermoeconomic analysis

In a thermoeconomic analysis, we calculate the exergy flow rate associated with
each process stream, the irreversibility in each system component, and the exergy
(second law) efficiency of each component. In addition to, mass energy and exergy
balances, cost balances are formulated for each system component by assigning
cost to the exergy of each flow, and whose basic equation is:

ĊP ≡ cPĖP = cFĖF + Ż (1.1)

the cost of the product expressed in monetary units per unit of time, where EP, EF
are the exergy of the product obtained per unit of time ant that of the resources
consumed of fuels. Z is the amortization cost of each component in this interval of
time and cf is the unit cost of the exergy of each resource.

With the aid of the cost balances and some auxiliary assumptions, the cost per unit
of exergy for each process stream is calculated. Generally this cost is only know for
the raw fuel entering the plant from their prices. With a thermoeconomic analysis
the cost of all internal flow streams and the final product of the plant are calculated.

The effectiveness in the design or operation of an energy system increase when
we understand the real causes and the process of the cost formation. A ther-
moeconomic analysis identifies these causes. This information, complemented by
the engineer’s experience, helps to reduce the product costs in energy systems.
Decisions about design, operation and repair and replacement of equipment are fa-
cilitated. In addition thermoeconomic analysis provides an objective cost allocation
to more than one product of the same process, as for instance a cogeneration which
produces electricity and steam for heat. Finally, thermoeconomics helps manage-
ment to decide how to allocate research and development funds to improve plant
components that contribute most significantly to the product cost.

At present, thermoeconomic analysis could be applied to solve different problems
in complex energy systems, as for instance:

• Rational price assessment of plant product based on physical criteria.

• Optimization of specific process unit variables to minimize final product cost,
i.e. local and global optimization:

• Detection of inefficiencies and calculation of their economic effects in operat-
ing plants, i.e. plant operation thermoeconomic diagnosis

• Evaluation of various design alternatives or operation decision and profitabil-
ity maximization

• Energy audits.

Moreover, thermoeconomics and his applications should go beyond microeconomic
analysis for optimization of energy systems. It should be providing the physi-
cal roots for economics, giving thermodynamic and mathematical answers to all
methodologies of energy analysis used up to present day, and be be the science
which underlies all of then.



Chapter 2
The Exergy Cost Theory

2.1 The Thermoeconomic Model

2.1.1 Definitions and concepts

To illustrate the different concepts, we will use a simple example of a thermal
system, which is a cogeneration plant based on a gas turbine.

6
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Combustor 

Compresor Turbina 
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Gases 
Gas Natural 
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Figure 2.1. Plant layout of the cogeneration plant.

Industrial installations have a defined aim, to produce one or several products. The
quantity of resources is identified through mass or energy flows, which are known
as fuel. Each of the components of the plant also has a well-defined objective
characterized by its fuel and its product, as figure 1 shows for the cogeneration
plant.

To carry out a thermoeconomic analysis of a system, it is necessary to identify
its flows with a magnitude sensitive to the changes in quality and quantity of
the energy processed. Exergy is an adequate magnitude because it expresses

7



8 The Exergy Cost Theory

the thermodynamic separation of the intensive properties characterizing the flow
(p j,T j, µ j) with respect to those of the environment (p0,T0, µ j,00). The thermoeco-
nomic methodology explained in this book is based on this fact. However, other
magnitudes are possible. In fact, this problem is currently under study.

Accordingly, it can be said that fuel F is the exergy provided for the process through
the resources and product P is the exergy that contains the benefits obtained. Thus,
for the cogeneration plant in our example, the exergy of process steam and the net
power are the products, and the exergy provided by the natural gas is the fuel. In
table 1 is shown the Fuel and product for all the component or process units of the
plant.

The aim of the combustion is to increase the exergy of the air flow E2 that exits
from the compressor. The product is, therefore, the difference of exergy between
flows 3 and 2, and the exergy of natural gas is consumed as fuel. In the case of the
turbine, the aim is to obtain mechanical energy, therefore, the product is the exergy
employed to drive the compressor E5 and the net power of the plant E6 The exergy
provided by the gas expanded in the turbine E3 − E4 is the fuel.

Table 2.1. Fuel & Product definition for the analyzed system

# Process unit Fuel Product

1 Combustor E1 E3 − E2

2 Compressor E5 E2 − E0

3 Turbine E3 − E4 E5 + E6

4 HRSG E4 E7

Total plant E1 E6 + E7

Note that the product of the combustion chamber, like the fuel of the turbine is
formed by the flows entering and leaving the processes. That is to say, the fuel does
not consist exclusively of flows entering the system, nor do the products consist
exclusively of flows leaving the system. In the fuel and product definition we will
distinguish between continuous exergy streams and interrupted or input/output
streams.

We also define losses L as those flows that leave the unit and the plant, are not
subsequently used, and do not require a special treatment. When these flows
leave the unit, exergy dissipates into the environment. If we suitably enlarge the
limits of the unit, these external irreversibilities become internal. We will call the
irreversibility (I) of the unit the sum of internal exergy destructions plus losses
occurring in it, I = L + D.

We will call productive units those whose objective is to transfer the exergy con-
tained in the fuels to the products. The fuel-product definitions for productive
units should be chosen such that the equation F - P = I is an expression of each
exergy balance. The exergy efficiency of these units is defined as:

ε =
Exergy of useful product

Exergy of resources
=

P
F

0 < ε < 1

The inverse is the unit exergy consumption defined as:

κ =
F
P

κ > 1
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grom a formal point of view a system can be considered as a complex entity made
up of a collection of components and of the relationship existing between them
and their environment. Thus, an energy system, such as the analyzed cogeneration
plant of figure 1 can be represented as a collection of components interrelated
through the mass and energy flows, which behavior is analyzed using a physical
model with a set of equations to describe the physical behavior of the process
units. It calculates parameters such as temperatures, pressures, efficiencies, power
generated, etc. to describe the physical state of the plant.

Depending on the depth of the analysis, a decision has to be taken on the required
detail i.e., which flows and process units are to be considered. Various parts of the
installation can be combined into one process unit and physical units can be further
disaggregated. The disaggregation level is interpreted as the subsystems that
compose the total system. Each subsystem can be a part of a piece of equipment,
the piece of equipment itself, or a group of pieces of equipment. The same can
be said for the interacting energy flows. The disaggregation level provides a
breakdown of the total irreversibility among the plant components. The chosen
disaggregation level will affect the conclusions of the analyses. In fact, if we do not
have more information about the system than that defined by its disaggregation
level, we cannot demand from the obtained set of costs more information than
we have introduced. Conversely, the analyst, not the theory, should be required
to disaggregate the plant, looking for cause until the information can be used
effectively.

It is important to choose an appropriate aggregation level that properly defines the
behavior of each process unit and its purpose in the overall production process.
The physical structure (see figure 1.1) depicts the process units, mass stream and
connecting energy flows considered in the physical model.

Usually the information embedded in the physical model comes from a set of real
data provided by the Data Acquisition System of a plant, or by a plant simulator.
Those measured physical data are temperatures, pressures, mass flow rates and
compositions of all mass flows together with the heat and power rates of the energy
flows considered. Therefore, the finally chosen aggregation level should take into
account that the thermoeconomic analysis will start from those real measured data
in a real plant.

Nevertheless, when performing a thermoeconomic analysis, it is absolutely nec-
essary to define a thermoeconomic model of the plant, which considers the pro-
ductive purpose of the process units, i.e. the definitions of fuels and products
and the distribution of the resources throughout the plant. The productive model
can be graphically depicted obtaining the Fuel/Product Diagram also called Produc-
tive Structure or Functional Diagram. In this scheme, the flows (lines connecting
the equipment) are the fuel and the product of each subsystem. Each piece of
equipment in the plant has an outlet flow (product) and, at least, an inlet flow
(fuel).

The capital cost of the units is also considered as an external plant resource and is
represented as inlet flows coming directly from the environment (not considered
in figure 2). Since the fuel of a process unit can be the product of another and
the product of a process unit can be the fuel of several subsystems. The produc-
tive structure is a graphical representation of resource distribution throughout the
plant. Thus, the devices providing exergy to the working fluid air/gases in the co-
generation plant of figure 1.1 are the compressor and the combustor. The turbine
and the HRSG consume the exergy provided by compressor and combustor. This
is represented in the productive structure by the junction, in which the product of
compressor and combustor are joined, and is distributed to the turbine and HRSG..
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Figure 2.2. Productive structure of the cogeneration plant.

Note that in most of cases the flows appearing in the productive structure are ficti-
tious and are not necessarily physical flows. While each plant has only one physical
structure to describe the physical relations between the process units, various pro-
ductive structures can be defined depending on the fuel and product definitions
as well as decisions on how the plant resources are distributed among the process
units. Figure 2 shows the productive structure corresponding to a specific thermoe-
conomic model, i.e. corresponding to a specific Fuel-Product definition (see table
1.1). Depending on the thermoeconomic model definition the productive structure
varies, obtaining thus as many productive structures as thermoeconomic model
definitions.

Figure 1 shows a convenient disaggregation level of the analyzed cogeneration
plant just for presenting ideas. The flows have been numbered as follows: (i) The
flow of air into the compressor has been eliminated because its energy and exergy
are zero. (ii) We consider a flow of process steam (flow 7) with an exergy value (E7)
equal to the difference of exergy between the flow of steam produced and the flow
of feed water entering the HRSG. (iii) In the HRSG, the flow corresponding to the
outlet gases has been removed because its exergy is not used later and the stream is
exhausted into the atmosphere. The same reason applies to combustor heat losses.

2.1.2 Cost accounting

According to the management theory, cost accounting is an economic task for
recording, measuring, and reporting how much things cost. Companies and in-
dividuals tend to optimize costs because cost is a loss of resources, and problems
generally appear when appropriate insight of costs and their causes are lacking.
Business managers use cost data for decision making and performance evalua-
tion and control. They have techniques for costing products and services and use
differential costs for estimating how costs will differ among the alternatives. Man-
agerial cost accounting became a profession many years ago, and almost every
organization uses it.

Energy cost accounting is in addition to a managerial technique for keeping low
the use of energy resources, provides a rationale for assessing the cost of products
in terms of natural resources and their impact on the environment and helps to
optimize and synthesize complex energy systems. Since 1985 the author of this
article and coworkers have been developing the exergy cost theory (ECT) and its
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applications to answer these problems. A simplified description of the theory is
now presented.

In any energy system the exergy of the resources is greater than or equal to that
of the products. For the plant as a whole as well as for any unit, F - P = I > 0.
The amount of exergy needed to obtain the products is equal to the exergy of the
resources consumed. This idea permits the introduction of a new thermodynamic
concept called exergy cost, that is defined as follows: given a system whose limits,
disaggregation level, and production aim of the subsystems have been defined, we call exergy
cost, E*, of a physical flow the amount of exergy needed to produce this flow.

The exergy cost is a thermodynamic function, like exergy (E), and its definition is
closely related to others that are common in literature, such as materials’ energy
content, embodied energy, and cumulative exergy consumption.

The cost of a flow is an emergent property, that is, it does not exist as a separate
thermodynamic property of the flow. Cost is always linked to the production
process. And this process links a set of internal and external flows. Therefore,
not only the cost of a flow but also a complete set of interrelated costs need to be
determined. On the other hand, the classification of flows as internal or external
depends on the system limits as for the case of subsystems or the system itself.

When performing a cost analysis in a system we can distinguish between average
costs, which are ratios and express the average amount of resources per unit of
product, and marginal costs, which are a derivation and indicate the additional
resources required to generate one more unit of the product under specified con-
ditions. Mathematically they are defined as:

Unit average cost: k̄∗i =
E∗i
Ei

(2.1a)

Unit marginal cost: λi =

(
∂E0

∂Ei

)

cond
(2.1b)

The average costs are only known after production, when we know how many
resources were used and the production has already been obtained. The average
cost is not predictive. Knowing the average unit cost of a product does not pro-
vide the cost of a production process Ei + ∆Ei. Thermoeconomic cost accounting
methods calculate average exergy costs and use them as a basis for a rational price
assessment, under physical criteria, of the internal flows and the products of the
plant.

Marginal costs are predictive in nature. They can be used to calculate additional
fuel consumption when the production is modified. Thermoeconomic optimization
methods are based on marginal costs when solving optimization problems.

2.1.3 Calculation of average exergy cost

The fundamental problem of cost allocation can be formulated as follows: Given
a system whose limits have been defined and a disaggregation level that specifies the
subsystems that constitute it, how do we obtain the costs (average costs) of all the flows
that become interrelated in this structure?

An initial procedure to solve it, can be based on the next four propositions.

P1 Rule: The exergy cost is relative to the resource flows. In the absence of external
assessment, the exergy cost of the flows entering the plant equals their exergy. In
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other words, the unit exergy cost of resources is one. As many equations can be
formulated E∗i = Ei as flows entering the plant.

P2 Rule: The exergy cost is a conservative property. For each component of a
system the sum of the exergy costs of the inlet flows is equal to the sum of the
exergy costs of the exiting flows. In matrix form, and in the absence of external
assessment, the exergy cost balance for all compounds of the plant is AE∗ = 0,
where A is the incidence matrix (n × m), which relates for whatever system, no
matter how complex, the components n with the flows m of the system, and E∗ is
a vector (m × 1) that contains the exergy cost of the flows. This equation provides
as many equations for calculating the exergy costs as the number of components
in the installation. 

1 1 −1 0 0 0 0
0 −1 0 0 1 0 0
0 0 1 −1 −1 −1 0
0 0 0 1 0 0 −1



We now reconsider the problem of cost allocation. If one wants to calculate the cost
of each of the m flows relevant to the disaggregation level considered for analysis,
it will be necessary to write m independent equations. If all units have only one
output flow that is not classified as a loss flow, then the problem is solved by
applying the stated propositions. In this case, we say that the system or process
analyzed is sequential. In the opposite case, additional equations must be written
for each unit equal to the number of output flows that are not loss flows minus
one. At this point we need to use exergy to reasonably allocate costs, because
this property enables us to compare the equivalence of the flows according to
the principles of thermodynamics. Note also that in any structure the number
of bifurcations x equals the number of flows minus the number of units and the
number of resource flows (x = m - n - e), allowing us to associate the problem of
cost allocation to bifurcations. The additional propositions are as follows:

P3 Rule If an output flow of a unit is a part of the fuel of this unit (non-exhausted
fuel), the unit exergy cost is the same as that of the input flow from which the
output flow comes.

P4 Rule If a unit has a product composed of several flows with the same thermo-
dynamic quality, then the same unit exergy cost will be assigned to all of them.
Even if two or more products can be identified in the same unit, their formation
process is the same, and therefore we assign them a cost proportional to the exergy
they have.

The validity of these propositions is proved in an next chapter, which also provides
the way for obtaining new ones in complex cases. However, in many cases the ap-
plication of these propositions is a matter of disaggregation until we can recognize
units with products of the same equality and exit flows identified as non exhausted
fuels.

We now consider the case of the cogeneration system in figure 1. The plant shows
n = 4 units and m = 7 flows. We assume that the exergy of these flows is known.
Propositions Pl–P4 offer a rational procedure for determining the exergy costs of
the m flows of the system. The proposition P1 says that the exergy costs of the e
flows that enter the plant coincide with their exergy, thus providing e equations.
The fuel flow to the combustion chamber gives the equation E1* = E1, = ω1, (or k1*
= 1) (ω1, denotes a given datum). Note that the air entering the compressor should
provide another equation. However, the exergy of air is zero, and the air is taken
from the environment at no cost. The proposition P2 says that a balance of exergy
costs can be established for each unit; therefore, n equations are available, as many
as components. These will be four for the cogeneration system of our example.
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Figure 2.3. Incidence matrix of the cogeneration system.

The propositions P3 and P4 yield as many cost equations as the number of bifur-
cations in the plant x = m − n − e. Two bifurcations are in the cogeneration system,
appearing both in the turbine, one corresponding to the exiting stream whose ex-
ergy has not taken part in the process and corresponds to a non-exhausted fuel.
Consequently, proposition P3 must be applied to this case, resulting in the follow-
ing equation:

E∗4/E4 = E∗3/E3

Alternatively, if we define x3F = −E4/E3 as the bifurcation exergy ratio correspond-
ing to the fuel E3 − E4 of the turbine, then we get the equation:

−x3FE∗3 + E∗4 = 0

The other bifurcation of the turbine corresponds to the output flows 5 and 6 and
constitutes its product; therefore, we will apply proposition P4, which results in
the following equation:

E∗6/E6 = E∗5/E5

If we define x3P = E6/E5 as the bifurcation exergy ratio corresponding to the product
E5 + E6 of the turbine; then:

−x3PE∗5 + E∗6 = 0

Now we have the m equations required for the calculation of the exergy flows of
the cogeneration system. In matrix form can be written as shown in figure 4. In
general form this system can be expressed as:

[A] · E∗ = Y∗e (2.2)

where [A] is the cost matrix (m × n) composed for n rows corresponding to the
incidence matrix A (n × m) of the plant, and m − n rows corresponding to the
production matrix α (m − n × m). Y∗e(m × 1) is the vector of external assessment
composed of n elements as a result of proposition P1, e elements with the actual
values of the exergies (ωe) corresponding to the resources of the plant (P2 rule), and
m − n − e null elements corresponding to the fuel and product bifurcations ( P3 –
P4 rule).

Inverting matrix [A] allows for the exergy costs to be obtained through the equation:

E∗ = [A]−1 Y∗e (2.3)
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2.1.4 Calculation of exergoeconomic costs

Calculating the monetary cost of the internal flows and final products in thermal
or chemical plants is a problem of the utmost importance, as the monetary cost is
directly linked to the production costs of the different components of the productive
process. For these plants the formation of the economic cost of the internal flows
and final products is related to both the thermodynamic efficiency of the process
and to the depreciation and maintenance cost of the units. Therefore, one can
define the exergoeconomic cost of a flow as the combination of two contributions:
the first comes from the monetary cost of the exergy entering the plant needed to
produce this flow, that is its exergy cost, and the second covers the rest of the cost
generated in the productive process associated with the achievement of the flow
(capital, maintenance,. . . ).

Accordingly, we call exergoeconomic cost of a flow the quantity of resources,
assessed in monetary units, needed to obtain this flow, and we denote it by C.
In the same way we call exergoeconomic cost of the fuel (product) the economic
resources necessary to obtain the fuel or product of the component, and we denote
it by CF or CP. If Zi is the levelized cost of acquisition and maintenance, of the
component i in e/s, the exergoeconomic cost balance for this component can be
written as:

CF + Z = CP (2.4)

where vector Z (n×1) contains the levelized acquisition cost of the plant components
and CF and CF are (n × 1) vectors containing the exergoeconomic costs of the fuel
and products of the components. Considering the previous equation for all units of
the plant we obtain the set of equations: AC = −Z which corresponding to the cost
balance rule P2, and the unknown quantities Ci are the exergoeconomic costs of the
n flows. As for the exergy costs m − n auxiliary equations are required to find the
exergoeconomic costs of the flows. The auxiliary equations can be formulated using
the P1, P3 and P4 rules. We conclude that the mathematical problem of calculating
exergoeconomic costs of the flows of a plant requires solving the system of m
equations with m unknowns:

[A] · C = Ze (2.5)

where Ze = t[−Z|Ce|0] is the vector that contains the external economic assessments.

The uniqueness of the matrix of costs, when applied to the calculation of the exergy
and exergoeconomic costs, reflects the fact that passing from the former to the latter
simply involves modifying the units in which the production factors are expressed
(kilojoules or euros).

2.1.5 External assessment and additional concepts

Up to now, the system or plant has been considered since a thermodynamic point
of view, without allowing for the physical or economic relationships with other
systems or plants. The effects of these relations on costs can be introduce into the
analysis by modifying the external assessment vector. In any case, the matrix of
costs will remain unaltered. Some important cases are the following:

Exergy Amortization: In the balance of exergy costs, it has not been considered the
fact that the units that form an installation are functional products and therefore
have their own exergy cost. To keep them in good operation, additional exergy will
be required. After determining the exergy costs of the units, it will be necessary
to distribute these costs over the total working lives. In this way, it is possible
to obtain with conventional methods a vector of dimension n that corresponds to
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the exergy amortization of the units. In a parallel manner, the vector of exergy
maintenance will be obtained. By defining the vector sum of both as Y∗ = Y∗A + Y∗A,
it is possible to reformulate the balances of the exergy cost of the installation (P2
proposition) in general as AE∗ = −Y∗.

Residues: Residual flows require an additional expense of resources for disposal.
An example is the flows of slag and fly ash in a coal boiler, which require power-
operated units without which the plant could not work. Thus, removing these
flows from a coal boiler entails an exergy cost that equals R∗. Parallel to the
process of product formation, there exists a process of residue formation. Residues
obviously are not formed in the last device they pass through. For instance, the cost
of stack gases in a boiler should not be allocated to the stack but to the combustion
chamber. For a proper allocation of the costs of residues we must follow their
formation process and assign the cost of their disposal to the unit in which they
are formed. The residual structure has its own units-and-flows representation, but
the connecting arrows go in the direction opposite to the physical flows to make
explicit their negative cost character.

Assessment of the plant fuels: The fuel flows consumed by an industrial installa-
tion are rarely composed of non transformed primary resources (fuels, metals,
geothermal deposits, etc.) whose values are represented by their thermodynamic
disequilibrium with the reference environment, that is to say, from their exergy.
Thus, the coal processed by a boiler has an exergy cost of primary resources V∗,
which are higher than the coal’s exergy because of different processes: extraction,
storage, transport, etc. If we want to incorporate their contribution to the exergy
costs of the flows and products of the plant into our analysis, we must apply the
proposition P2 to coal flow in the following form: ω = V∗.

Cumulative exergy cost or ecological cost: The vector Y∗ incorporates the external
information that finally determines the exergy costs of an installation. In a con-
ventional assessment, we distinguish between the thermodynamic system that
constitutes the installation and its thermodynamic environment, ignoring com-
pletely the irreversibilities that take place there and that form part of the process
using the primary resources to generate the final products. As these assessments
are being incorporated, the exergy costs will include a greater part of the external
irreversibilities. The latter have their origin in the manufacture, installation, repair,
and maintenance of the units Y∗, in the elimination of residues R∗, and in the previ-
ous production of the flows entering the plant V∗. Logically, the most appropriate
external assessment will depend on the aim of the analysis that is carried out. The
natural assessment of vector Y∗ consists of considering each and every one of the
external irreversibilities, and, therefore, Y∗, R∗, and V∗ reflect their costs of primary
resources.

This type of analysis is of foremost importance when considering the ecological
cost of products used by our society, and a systematic accounting of each and every
ecological cost of products would lead an answer to the viability of our technology
and the sustainability of our society.

2.2 Closure

There is nothing to stop the flows, which characterize the interactions between the
subsystems, representing only energy. They may also be monetary interactions,
e.g. the costs of amortization of subsystems; or information interactions, e.g.
control signals; or time interactions, e.g. the time it has taken to produce a certain
product. The Leontieff’s technical coefficients themselves have been used to view
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the impact on CO2, SO2, solar energy, etc.. In other words, and as it is well known,
the input-output theory can be applied in many ways and generalized.

However, what characterizes exergy costs beyond the other costs, which can be
defined within a system?

In the opinion of the author it is its natural relationship with the second law which
is as we have seen that which takes into account the real losses that are to be
accounted in a system -internal or external or losses of quality-.

In order to connect exergy with exergy costs there has to be, as we have already said,
a conceptual leap of the highest importance. And it is that of classifying the flows
in fuels or resources, F, products, P and residues, R, together with breaking down
the system enough to be able to recognize the linearity in each of the subsystems
that make it up. Then and only then does the second law becomes into: F − P = I.
This equation is something else than the second law, i.e. than the exergy balance.

If the efficiency, or its inverse, are constants in a range of work, then its own
definition serves as a characteristic equation. That is to say F = k P, which combining
with previous equation we get I = (k − 1)P, which relates irreversibility to the unit
exergy consumption and production. Or, in the words of the input-output theory, it
relates the technical coefficients to the true destruction of available energy, which takes place
in any production process. That is to say, it relates thermodynamics to economics but
without leaving the field of physics as it still does not employ monetary units. A
physical primal imposes a physical dual of costs. Those costs are of physical nature
not related with the vagaries of economics nor prices or values.

The exergy cost relates local irreversibility to the global consumption of physical
resources entering into a system. With a system well broken down into, and with a
production structure, which represents its global behavior in a sufficiently accurate
way it would be possible to optimize a system locally without the need to take into
account interactions with other subsystems.

The exergy cost relates local irreversibility to the global consumption of physical
resources entering into a system. With a system well broken down into, and with a
production structure, which represents its global behavior in a sufficiently accurate
way it would be possible to optimize a system locally without the need to take
into account interactions with other subsystems. The exergy destruction will be
more costly when the more advanced this will be in the production chain. Cost,
thermodynamic efficiency and irreversibility remain linked together in a single theoretical
body.



Chapter 3
Symbolic Exergoeconomics

Symbolic thermoeconomics is a methodology for the analysis of the productive
structure, and the natural resources consumption process in energy systems. It ap-
pears as a technique, based on the Exergy Cost Theory, to obtain general equations,
which relate the overall efficiency of an energy system and other thermoeconomic
variables as fuel, product, exergy cost, with the efficiency of each component which
forms it. By mean of the equations obtained, it is possible to analyze the influence
of the individual consumption of each component on the total amount of external
resources required to obtain a product. Therefore, the productive structure and the
cost formation process of the products are explained.

The cost accounting methodologies, as Exergy Cost Theory, propose methods to
determine the amount of resources required for obtaining a product. They are
based on cost assessment rules, which attribute to the useful product the resource
cost of each component, and distribute its costs proportionally to its exergies. They
are mainly numerical techniques that calculate the cost values in an accurate way,
by solving sets of linear equations, but they cannot identify the causes of the cost
formation process.

Suppose the thermal system shown in Figure 1. In this article it is explained the
procedure for obtaining the global efficiency of the system as a function of the
efficiencies, ζi, of its components is:

εT =
ε1

(
ε2y2

(
1 − y3

)
+

(
1 − y3

)
ε3

)

1 − y2y3ε2ε3

where terms yi represents the bifurcation ratios.

This poses some initial questions: Could we obtain such a formula in a general
way? What conditions must fulfill our method to assess it? If such a formula
exists, questions of the type, what happens if?, could be simplified. Thus we could
compute, for example, how a variation in the efficiency of a component modify the
efficiency of the whole plant. With general formulae we can get general solutions
to general problems. The proposed analysis provides a set of valuable tools for the
cost accounting, diagnosis, optimization and synthesis of energy systems.

Symbolic computation packages, like Mathematica or MatLab, could be used to
solve a wide variety of technical computing problems, such as to obtain both

17
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analytical and numerical solutions of linear systems of equations. If we bring
together Exergy Cost Theory and Symbolic Computation then it will be possible
to find out a general way to obtain formulae like that shown above. This was the
reason to call this methodology Symbolic Thermoeconomics.



The Fuel-Product Model 19

3.1 The Fuel-Product Model

The first stage to identify the cost process formation consists of building, from the
physical structure of the plant, a productive scheme which shows where the product
of each component is used and the origin of the resources of each component.

The problem of the productive structure identification is closely related to Leon-
tief’s input-output economic analysis. It consists of a qualitative and quantitative
analysis of the relations that link the flows of goods and services between the
components of an economic unit, in order to study its structural characteristics.

An equivalent model could be applied to thermal systems. It can be represented
by a fuel/product diagram, such as shown in Figure 1.2 and Table 1, for the plant
of the example. It is also called in other thermoeconomic methodologies Func-
tional Diagram. Note that, not all products of components #1 and #2 are used as
resources in components #3, #4 or final product, the flow #8 is a residue generated
in components #1 and #2.

Table 3.1. Fuel Product Table

F0 F1 F2 F3 F4 Total

P0 0 E1 0 0 0 E1

P1 0 0 0 r1(E3 − E4) r1(E4 − E8) r1(E3 − E8)

P2 0 0 0 r2(E3 − E4) r2(E4 − E8) r2(E3 − E8)

P3 E6 0 E5 0 0 E5 + E6

P4 E7 0 0 0 0 E7

Total E6 + E7 E1 E5 E3 − E4 E4 − E8

In table 1 we have used some exergy junction ratios defined as:

r1 =
E3 − E2

E3
r2 =

E2

E3
r1 + r2 = 1

In accordance with this model the production of one component is used as fuel of
another component or as a part of the total production of the plant:

Pi = Ei0 +

n∑

j=1

Ei j i = 0, 1, . . .,n (3.1)

where Ei j is the production portion of the i−th component that fuels the j−th
component. In the above expression, we consider the component 0, as the system
environment, then Ei0 represents the production portion of the component i which
leads to the final product, coming from the environment to the component i.

On the other hand, the resources entering each component, could be expressed as:

Fi = E0i +

n∑

j=1

E ji i = 0, 1, . . ., n (3.2)

where E0i represents the external resources entering to the plant, which go into
the i−th component. Therefore, the total fuel and product of the system could be
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expressed as:

FT ≡ P0 =

n∑

j=1

E0 j

PT ≡ F0 =

n∑

j=1

E j0

(3.3)

3.1.1 Cost Model Equations

The proposed model could be also applied to exergy cost:

P∗i = E∗i0 +

n∑

j=1

E∗i j i = 0, 1, . . ., n (3.4)

F∗i = E∗0i +

n∑

j=1

E∗ji i = 0, 1, . . .,n (3.5)

According with the proposed model, the cost assessment rules of the Exergy Cost
Theory, explained in the previous chapter can be written as:

P1: The cost of the external resources is known and equal to its exergy:

E∗0i = E0i (3.6)

P2: The exergy cost of Fuel is equal to the exergy cost of Product:

P∗i = F∗i (3.7)

P3: The exergy cost of the flows produced in a component is proportional to their
exergy, therefore:

k∗i j = k∗P,i (3.8)

where k∗i j represents the unitary costs of the flow Ei j, and is defined by the
relation:

E∗i j = k∗i jEi j (3.9)

The previous relations could be combined used by means of the equation:

P∗i = E0i +

n∑

j=1

k∗P,iE ji (3.10)

It let us to determine the exergy cost of the productsP∗i , by solving the set of linear
equations given by:

P∗i −
n∑

j=1

E ji

P j
P∗j = E0i (3.11)

or in an equivalent way, for the unit exergy cost:

k∗P,i −
n∑

j=1

E ji

Pi
k∗P, j = k∗0i (3.12)

Example
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The cost of the product in the gas turbine plant, is giving as the solution on the
following set of linear equation:



1 0 0 0
0 1 −y2 0
−y3 −y3 1 0
−y4 −y4 0 1





P∗1
P∗2
P∗3
P∗4


=



E1
0
0
0



where the coefficients of the matrix are:

y2 =
E5

E5 + E6
= 0.5435

y3 =
E3 − E4

E3 − E8
= 0.6268

y4 =
E4 − E8

E3 − E8
= 0.3732

The numerical solution of this system of equations is shown in Table 2.3.

3.2 The FP Representation

In the next sections, we are going to develop a general method to obtain analyti-
cal formulas of the efficiency and production costs of a thermal system, using the
relationships of the fuel-product model. Therefore, we need to identify which vari-
ables allow relating the total production of the system with the external resources
required, or the total cost of the resources required for obtaining a production
objective.

3.2.1 Distribution Ratios

We define distribution coefficient yi j, as the portion of the production of the j−th
component used as resource in the i−th component:

yi j =
E ji

P j
(3.13)

and verifies, the sum of all distribution ratios of a component must be equal one:

n∑

i=0

yi j = 1

Therefore Eqn (2.2) could be written as:

Fi = E0i +

n∑

j=1

yi jP j i = 1, . . ., n (3.14a)

PT =

n∑

j=1

y0 jP j (3.14b)

It shows the fuel of each component as a linear function of the products that form
it. The previous equation could be written in matrix form as:

F = Fe + 〈FP〉P (3.15)
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Ej0

Ej1

Eji

Ejn
F

j
P

jj
i

Figure 3.1. Definition of distribution ratios

The vector Fe ≡ (E01, ...,E0n)contains the exergy values of the external resources for
each component, and the 〈FP〉 is a (n×n) matrix whose elements are the distribution
coefficient yi j.

In the case of the exergy cost, we can obtain an equivalent relationship:

F∗i = E0i +

n∑

j=1

yi jP∗i i = 1, . . . , n (3.16a)

or in matrix form as:

F∗ = Fe + 〈FP〉P∗ (3.16b)

Note that the distribution coefficient matrix is the same for exergy and exergy cost,
due to the assessment cost rules, which make the production cost proportional to
its exergy.

3.2.2 Cost and Efficiency Formulae

Now, we are going to obtain general formulas to relate the efficiency and product
costs of the plant with the efficiency of each component.

The efficiency or unit exergy consumption of each component ki is defined as the
amount of resources, measured on exergy, required to obtain a unit of product.
This could be written in matrix form as:

F = KDP (3.17)

where KD is a diagonal matrix (n×n) which contains the unit exergy consumption
of each component ki. Therefore, from Eqns 10, 12, we get:

(KD − 〈FP〉) P = Fe (3.18)

the KD − 〈FP〉 is a diagonal strictly dominant matrix. Hence, it has inverse matrix
whose elements are all positive values.

Therefore, the previous equation represents a system of linear equations that let us
express the production of each component as a function of:

• The external resources: Fe

• The efficiency of each component: KD

• The distribution parameters: 〈 FP 〉.
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In a general way, given a generic exergy variable X, as fuel exergy, product exergy,
exergy cost of product, there is a linear operator, a matrix (n×n), whose elements
are a function of the efficiencies of the components and the distribution parameters,
that transform the external resources into each variable:

P = 〈P|Fe where 〈P| = (KD − 〈FP〉)−1 (3.19a)
F = 〈F|Fe where 〈F| = KD 〈P| (3.19b)
I = 〈I| Fe where 〈I| = (KD −UD) 〈P| (3.19c)

Applying the cost balance Eqn 3, to expression (2.16), the following holds:

P∗ = 〈P∗|Fe where 〈P∗| = (UD − 〈FP〉)−1 (3.20)

The way of characterizing an energy system, using as canonical variables the effi-
ciency of its components and the distribution parameters is called ”FP represen-
tation”. Thus, the universal formula of the efficiency of a system, no matter how
complex, is:

εT =
ty0 〈P|Fe

tuFe
(3.21)

where ty0 =
(
y01, ..., y0n

)
is a vector that contains the distribution coefficients associ-

ated to the environment.

We are going to obtain the efficiency formulae of the gas turbine cycle. The distri-
bution coefficient matrix is giving by:

〈FP〉 =



0 0 0 0
0 0 y2 0
y3 y3 0 0

1 − y3 1 − y3 0 0



And the distribution coefficients with the environment:

ty0 =
[

0 0 1 − y2 1
]

Applying Eqn (19), we can get the product of each component as a function of the
distribution parameters and component efficiencies, using a symbolic computation
application:

P1 = ε1E1

P2 =
y2y3ε1ε2ε3

1 − y2y3ε2ε3
E1

P3 =
y2y3ε1ε3

1 − y2y3ε2ε3
E1

P4 =

(
1 − y3

)
ε1ε4

1 − y2y3ε2ε3
E1

Then the efficiency of the total system is written as:

εT =
(1 − y2)P3 + P4

E1
=

(1 − y2)y3ζ3 + (1 − y3)ζ4

1 − y2y3ζ2ζ3ζ1
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3.2.3 Irreversibility and Cost

The exergy cost of the product of each component of the plant can be expressed as
a linear function of the external resources and the distribution coefficients:

P∗i =

n∑

j=1

p∗i j(y)E0 j (3.22)

where p∗i j are the elements of the operator 〈P∗|. They are only functions of the dis-
tribution parameter and represent the amount of each external resources required
to obtain one unit of the product on each component.

The linear operator associated to the exergy cost would be equal to the operator
associated to the product, if the efficiency of each component will be equal to one.
Thus, the exergy cost could be explained as the maximum amount of product that
it is possible to obtain.

On the other hand, it is known that the exergy cost of a product is charged with
both the exergy of product and all of the irreversibilities generated in the system
to obtain it. This fact can be expressed using the relationship:

P∗ = P + 〈P∗| I (3.23)

The previous expression can be obtained from Eqns (19, 23):

P∗ = 〈P∗| (KD − 〈FP〉) P

therefore:
P∗ = 〈P∗| (KD −UD) P + 〈P∗| (UD − 〈FP〉) P = 〈P∗| I + P

The elements of the matrix 〈P∗| show also the increase of the cost of the product
due to the irreversibilities of the components where it is processed.

We are going to obtain the relationship between cost and irreversibilities for the gas
turbine plant. The cost product operator, as a function of the distribution ratios,
obtained from Eqn (23) is:

〈P∗| =



1 0 0 0

y2y3

1 − y2y3

1
1 − y2y3

y2

1 − y2y3
0

y3

1 − y2y3

y3

1 − y2y3

1
1 − y2y3

0

1 − y3

1 − y2y3

1 − y3

1 − y2y3

y2(1 − y3)
1 − y2y3

1



Therefore, we can relate the cost of product, with the resources and the irreversibil-
ities of each component:

P∗1 = F1

P∗2 = F2 +
y2

1 − y2y3

(
y3I1 + y3I2 + I3

)

P∗3 = F3 +
y3

1 − y2y3

(
I1 + I2 + y2I3

)

P∗4 = F4 +
1 − y3

1 − y2y3

(
I1 + I2 + y2I3

)
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And the numerical values of the product cost for design conditions, splinted by
the contribution of the resources of the component and the irreversibilities of each
component are shown in Table 2:

Table 3.2. Cost of product as irreversibility accumulation

F I1 I2 I3 I4 Total

P∗1 11781 0 0 0 0 11781

P∗2 2977 2662 197 252 0 6088

P∗3 5783 4897 363 158 0 11201

P∗4 3443 2915 216 94 0 6668

3.2.4 Exergoeconomic Cost

The fuel-product model has been applied to evaluate the exergy cost, but it can
also be applied to the calculation of exergoeconomic costs.

The vector Fe represents the exergy of the external resources, but also the exergy
cost of the external resources. The meaning of this variable can be updated to
include the investment and maintenance cost of the components of the system Zi
($/s) and the unitary economic cost of the external fuels ci ($/kJ), therefore the vector
of economic cost of the external resources could be written as:

Ce = [Zi + ciE0i]i=1,...,n

and the exergoeconomic cost of the product of each component is giving, in the FP
representation, by:

CP = 〈P∗|Ce (3.24)

CF = CP − Z (3.25)

Note that the operator of the exergy and exergoeconomic costs is the same, and
only the costs of the external resources are modified.

3.3 The PF Representation

In the previous section, we have studied the representation of the system’s ther-
moeconomic variables as a function of its component efficiency, the distribution
coefficients and the external resources.

The optimization and diagnosis analysis of a thermal system requires studying the
behavior of the productive structure as a function of the total production objectives.

In this section, is presented an alternative representation that relates the Thermoe-
conomic variables of the system with the total plant product, the efficiency of its
components, and a new type of parameter called junction ratio.

3.3.1 Junction Ratios

We define, in a similar way that the distribution coefficients, the junction coefficients
ri j, as the portion of the resources of the j−th component coming from the i−th
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product.

ri j =
Ei j

F j
(3.26)

that verifies the sum of all junction ratios of a component is equal one:

n∑

i=0

ri j = 1

Then, Eqn (2.1) could be written as:

Pi = Ei0 +

n∑

j=1

ri jF j i = 1, . . ., n (3.27a)

FT =

n∑

j=1

r0 jF j (3.27b)

It expresses the product of each components as a linear function of the fuel that its
is transformed. The equation could be written in matrix from as:

P = Ps + 〈PF〉 F (3.28)

The vector Ps (n×1) contains the exergy values of the final product obtained in each
component, and 〈PF〉 is a (n×n) matrix which elements are the junction coefficients
ri j

E0j

E1j

Eij

Enj
F

j
P

j

�

j

Figure 3.2. Definition of Junction Parameters

Thus, we can express the Thermoeconomic variables of a system, in a complemen-
tary way to FP representation, as a function of:

• The final product: Ps

• The efficiency of each component: KD

• The junction components: 〈PF〉.

This way of representing the thermoeconomic variables of a system is called PF
representation. The formulae of fuel, product and irreversibility in this represen-
tation are:

P = |P〉Ps where |P〉 = (UD − 〈PF〉KD)−1 (3.29a)

F = |F〉Ps where |F〉 = KD |P〉 (3.29b)

I = |I〉Ps where |I〉 = (KD −UD) |P〉 (3.29c)
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3.3.2 Unit Exergy Consumption

In order to simplify previous expressions, we could introduce the matrix:

〈KP〉 ≡ 〈PF〉KD (3.30)

We denote its elements as κi j, which are defined as:

κi j = ri jk j =
Ei j

P j
(3.31)

They represent the amount of resources coming from the i−th component required
to obtain a unit of the product of the j−th component, thus we call them, ‘marginal
exergy consumptions’, and verify that their sum of components is equal to unit
exegy consumption:

n∑

i=0

κi j = k j (3.32)

The total resources of the system may be obtained as:

FT =

n∑

j=1

κ0 jP j or FT = tκe |P〉Ps (3.33)

where tκe ≡ (κ01, ..., κ0n), is a (n×1) vector whose elements contain the marginal
exergy consumption of the system-input resources.

3.3.3 Cost Equations

If we substitute the marginal exergy consumption in the cost Eqn. (12), we get:

k∗P,i = κ0i +

n∑

j=1

κ jik∗P, j i = 1, . . .,n (3.34)

This equation relates the unit exergy cost of the products with the marginal exergy
consumption of each component, and the following holds:

k∗P = t |P〉κe (3.35)

The cost of the fuel of each component can be obtained as:

k∗F,i = r0i +

n∑

j=1

r jik∗P, j (3.36)

ThePF representation formulae for the gas turbine cycle could be easily obtained.
The unit consumption matrix is giving by:

〈KP〉 =



0 0 r1k3 r1k4

0 0 r2k3 r2k4

0 k2 0 0

0 0 0 0
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And the marginal exergy consumption coefficients related with the environment:

tκe =
[
k1 0 0 0

]

The product operator, obtained from Eqn (31), using the Matlab symbolic compu-
tation toolbox package is:

|P〉 =



1
κ13κ32

1 − κ23κ32

κ13

1 − κ23κ32

κ14

1 − κ23κ32

0
1

1 − κ23κ32

κ23

1 − κ23κ32

κ24

1 − κ23κ32

0
κ32

1 − κ23κ32

1
1 − κ23κ32

κ32κ24

1 − κ23κ32

0 0 0 0



Then, the total fuel of the system is written as:

FT =
κ01 (κ13E6 + κ14E7)

1 − κ23κ32

Analyzing these expressions and comparing with Figure 2 we can observed that
sequential/parallel processes appear in the numerator and recycling productive
processes appear in the denominator.

The numerical values of unit cost of product can be obtained solving the system of
linear equation given in Eqn (38). The results are shown in Table 3.

Table 3.3. Thermoeconomic values for design conditions of TGAS

# F
(kW)

P
(kW)

I
(kW)

k k∗F k∗P P∗

(kW)

1 11781 6631 5150.1 1.7767 1 1.7767 11781

2 2977 2595 382.2 1.1473 2.0451 2.3464 6088

3 5783 5477 306 1.0559 1.9369 2.0451 11201

4 3443 2355 1087.7 1.4619 1.9369 2.8315 6668

3.3.4 The FP and PP Relationships

Two different ways for the evaluation of the cost of the products, as a function of
the efficiencies of the components, the external resources and the distribution or
junction coefficients, have been explained: the FP and the PF representations.

The information flow in the FP representation has the direction of the productive
process. If the external resources are known, it is possible to evaluate the rest of the
thermoeconomic properties of the flows, including the exergy and the cost of the
final products. The PF representation uses an equivalent logic structure, but the
information has the opposite direction. If we know the plant product it is possible
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to determine the resources required for obtaining any internal product, and its cost.
Both representations are complementary and figure out the complete picture of the
production process and cost formation.

These variables of both representations are related by the expression:

yi jP j = κ jiPi (3.37)

Or in matrix form:
〈FP〉 = PD

t 〈KP〉P−1
D (3.38)

It allows obtaining the operators of the FP representation from the PF operator and
vice versa:

〈P∗| = PD
t |P〉P−1

D (3.39)

As an example of the use of the correspondence between both representations, the
equivalent formula of the cost/irreversibility relationship is obtained:

Substituting the expression (eq x) in that equation, we get:

k∗P = u + t |P〉P−1
D I (3.40)

On the other hand the irreversibility vector could be written as:

I = PD (KD −UD) u

Thus, substituting it in the previous equation, we get:

k∗P = u + t |I〉u

It could be written in scalar format as:

k∗P,i = 1 +

n∑

j=1

φ ji (3.41)

This relationship represents an alternative method for evaluating the unit exergy
cost of the product, as sum of contribution of the component irreversibilities. The
term φi j represents the irreversibility generated in the j−th component to obtain a
unit of the i−th product.

1

1.5

2

2.5

3

Combustor Compressor Turbine HRSG

I4

I3

I2

I1

Figure 3.3. Exergy cost process formation

Figure 5 shows how the unit cost of product is obtained as the sum of the irre-
versibility contribution, according to Eqn (46), in a similar way as Table 2. The
main contribution of the product cost is the irreversibility of the combustor.
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3.4 Impact of resources consumption

As an application of the formulae obtained in previous sections, we will obtain the
formulae to determine the impact on resources consumption, additional fuel plant
consumption, when the efficiency or the unit exergy consumption of its components
varies.

A performance test or a thermodynamic model simulator properly fitted to the
real operation of the system provides the actual operating values of the plant.
From these operation data the unit exergy consumptions and the thermoeconomic
variables can be calculated for the operating conditions. These values can be
compared with respect to those corresponding to the design values of the plant.
Usually in operation, several plant devices suffer a degradation of their behavior
with respect to the design conditions and, as a consequence, their efficiencies
decrease and correspondingly their unit exergy consumptions increase.

The values of the unit exergy consumption increase are found as:

∆κi j = κi j(x) − κi j(x0) (3.42)

where x represents the actual values and x0 a reference value.

From Eqn (37), it is possible to obtain the increment of the total resources of a plant
in operation conditions regarding the reference conditions:

∆FT = ∆tκeP0 + tκe∆P (3.43)

The increase of the component production, may be expressed in terms of the unit
exergy consumption as:

∆P = ∆Ps + ∆ 〈KP〉P0 + 〈KP〉∆P (3.44)

therefore:
∆P = |P〉

(
∆Ps + ∆ 〈KP〉P0

)
(3.45)

The total fuel plant production is imposed by the external demand, in this case it
is reasonable to analyze the fuel impact when there is no change in the total plant
production, then Eqn x could be written as:

∆FT =
(
∆tκe + tk∗P∆ 〈KP〉

)
P0 (3.46a)

or in scalar format:

∆FT =

n∑

i=1


n∑

j=0

k∗P, j∆κ ji

 P0
i (3.46b)

The above equation allows us to express the additional resource consumption
∆FT also called Fuel Impact, as the sum of the contributions of each component
malfunction.

A first conclusion from this result is that there is no equivalence between the irre-
versibilities of the components of an installation, the more advanced in the process
the component location is, the bigger the increment on the resources consumption
is, for the same amount of malfunction ∆κ jiP0

i
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3.5 Closure

Symbolic thermoeconomics has been presented as a methodology for the ther-
moeconomic analysis of energy systems. Its main objective is the study of the
production process and cost-formation of energy systems.

The Exergy Cost Theory, defines a new thermodynamic function: the exergy cost,
which values the real consumption of useful energy, needed to obtain the final
products of the plant. Symbolic Thermoeconomics, use the premises of Exergy
Cost Theory, to study the structure of thermal systems animated by a productive
purpose. A set of subsystem properties like the efficiency, the junction and distri-
bution parameters have been defined, and they constitute the basic or canonical
variables of two structural representations of a system the FP and the PF repre-
sentation. The Fe, Psvariables relate the system with its environment, while k, y,
r are variables associated with its internal structure. This system characterization
permits the definition of functions of the thermoeconomic properties, like exergy
and cost.

The main objective of Symbolic Thermoeconomics consists in explaining the cost
formation process, providing a set of numerical procedures as well as general
formulae valid for any state of the system and which solely depends on the pro-
ductive structure and its interaction with the environment. In this way, the cost
of the product of a generic component of the system could be expressed as the
amount of external resources required for obtaining it, (Eqn 23) or as the sum of the
internal resources plus the sum all the irreversibilities generated across its process
formation (Eqn 26).

Symbolic Thermoeconomics is not an alternative method to conventional optimiza-
tion or simulation techniques of actual complex systems, but complements them.
It gives a set of tools, designed to be implemented into computer software applica-
tions, which allow to solve problems in different thermoeconomic fields like cost
accounting, diagnosis and optimization.





Chapter 4
Structural Theory of

Thermoeconomics

Characteristic equations and average and marginal costs are analyzed in this article.
As a consequence the structural theory is a general mathematical formalism either
for thermoeconomic cost accounting and/or optimization methods, providing a
common basis of comparison among the different thermoeconomic methodologies,
which could be considered the standard formalism for thermoeconomics.

During the three decades from 1972 to 2002 various thermoeconomic methodolo-
gies have been developed. All of them have in common cost calculated on a rational
basis, which is the Second Law of Thermodynamics. This cost is a very useful tool
for solving problems in complex energy systems, such as rational price assessment
of the products of a plant based on physical criteria, local optimization, or oper-
ation diagnosis. These problems are difficult to solve using conventional energy
analysis techniques based on the First Law of Thermodynamics.

There are two main groups of thermoeconomic methods: a) cost accounting meth-
ods, which use average costs as a basis for a rational price assessment, and b)
optimization methods, which employ marginal costs in order to minimize the costs
of the products of a system or a component.

When comparing different thermoeconomic methodologies and the underlying
ideas of their models, the reader is faced with as many nomenclatures, concepts,
and names as there are existing methods. This could be one of the factors that
impede a faster development of thermoeconomics. In order to avoid unnecessary
confusion and provide a common basis for comparing different thermoeconomic
methods, a common mathematical language for thermoeconomics is essential.

Such a common mathematical formulation is provided by the structural theory
of thermoeconomics, which can reproduce the results of any thermoeconomic
methodology, both cost accounting and optimization, employing a linear thermoe-
conomic model. The most systematic and widespread thermoeconomic method-
ologies developed until now use linear models, or models that are easy to linealize.
For this reason the structural theory provides a common mathematical formulation
for the different thermoeconomic methodologies.

In this article, the concept of cost is analyzed in detail and the mathematical for-
malism of the structural theory is presented. This theory allows:

33
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• Analysis of the process of cost formation, providing a physical and mathe-
matical interpretation to the rules of cost apportioning

• Unification of the concepts of cost provided by the different cost accounting
methodologies and some of the optimization methodologies.
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4.1 Marginal Cost and Charecteristic Equations

When performing a cost analysis in a system we can distinguish between average
costs, which are ratios and express the average amount of resources per unit of
product, and marginal costs, which are partial derivatives and indicate the addi-
tional resources required to generate one more unit of the product under specified
conditions

In this section the concept of marginal costs in thermoeconomics is analyzed in
detail, and some of its applications are presented. In order to help the reader
follow the proposed arguments, the same cogeneration plant presented in other
articles within this theme will be used as an example application (see Figure 1.1)

4.1.1 Characteristic Equations

The thermoeconomic model that is the mathematical representation of the pro-
ductive structure consists of a set of mathematical functions called characteristic
equations. They express each inlet flow as a mathematical function of the outlet
flows, for all the productive structure process units and a set of internal parameters
x:

Ei = gi(x,E j) i ∈ Eu j ∈ Su u = 1, . . .,n (4.1)

where the index i refers to the input flows of the process unit l, the index j refers
to the output flows of the process unit l, and m and s are respectively the number
of flows and the number of system outputs considered in the productive structure.
Every flow is an input flow of a process unit, and an output flow of another process
unit or to the environment. For the flows interacting with the environment, we
define:

Ei = ωi(x) i ∈ E0 (4.2)

where ωi is the total system product, that is, an function that determines the total
plant product from the internal parameters x. The characteristic equations for the
cogeneration plant of our example (see Figure 1.1) are shown in Table 1.

Table 4.1. Characteristic equations of the cogeneration plant

Nr Component Entry Outlet Equation

1 Combustor [1,2] [3] E1 = g1(x,E3)
E2 = g2(x,E3)

2 Turbine [3] [4,7, 8] E3 = g3(x,E4,E7,E8)

3 Compressor [7] [2] E5= g5(x,E2)

4 H.R.S.G. [4] [6] E4 = g4(x,E6)

0 Environment [6, 8] [1] E6 = ω6(x)
E8 = ω8(x)

The inlet and outlet flows of the productive structure units are of extensive mag-
nitude, and are the product of a quantity (usually mass flow rate) and a quality
(specific magnitude). The magnitudes applied by most thermoeconomic method-
ologies are exergy, negentropy, and money. Other magnitudes, like enthalpy or
entropy, can also be used.
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The internal variables appearing in the thermoeconomic model depend on the
behavior of the subsystem, and they are presumably independent of mass flow
rates. This implies that relations like efficiencies or pressure and temperature
ratios—which are mainly independent of the quantity of the exiting flows—can be
used as internal parameters.

Note that the main objective of the productive structure, and hence of the ther-
moeconomic model, consists of sorting the thermodynamic magnitudes related to
the physical mass and energy flow-streams connecting the plant subsystems in a
different way from the equations modeling the physical plant behavior, in order to
determine explicitly for each subsystem its energy conversion efficiency.

It is important to keep in mind that thermoeconomics connects thermodynamics
with economics. That is, by sorting the thermodynamic properties of the physical
mass and energy flow-streams of a plant, which in turn provide the energy con-
version efficiency of each subsystem, thermoeconomics analyzes the degradation
process of energy quality through an installation.

Depending on the scope of the analysis, a subsystem can be identified as a separate
piece of equipment, a part of a device, several process units, or even the whole
plant. Sometimes the objective consists of analyzing a plant in great detail. In
this case it is advisable, if possible, to identify each subsystem with a separate
physical process (heat transfer, pressure increase or decrease, and chemical mixture
or reaction) in order to locate and quantify, separately if possible, each thermal,
mechanical, and chemical irreversible process occurring in the plant. If the objective
consists of analyzing a macrosystem composed of several plants, in this case the
more convenient approach would probably be to consider each separate plant as a
subsystem.

Thus, thermoeconomics always performs a systemic analysis, no matter how com-
plex the system, oriented towards locating and quantifying the energy conversion
efficiency and the process of energy quality degradation. It is not within the scope
of thermoeconomics to model the behavior of the process units, which is done by
the mathematical equations of the physical model.

Even though it is not the objective of thermoeconomics to simulate the behavior
of the subsystems, it is very important to build a thermoeconomic model with
physical meaning. This is the reason, as already explained, for defining different
thermoeconomic models for the same plant. Depending on the aggregation level
and the nature of the thermoeconomic equations, the model will contain physical
information about the actual system behavior with different degrees of detail. The
results obtained from a very rough thermoeconomic model, which is not sensitive
to any physical detail related to the actual behavior of the plant, will probably be
useless.

4.1.2 General Equation of Marginal Cost

Once the thermoeconomic model has been defined and the characteristic equations
corresponding to the productive structure of the system are known, the costs of all
flows in the productive structure can easily be calculated.

The thermoeconomic model (characteristic equations) of an energy system contains
the mathematical dependence between the resources consumed and plant flows
(products and internal flows). Each flow, as a process unit input, is a function
(defined by its characteristic equation) of a set of internal variables, x, and the
output flows of the process unit. The cost of plant resources can be then expressed
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by the following equation:

E0 =

e∑

i=1

c0,iEi (4.3)

When the variation of the resources consumed in the plant concerning a flow is
calculated, the chain rule to can be applied:

∂E0

∂Ei
= c0,i j ∈ S0

∂E0

∂Ei
=

m∑

j=1
j,i

∂E0

∂E j

∂g j

∂Ei
j ∈ Su u = 1, . . . , n

(4.4)

The equation (3.4) represents the marginal cost, which evaluates the additional
consumption of resources when an additional unit of the flow –i– is produced,
under the conditions that the internal variables, x, do not vary throughout the
process. We can denote these marginal costs as k∗i , and:

κ ji =
∂g j

∂Ei

as the marginal consumption of flow –j– to produce the flow –i–. With these, we
can rewrite the previous expressions as:

k∗i = c0,i j ∈ S0

k∗i =

m∑

j=1
j,i

k∗jκ ji j ∈ Su u = 1, . . . , n (4.5)

These equations can be written in matrix notation as follows:
(
UD − t 〈G〉

)
k∗ = ce (4.6)

where UD is the identity matrix (m × m), 〈G〉 is a (m × m) matrix containing the
Jacobian of the characteristic equations, its elements are the marginal exergy con-
sumptions κi j, and k∗ is a vector (m × 1) which contains the marginal costs of each
flow

Note that when the boundary of the system analyzed coincides with the limits
of the plant studied, then the unit exergy cost of each fuel entering the plant is
considered equal to 1 because there is no energy quality degradation or exergy
destruction at the very beginning of the productive process. Hence, the amount of
exergy consumed to obtain each plant’s fuel is its own exergy content, and therefore
its unit exergy cost is equal to 1.

Then, if the characteristic equations and the marginal consumptions for each pro-
cess unit are known, the marginal cost k∗ for each flow can be obtained by solving
the system of linear Eqs. (6).

If the unit costs of the inlet plant fuels and the characteristic equations are known,
the previous equations are a set of m equations with m unknowns, which are the
marginal costs. Note that this set of equations shows the process of cost formation
on the productive structure: that is, how the cost is generated through the process
units of the plant.
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Note that the proposed procedure to calculate the marginal cost of all the flows
of a plant is general and valid for any thermoeconomic formulation that uses
characteristic equations connecting inlet and outlet flows of each process unit.

The thermoeconomic cost calculation procedure considering monetary units is
similar to that explained in the previous paragraphs, but in this case the input
plant resources are expressed in monetary units and the process unit capital cost
Z must be taken into account. Thus, the capital cost of each process unit Z can
be considered an external flow of the plant resources from the environment to the
process unit (see Figure 1). This will represent the monetary units per second
needed to compensate for the depreciation, maintenance cost, and so on of the
process unit.
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Figure 4.1. Economic resources scheme

According to marginal cost analysis, Z represents an environmental resource and
can be handled in the same mathematical way as energy resources. The amount
of resources consumed when manufacturing a device is, in fact, the amount of
resources consumed to obtain the plant products. Then the marginal unit cost
∂Z/∂E can be considered as a resources cost and include in ce.

In monetary units the equation (3.4), can be rewritten as follows:

∂C0

∂Ei
= c0,i j ∈ S0

∂C0

∂Ei
=
∂Zu

∂Ei
+

m∑

j=1
j,i

∂C0

∂E j
κ ji j ∈ Su u = 1, . . . , n

(4.7)

where C0 represents the resources consumed in the whole system but in this case
expressed in monetary units, an Zu is the capital cost of the device u. Note that in
this case the unit cost is expressed in monetary units per unit of exergy.

For the example of the co-generation plant, eqs. (6a) and (6b) can be written as:

k∗1 = c1 k∗2 − κ72k∗7 =
∂Z2

∂E2

k∗3 − κ13k∗1 − κ23k∗2 =
∂Z1

∂E3
k∗4 − κ34k∗3 =

∂Z3

∂E4

k∗5 − κ45k∗4 =
∂Z4

∂E5
k∗6 − κ46k∗4 =

∂Z4

∂E6

k∗7 − κ37k∗3 =
∂Z3

∂E7
k∗8 − κ38k∗3 =

∂Z3

∂E8
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4.1.3 Generalized Fuel Impact

Just as k∗ was defined as a marginal cost when production is modified, we can
also obtain the marginal cost when the internal variables x are modified. The plant
resources can be expressed as a function of internal parameters of the devices:

C0(x) = tceE(x) + tuZ(x,E(x)) (4.8)

Similarly, applying the chain rule, we get:

∂C0

∂x
=

(
tce + tu

∂Z
∂E

)
∂E
∂x

+ tu
∂Z
∂x

(4.9)

which can also be expressed as follows:

∂C0

∂x
= tk∗

∂g
∂x

+ tu
∂Z
∂x

(4.10)

This equation is the generalization fuel impact formula presented in previous
chapter, and expresses the effect on additional resource consumption when an
internal parameter xi is modified. It is the basis for the thermoeconomic diagnosis
and optimization explained in detail next chapters.

4.1.4 Lagrange Multipliers and Marginal Costs

The most developed thermoeconomic optimization methodologies, as Thermoe-
conomic Functional Analysis use the Lagrange multipliers optimization method
to calculate the marginal costs defined in the previous section. In this section it is
proved that the Lagrange multipliers are the marginal costs defined in Eq. (2), or:

λi =
∂E0

∂Ei
i = 1, . . . ,m

This multiplier represents the variation of the objective function C0, the plant
resources, concerning the state variable Ei, the exergy of a flow stream, which is
the same definition as that presented in Eq(32).

The main purpose of an optimization problem consists of finding the values of a
set of design variables, x, that minimize the cost of consumed resources needed to
obtain a product:

C0(x,E) =
∑

i∈S0

ciEi +
∑

u∈N
Zu(x,E) (4.11)

constrained by the conditions imposed by the characteristic equations and the total
plant production objective:

Ei = gi(x,E) i ∈ Eu u = 1, . . ., n

Ei = ωi(x) i ∈ E0

(4.12)

The Lagrange theorem establishes that the optimum of the objective function, Eq.
(15), constrained by the restrictions, Eq. (16), is the same as the objective function
without constraints, or the Lagrange function:

L(x,E,Λ) =
∑

i∈S0

ciEi +
∑

u∈N
Zu(x,E)

+
∑

u∈N
i∈Eu

(λi(gi(x,E) − Ei) +
∑

i∈S0

λi(ωi − Ei)
(4.13)
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This Lagrangian function can also be written as follow:

L(x,E,Λ) =
∑

i∈S0

(ci − λi)Ei

+
∑

u∈N

Γu(x,E,Λ) −
∑

i∈Su

λiEi

 +
∑

i∈S0

(λiωi)

(4.14)

where:
Γu(Λ, x,E) = Zu(x,E) +

∑

i∈Eu

λigi(x,E) (4.15)

represents the cost of the inlet resources to the u component. The values of the
Lagrange multipliers, λi, fulfill the equations:

λi = ci i ∈ S0

λi =
∂Γu

∂Ei
=
∂Zu

∂Ei
+

∑

j∈Eu

λ j
∂g j

∂Ei
i ∈ Su u = 1, . . . , n

(4.16)

These relationships are valid for any feasible operating point fulfilling the con-
straints. Note that these equations are the same as those defined by Eq. (9), which
is the marginal cost.

4.2 Structural Theory of Thermoeconomics

The general model of marginal costs explained in previous section provides a
formal and general way of cost calculation, but leads to two important remarks
that should be analyzed carefully.

First, as already mentioned, the most widespread thermoeconomic methods use
linear thermoeconomic models, or models that are easy to linearize.

On the other hand, the proposed method of cost calculation provides costs that
can be used in optimization, because the costs obtained are marginal costs, as was
proved in the previous section. However, what is the relationship between the
marginal costs and the average costs provided by cost accounting methods? Can
the general model of marginal costs be used for cost accounting purposes?

The answer to these questions is presented in the next sections.

4.2.1 Linear Model of Characteristic Equations

Let us consider the characteristic equations as linear functions with respect to the
magnitude that represents the flow streams:

gi(x,E) =
∑

j∈Su

αi j(x)E j i ∈ Eu (4.17)

The outlet exergy flows here are independent variables with respect to the internal
parameters. If this condition is achieved, then the marginal consumption can be
selected as the coefficients of the characteristic equation, that is:



Structural Theory of Thermoeconomics 41

αi j(x) = κi j(x) =
∂gi

∂E j
(x) (4.18)

The cost of the external resources of a system, can be written as:

C0(x,E) = tceE + tu Z(x,E) (4.19)

constrained by the characteristic equations:

Ei =

n∑

j=1

κi j(x)E j i ∈ Eu u = 1, . . . ,n

Ei = ωi(x) i ∈ E0

(4.20)

In matrix notation, these equations can be written in a compact form:

(UD − 〈G〉) E = Es (4.21)

Es is a (m × 1) vector containing the values of external variables (plant products),
ωi.

Note that the matrix containing the system of equations needed for the calculation
of marginal costs (see Eq.3.6) is the transpose matrix defining the characteristic
equations (Eq 3.20). This fact allows one to obtain the system of cost equations
directly once the characteristic equations have been defined. In linear algebra
these structures are called respectively primal and dual.

4.2.2 Average and Marginal Costs

In this subsection it is proved that when the characteristic equations of the system
are linear functions concerning the extensive magnitude E, the systems of equations
required for the calculation of marginal and average costs coincide. That is, when
the characteristic equations are linear functions, the marginal and average costs are
calculated using the same mathematical procedure, and therefore they coincide.
This is a very important result because the marginal and average costs can be
calculated using the same procedure. To illustrate this fact, let us consider a generic
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Figure 4.2. General component scheme

component or subsystem of a plant with several inlet and outlet flows. For the sake
of simplicity we shall consider a general subsystem with two inlet flows and two
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outlet flows, depicted in Figure 3.2 The characteristic equations that describe the
behavior of this component are:

Ei =
∑

j∈Su

κi jE j i ∈ Eu (4.22)

According to figure 3.2 the input resources could be decomposed as:

E1 = κ13E3 + κ14E4

E2 = κ23E3 + κ24E4

(4.23)

These equations are concerned with the amount of inlet resources (E1, E2) consumed
to obtain each one of the outlet flows (E3, E4). Correspondingly, the total amount
of resources consumed for the whole system for obtaining E3 and E4 is:

k̄∗1E1 = k̄∗1κ13E3 + k̄∗1κ14E4

k̄∗2E2 = k̄∗2κ23E3 + k̄∗2κ24E4

(4.24)

If the component is considered to be made up of two subsystems, then the equations
modeling each subsystem are:

E13 = κ13E3 (4.25a)

E14 = κ14E4 (4.25b)

E23 = κ23E3 (4.25c)

E24 = κ24E4 (4.25d)

Eqs. (26a) and (27a) represent the resources needed to produce E3, and Eqs. (26b)
and (27b) are the resources consumed to produce E4.Therefore, the total amount of
resources consumed for the whole system required to obtain E3 and E4 are:

k̄∗1E13 + k̄∗2E23 = k̄∗1κ13E3 + k̄∗2κ23E3

k̄∗1E14 + k̄∗2E24 = k̄∗1κ14E4 + k̄∗2κ24E4

(4.26)

The average cost of the outlet flows is:

k̄∗3 =
k̄∗1κ13E3 + k̄∗2κ23E3

E3
= k̄∗1κ13 + k̄∗2κ23

k̄∗4 =
k̄∗1κ14E4 + k̄∗2κ24E4

E4
= k̄∗1κ14 + k̄∗2κ24

(4.27)

And the marginal costs of the outlet flows are:

k∗3 =
∂C0

∂E3
=
∂C0

∂E1

∂E1

∂E3
+
∂C0

∂E2

∂E2

∂E3
= k∗1κ13 + k∗2κ23

k∗4 =
∂C0

∂E4
=
∂C0

∂E1

∂E1

∂E4
+
∂C0

∂E2

∂E2

∂E4
= k∗1κ14 + k∗2κ24

(4.28)

So the average and marginal costs of the flows E3 and E4 coincide. Both kinds of cost
are the same because the equations modeling the component are linear functions
with respect to the extensive magnitudes that characterize the outlet flows.

The general mathematical formulation of the cost generated in a component is the
same for each cost and is not dependent on the position in the productive process.
For this reason the result obtained is general.
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4.3 Structural Theory as Standard for Thermoeconomics

As has been proved in this article, the structural theory of thermoeconomics pro-
vides a mathematical formalism that allows the unification of cost accounting and
optimization theories in a common mathematical formulation, provided that linear
mathematical functions connect the inputs and outputs of the devices.

The most important advantage of this unification is that variables and costs with
different conceptual significance can be compared and better understood. As a re-
sult of this integration of different approaches, it has been possible to develop some
useful thermoeconomic applications, such as energy audits, operation diagnosis,
and local optimization, using the same mathematical formalism.

4.3.1 Structural Theory and Exergy Cost Theory

It has been proved that the marginal costs of the structural theory coincide with av-
erage costs when the characteristic equations are linear with respect to the extensive
magnitude characterizing the outlet flows.

Now we are going to show that the cost assessment rules of the exergy cost theory
can be obtained can be obtained as a result of the structural theory.. In other words,
by applying directly the mathematical rules of.

At this point it is important to remark that the costs obtained applying the math-
ematical formalism of the structural theory, when the characteristic equations are
linear functions with respect to the exergy of the outlet flows, are also a conser-
vative property. Remember that average costs obtained applying cost accounting
methods, as for instance, the exergy cost theory, are also a conservative property.
Thus, using the structural theory notation, it can be written that:

∑

i∈Eu

k∗i Ei =
∑

j∈Su

k∗jE j (4.29)

This proposition is fulfilled by the structural theory when the characteristic equa-
tions are linear functions with respect to the exergy of the outlet flows:

∑

i∈Eu

k∗i Ei =
∑

i∈Eu

k∗i


∑

j∈Su

κi jE j



=
∑

j∈Su


∑

i∈Eu

k∗iκi j

E j =
∑

j∈Su

k∗jE j

(4.30)

The propositions of the Exergetic Cost Theory can be explained by the structural
theory. It is a particular case, when characteristic equations are linear function, and
uses average consumption instead marginal consumption.

P1 rule: It is an external assignation and applies in all cases.

P2 rule: It means the costs is a conservative property and it has been proved above
in equation (32).

P3 rule: In a product bifurcation, the unit cost of products are equal. Let us
to consider a generic bifurcation, as it is shown in fig 3.3, therefore from
efficiency definition we get the characteristic equation:

Ei = κE j + κEh (4.31)
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and the dual equations for unit costs are:

k∗j = k∗h = κk∗i (4.32)

thus proposition P3 is satisfied

P4 rule: If we have a continuous fuel stream, the unit cost of the output is equal
to the unit cost of input flow. Now we consider E j as an exhausted fuel, then
from efficiency definition we get the characteristic equation as:

Ei = E j + κEh (4.33)

and the dual equations for unit costs are:

k∗j = k∗i k∗h = κk∗i (4.34)

and also proposition P4 is satisfied.
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Figure 4.3. Component with product bifurcation

The characteristic equations provide a rational way for a general and objective
assessment of cost in bifurcations based on the values of the marginal consumptions
of local resources.

From now, cost allocation will not be a separated task from the assessment of the
units behavior. In fact they constitute two side of a united activity. An specific cost
assignment means that we are assuming an implicit behavior of the plant and vice
versa.

In the case of the exergetic cost theory is the fuel – product definition or the exergetic
efficiency which determine the characteristic equations and then the costs.

On another way structural theory provides an alternative, more efficient in com-
putational terms to compute exergetic and/or exergoeconomic cost, as it is shown
in the next example

We will to compute the unit exergetic cost of the flow stream of the cogeneration
plant defined in figure 1.1. First we will determine the characteristic equations:

E1 = r1k1E3 E2 = r2E3

E3 = E4 + k3 (E7 + E8) E4 = E5 + k4E3

E5 = ω5 E6 = ω6

E7 = k2E2 E8 = ω8

Then the following system of linear equations could be used to determine the unit
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exergetic cost of the flow, in an equivalent way that we use in chapter1:



1 0 0 0 0 0 0 0

0 1 0 0 0 0 −k2 0

−r1k1 −r2 1 0 0 0 0 0

0 0 −1 1 0 0 0 0

0 0 0 −1 1 0 0 0

0 0 0 −k4 0 1 0 0

0 0 −k3 0 0 0 1 0

0 0 −k3 0 0 0 0 1





k∗1
k∗2
k∗3
k∗4
k∗5
k∗6
k∗7
k∗8



=



c1

0

0

0

0

0

0

0



4.3.2 General rules for cost assessments

Cost accounting methodologies determine the unitary cost of the plant products is
based in the cost balance equation (31). In the hypothetic situation, that the result
of its activity will be only a flow, this equation is enough to determine its unit costs,
but in real plants is common that several products will be produced at the same
time.

If we consider a generic component as it is shown in figure 3, its cost balance is
written as:

Bik∗i = B jk∗j + Bhk∗h (4.35)

The exergy of the flows and the unit cost of the input fuel is known, therefore we
have one equation and two unknowns, the unit cost of the outputs.

From the point of view of the structural theory, the characteristic, equation of this
component is:

Bi = κi jB j + κihBh (4.36)

and the unit cost are determined by:

k∗j = κi jk∗i k∗h = κihk∗i (4.37)

In order to compute the unit cost of the flows, we need to determine its unit
consumptions, again we have one equation and two unknowns. We have seen
that exergy cost theory introduce one additional equation, the unit cost of the
product are equal : k∗j = k∗h, this condition expressed in terms of unit consumption
is equivalent to κih = κi j, it means that the amount of resources to obtain one unit
of each product is the same. As we are exposed during the course this rule can not
used in a indiscriminate way, and requires the study of the conditions it could be
applied to real systems.

According with this idea we could define a combined distribution parameter as:

πi(x) =
κi j(x)
κih(x)

(4.38)

Therefore, this parameter could be used as additional equation to determine the unit
cost of the products, if we know the value of this parameter, the unit consumption
of each product could be obtained combined with characteristic equation, and
then the unit cost of the flows. Note that in the exergy cost theory the combined
distribution parameter is the simplest one choice: π(x) = 1.
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4.3.3 Structural Theory and the Fuel–Product Model

The characteristic equations do not limit or impose any constraint on the productive
model. In the case of the exergy cost theory it is defined through the fuel–product
model described in the previous chapter In a fuel–product diagram (see figure 1.2),
the flows represent the fuels and products of the devices, as characterized by the
outlet flows, which are the products, and the inlet flows, which are the fuels.

Hence, the characteristic equations corresponding to the fuel–product model are:

Fi = kiPi

Pi = E0i +

n∑

j=1

ri jF j

(4.39)

These two equations can be combined obtaining the characteristic equation of the
PF representation:

Pi = E0i +

n∑

j=1

κi jP j (4.40)

Thus, the equation of the resources of the whole system can be written in the case
of the thermoeconomic model of the exergy cost theory as follows:

C0 ≡ tκeP + tu Z (4.41)

which is constrained by the equations:

P = Ps + 〈KP〉P (4.42)

Note that in the case of the fuel–product model, the matrix corresponding to the
marginal exergy consumptions, 〈G〉, is the 〈KP〉matrix.

Applying the definition of marginal cost to Eq (42,43), it holds:

(
UD − t 〈KP〉

) ∂C0

∂P
= ze (4.43)

where ze is a (n × 1) vector containing the marginal costs of the resources entering
the system:

ze = κe +
∂Z
∂P

u (4.44)

If the resources corresponding to the devices are proportional to their production,
in other words, Zi = zP,iPi then Eq. (42) can be written as follows:

ze = κe + zp (4.45)

And the equation of the total resources entering the system can be written in its
dual form as follows:

C0 ≡ tk∗PPs (4.46)

constrained by the conditions:

k∗P = ze + t 〈KP〉k∗P (4.47)

which coincide with the equations of the unit exergy costs of the PF representation

An expression similar to the generalized fuel impact can be obtained by applying Eq.
(9) to the characteristic equations of the fuel–product model:

∂C0

∂xl
=
∂tze

∂xl
P + tk∗P

∂ 〈KP〉
∂xl

P (4.48)
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4.3.4 Structural Theory and TFA

Thermoeconomic Functional Analysis (TFA) establishes that each unit of the system
has a function or purpose: in other words, a product. For example, the function
of the turbine in the case of the gas turbine analyzed in our example is the work
obtained when the gases expand through it. The system is depicted using a scheme
called a functional diagram. This diagram represents the units, and the relations
among them, and between them and the environment. Each unit uses a set of
functions or resources from the environment or from other units to obtain its
function or product. These functions are totally or partially consumed in other
units and are used again to produce new functions. The functions of several units
are sometimes joined in a fictitious unit called a junction, and sometimes a function
is distributed to several units using another fictitious device called a branching.
To do this, it is necessary to analyze the system carefully, and decompose it into
several units according to the functions that are obtained.

The productive structure, as for example the one proposed for the analyzed cogen-
eration plant, is a fundamental tool of the structural theory, and is based on the
functional diagram that was earlier proposed as an analysis tool for the thermoe-
conomic as well as the functional analysis.

In the next paragraphs, it is proved that the costs obtained by thermoeconomic
functional analysis and those obtained by the structural theory are equivalent.

Thermoeconomic functional analysis is oriented towards optimization of complex
systems and applies the Lagrange method. The objective function to be minimized
is the total cost of the system. The constraint(s) are classified into two groups:

• For each unit the input resources are expressed as a mathematical function of
the outputs (or products) and a set of internal variables. Using the nomen-
clature of the fuel–product model, Eq. (36a) expresses this constraint with
the mathematical formalism of the structural theory. Note that in general
linearity is not required by either the general formulation of the TFA, or the
general formulation of the structural theory.

• The second type of constraint concerns the connections between the units:
how a product or an outlet flow of a system is identified as an input or resource
of another unit. In the context of the fuel-product model these restrictions
are expressed by Eq. (36b).

As was proved in section 3.2, the marginal costs defined in the structural theory
coincide with the multipliers of the previous Lagrange function, which is in turn
similar to the Lagrange function defined in thermoeconomic functional analysis.
Thus, the marginal costs calculated by the structural theory are the same as those
calculated by thermoeconomic functional analysis.

4.4 Closure

The benefit of the unification of different methodologies in a common mathematical
formalism is evident, because it provides a common basis of comparison: that is, it
allows one to compare them using the same concepts and nomenclature.

Thus, when different thermoeconomic methodologies are compared using the
mathematical formalism of the structural theory as a common thermoeconomic
language, it is shown that the differences between all of them are basically:
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• The aggregation level employed in the analysis; and

• The way of connecting the components in the productive structure: that is, the
way the plant resources are distributed among the plant components, which
is dependent on the fuel–product definitions and the auxiliary equations
needed to calculate the costs.

An important characteristic of the structural theory as is that it is a rigorous pro-
cedure. When costs are calculated in this way it is obvious that they are a direct
consequence of the thermoeconomic model, that is, a direct consequence of the
characteristic equations describing the behavior of the components. The better
these equations represent the behavior of the plant units, the better the cost in-
formation that which will be obtained. In other words, the more physical and
realistic information is contained in the characteristic equations, the more physical
significance the calculated costs will contain.

With the structural theory, we have available all the tools needed for performing a
complete thermoeconomic analysis of a complex system, from the point of view of
either cost accounting methods or certain optimization methodologies. There are
different applications of the results obtained applying the structural theory:

• Rational price assessment of plant products based on physical criteria,

• Energy audits.

• Evaluation of various design alternatives or operational decisions and prof-
itability maximization.

• Optimization of specific process unit variables to minimize final product costs
and save resource energy, i.e. global and local optimization.

• Detection of inefficiencies and calculation of their economic effects in operat-
ing plants: in other words, plant operation thermoeconomic diagnosis.



Chapter 5
Thermoeconomic Diagnosis

This chapter introduces a methodology, based on the Structural Theory of Thermoe-
conomics and Symbolic Thermoeconomics, to the operation diagnosis of energy
systems. The word diagnosis applied to energy systems means the art of discovering
anomalies by monitoring the operating conditions through on-board measures.

Diagnosis is always performed through comparison of at least two states: the
actual state of the plant, which is to be examined, and a reference state, which
is a condition without any anomalies. The presence of anomalies in the actual
state determines deviations in some of the measured quantities with respect to the
reference values.

The aim of techniques adopted in power plants, usually consists of predicting
failures in order to avoid then. A more accurate analysis could help the plant man-
agement to understand more about reductions in the process efficiency, allowing to
locate the components responsible for anomalous behaviour. All these techniques
are deductive, since they requires the knowledge of the effect of possible anomalies
on the thermodynamic quantities describing the plant behaviour.

Thermoeconomic diagnosis belong to this type of methods, but its objective is
most general, consisting in the detection of the efficiency deviation, the location
of the main causes and the quantification of its effects in terms of additional fuel
consumption or economic impact.

49



50 Thermoeconomic Diagnosis

5.1 Thermoeconomic Diagnosis

According to the ASME guide PTC-PM, a diagnosis procedure must have a de-
ductive nature based on the observed symptoms. It must be flexible enough, and
must recommend new tests to isolate causes and inform whether these tests are
cost-effective or not. The methodology should have the following steps:

• Identification of components and degradation symptoms.

• Clear description of the symptoms to allow a simple problem recognition.

• Evaluation of the deterioration mechanisms and the root causes.

• Validation and conclusions.

As a result, a diagnostic procedure should yield those specific recommendations
to change operating strategies, maintenance actions and components replacement.

The objective of a monitoring system is the efficiency improvement or in other
words detection of efficiency deviations. A 3% deviation of efficiency with respect
to a reference conditions, is quite easily detected by the operator, therefore a mon-
itoring system must detect losses in the range of 0.25–0.5%. Values under this
range become difficult to identify because of the instrumentation accuracy. More-
over it is very difficult to locate and to find the real causes of all effects that can
simultaneously occur. This is due to the high complexity of interrelations among
components in a power cycle. A successful interpretative procedure will reduce
the non-accountable losses to a minimum, and will put forward the ultimate causes
of component degradation.According with these ideas a diagnosis methodology
will require:

Data Acquisition System: to monitoring the power plant, including data filtering,
consistence checking and historical storage.

Performance Tests: a procedure, normally based on performance test codes, that
determines the actual state of the plant with the higher attainable accuracy,
with regard to the available instrumentation.

State of Reference: a validated model of the plant which represents the state of
reference for any operation mode, environmental conditions or feedstock
compositions.

Thermoeconomic Diagnosis Model: that allocates and assesses the increase of
resources consumption compared to the one foreseen by the state of reference
and explains the underlying causes.

This paper focuses on the last point, the description of theoretical basis and the
practical procedures of a thermoeconomic methodology for operation diagnosis.

In order to clarify the concepts introduced in the paper, we will use the example of a
cogeneration gas turbine described in the previous articles. The control parameter
values and fuel – product values for reference and operation conditions, used in
the example – are shown in Tables 1 and 2.
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Table 5.1. Model Operation Variables

Description x0 x

Combustor pressure losses (∆P1) 0.05 0.052

Compressor isentropic efficiency (ηcp) 0.85 0.84

Turbine isentropic efficiency (ηtg) 0.87 0.86

Inlet turbine gases temperature (T3) 850 oC 855 oC

Compression ratio (P2/P0) 5 5

Combustor 1 st law efficiency (ηcb) 0.98 0.975

Table 5.2. Design and operation values.

Design Operation

P (kW) I (kW) k P (kW) I (kW) k

Combustor 6630.9 5150.1 1.7767 6815.2 5472.4 1.8030

Compressor 2594.8 382.2 2.3464 2662.7 449.0 2.4641

Turbine 5477 306 2.0451 5611.8 338.1 2.1085

HRSG 2355 1087.7 2.8315 2355 1173.0 2.9793

5.1.1 Technical Exergy Saving and Fuel Impact

Thermoeconomic diagnosis is a Second Law based technique oriented to operation
analysis. The exergy balance of an installation allows us to allocate and calculate
irreversibilities in the production process and to identify the equipment which affect
overall efficiency and the reasons thereof. This information, although useful, has
proved not to be enough. In practice, when attempting to achieve energy savings
in an installation, we must consider that not all irreversibility can be avoided. The
potential exergy saving is limited by technical and economic constraints. Thus, the
technical possibilities for exergy savings, which is called technical exergy saving,
are always lower than the theoretical limit of thermodynamic exergy losses. From
this perspective, in the plant of our example, we can see in Table 2 that only
506 kW, out of the 7.432 MW of the total irreversibilities of the plant, can be saved
with respect to reference conditions.

Therefore, the additional fuel consumption can be expressed as the difference be-
tween the resources consumption of the plant in operation and the resources con-
sumption for a reference or design condition, with the same production objectives,
i.e. with the same total plant product.

∆FT = FT(x) − FT(x0) (5.1)

It can be broken up into the sum of the irreversibilities of each component:

∆FT = ∆IT =

n∑

j=1

(
I j(x) − I j(x0)

)
=

n∑

j=1

∆I j (5.2)

However, the local exergy savings which can be achieved in the different units
or processes of an installation are not equivalent. The same decrease in the local
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irreversibility of two different components leads, in general, to different variations
of the total plant energy consumption. It is shown in the fuel impact formula,
presented in the article Symbolic Thermoeconomic Analysis of Energy Systems, that
expresses the increase of resources consumption in the plant, as a function of the
marginal exergy consumption of each individual component of the plant:

∆FT =

n∑

i=1


n∑

j=0

k∗P, j(x)∆κ ji

 Pi(x0) + k∗P,i∆Ps,i (5.3)

The variation of the marginal exergy consumption of each component increases its
resources consumption and then its irreversibilities in a quantity ∆κ jiP0

i , which is
called, malfunction. Consequently, it implies an additional consumption of the ex-
ternal resources given by k∗P, j∆κ jiP0

i , which is called the malfunction cost. Therefore,
the total fuel impact can be written as the sum of the fuel impact or malfunction
cost of each component, as shown in Eq. (4.3).

In order to analyze the impact on resource consumption of a plant, we need to
know the design and operation values of the irreversibilities, product, unit exergy
cost for design and operation, and the increase of the marginal exergy consumption
of each component of the plant. A performance test or a simulator model together
with the fuel-product model of the plant defined in figure 1, provide the values
shown in Table 3.

∆ 〈KP〉 =



0.02629 0 0 0

0 0 0.00348 0.02652

0 0 0.00089 0.00972

0 0.02135 0 0

0 0 0 0



Figure 1 compares in a bar graph the malfunction cost and the irreversibility in-
crease or technical saving of each component. It shows that the irreversibility
increase and the malfunction are mainly located in combustor, meanwhile mal-
function cost appears in all components.

5.2 Malfunction and Disfunction Analysis

In this section we will analyze the causes of the irreversibilities increase, and
the relation with the malfunction costs. We have shown that there is no direct
relationship between the increase of the irreversibilities and its fuel impact. The
more advanced the production process is, the greater is the cost of the irreversibility
malfunction and as a consequence the greater its fuel impact is.

Furthermore, the degradation of a component forces the other components to
adapt their behaviour in order to maintain their production conditions, and as a
consequence their irreversibilities are modified. Figure 4.2, shows how an increase
of the unit consumption of a component increases, not only the irreversibilities of
such component, but also the irreversibilities of the previous component.

The irreversibility increase of a generic system’s component is given by:

∆I = ∆KDP0 + (KD −UD)∆P (5.4)

From the above expression, we can distinguish two types of irreversibilities:
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Figure 5.1. Malfunction cost and exergy saving.

• Endogenous irreversibility or malfunction produced by an increase of the unit
consumption of the component itself:

MF ji = ∆κ jiP0
i MFi =

n∑

j=0

MF ji (5.5)

• Exogenous irreversibility or dysfunction induced in the component by the mal-
function of other subsystems, which forces it to consume more local resources
in order to obtain the additional production required by the other compo-
nents:

DFi = (ki − 1)∆Pi (5.6)
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Figure 5.2. Irreversibility coefficients for operation state

The malfunction only affects the behavior of the components; the dysfunction arises
in how the components adapt themselves to maintain the total production.

Now we will study the causes and effects of the system irreversibilities and intro-
duce a new method to compute the fuel impact of a malfunction and its effect or, in
other words, to compute also the dysfunction on the rest of the system components.

The irreversibility increase Eq. (4.4) can be written in terms of the unit consumption
increase, by means of:

∆I = (∆KD + |I〉∆ 〈KP〉) P0

or in scalar format:

∆Ii =

n∑

j=0

∆κ jiPi(x0) +

n∑

j,h=1

φih(x)∆κhjP j(x0) i = 1, . . . ,n (5.7)



54 Thermoeconomic Diagnosis

The first part of the previous expression corresponds to the component malfunction,
and the last part to the dysfunction. If we denote:

DFi j =

n∑

h=1

φih(x)∆κhjP j(x0)

DFi =

n∑

j=1

DFi j

(5.8)

DFi j represents irreversibility increase of the i-th component, due to the malfunc-
tions of the j-th component. The φih are the coefficients of the irreversibility matrix
operator |I〉 for the actual operation values, shown in Table 4. The above expression
shows how a malfunction P j∆κhj, on the j-th component, generates a dysfunction
on the i-th component proportional to the φih coefficients, which represent the
weight of the malfunction effect. These coefficients do not depend on the malfunc-
tion amount, but only on the unit consumption of the components in an operating
state. Therefore, the dysfunction can not be corrected by itself, only decreasing the
malfunction, which generated it.

The technical exergy saving of component i-th, Eq. (4.7) can be written as the
sum of its malfunction and the dysfunction generated by other components of the
system:

∆Ii = MFi +

n∑

j=1

DFi j i = 1, . . . , n (5.9)

and the fuel impact in agreement with Eq. (4.2) can be written in terms of malfunc-
tion and dysfunction as follows:

∆FT =

n∑

i=1

∆Ii =

n∑

i=1

MFi +

n∑

j=1

DFi j

 (5.10)

Figure 4.3 shows a graph describing the causes of the increase of irreversibility,
as sum of the malfunctions and the dysfunctions generated by the rest of the
components, which mainly apply to the combustor.
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Figure 5.3. Irreversibility increase analysis

We have defined above the malfunction cost, as the malfunction multiplied by the
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unit cost of the additional resources required:

MF∗ji = k∗P, j(x)∆κ jiPi(x0)//MF∗i =

n∑

j=0

MF∗ji (5.11)

and the malfunction cost of a component as the sum of the component malfunction
cost. The total fuel impact is written as:

∆FT =

n∑

i=1

MF∗i (5.12)

The unit exergy cost of a product can be written in terms of the irreversibility
coefficients, by means of the expression, introduced in a previous chapter:

k∗P, j = 1 +

n∑

i=1

φi j (5.13)

Therefore Eq. (4.11) can be rewritten as:

MF∗i = MFi +

n∑

h=1

DFhi (5.14)

It means that the malfunction cost of each component is given by the sum of the
malfunction and the dysfunction generated by this component. Figure 4.4 shows a
graph of the malfunction cost of each component as sum of the malfunction and the
dysfunction or irreversibility generated in other components, as complementary
view of Figure 4.3.

The dysfunction generated by a component, just as the fuel impact, depends on
the malfunction and the position of the component in the productive process,
characterized by the unit cost of the resources required by the component.

Figure 5.4. Malfunction cost analysis
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The relation between irreversibility increase and fuel impact can be represented in
a double input table, as shown in Table 4.5, that includes only the malfunctions
and dysfunctions of the components. The columns of the table represent the
malfunction costs and the rows the irreversibility increase.

Table 4.5 together with Figures 4.3 and 4.4, show that 63% of the irreversibility
increase is located in the combustor, but malfunction in the combustor represents
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Table 5.3. Malfunction or disfunction table

Combustor Compressor Turbine HRSG DF MF Total

∆I1 0.000 52.014 20.684 75.253 147.951 174.336 322.287

∆I2 0.000 4.268 1.267 5.919 11.454 55.389 66.843

∆I3 0.000 5.119 0.529 2.471 8.119 23.964 32.083

∆I4 0.000 0.000 0.000 0.000 0.000 85.329 85.329

DI 0.000 61.400 22.480 83.643 167.524

MF 174.336 55.389 23.964 85.329 339.018

Total 174.336 116.790 46.444 168.972 506.543

only 34% of the total fuel impact, the rest of its irreversibility increase is due to
structural malfunctions or dysfunctions generated by the malfunctions, 37% of the
total fuel impact, of the rest of components. According to energy saving analysis
the problem would be located in the combustor, but malfunction cost analysis
indicates that there will be other locations also in other components. But, where is
the origin of the fuel impact?

5.3 Malfunction Causes Analysis

The proposed thermoeconomic methodology, is a powerful tool to find the causes
of the irreversibilities and quantify them in terms of fuel impact. The malfunc-
tion/dysfunction analysis is an upstream analysis of the productive process. It
analyzes how the previous components on the plant are affected by a component
malfunction. But this model is not enough to determine the origin of malfunctions.

The problem to determine the malfunction causes, is that we cannot operate a
unit of the plant using the unit exergy consumption, they are not real control
parameters of the plant, but function of the real control variables as pressure ratios,
temperatures, mass flow rates.

Thus, is it possible to express the fuel impact as the sum of the contributions of
the control variables? To do that, we need to relate the unit exergy consumption
increase or the malfunctions as a sum of the contributions of each control variable.
As first order approximation, we can write:

∆κi j ≈
r∑

l=1

∂κi j

∂xl
∆xl

MFi j ≈
r∑

l=1

∂κi j

∂xl
P0

j ∆xl

(5.15)

By using a reference state model simulator, it is possible to fit the malfunctions,
with a polynomial on the form:

MFl
i j �

∑

p

αl
i j,p(xl − x0

l )p (5.16)
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Therefore the malfunction can be evaluated by using the expression:

MFi j =

r∑

l=1

MFl
i j + εi j (5.17)

where εi j is the fitting error. This error could be interpreted as non-identified
malfunction, due to interaction between control parameters. Table 6 shows the
malfunction table, which contains the malfunction associated to each local variable,
and the error obtained, using a polynomial fitting of the first degree.

The above table shows, that the decrease of the gas turbine efficiency is the main
cause of the malfunctions, instead of the parameters associated to the combustor
as pressure losses, or efficiency.

Once the relationship between malfunction and the operating parameters is known,
the method proposed in previous sections could be applied to distinguish the effect
of a control parameter on the internal economy of the component. The malfunction
cost of each component could be obtained as:

MF∗i �
r∑

l=1

n∑

j=0

k∗P, jMFl
ji (5.18)

and the irreversibility increase, or technical exergy saving, is obtained by means of:

∆Ii �
r∑

l=1

MFl
i +

n∑

j,h=1

φihMFl
hj

 (5.19)

Figure 4.5 shows the causes of the irreversibility increases of each component,
and it has been explained before the main cause of irreversibility increase in the
combustor is the decrease of the gas turbine efficiency, which can provoke an
increase in the mass flow rate to maintain the production.
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Figure 5.5. Irreversibility increase causes

The value of the non-identified malfunctions can be reduced. Consider that the
contribution of each control variable is not additive, but due to the interaction be-
tween variables it is weighted by an interaction factor βl which could be determined
by a least squares procedure:

min
βl

∑

i, j

MFi j −
∑

l

βlMFl
i j


2

(5.20)
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Figure 6 resumes the diagnosis procedure described in the paper, which combines
simulation techniques and thermoeconomic analysis. It shows the fuel impact
due to each operational parameter, and the malfunction cost associated to each
component.

The degradation or improvement of a component causes a variation in the exergy
consumption of the component itself, that we call intrinsic malfunction. Table 6,
shows in bold characters the intrinsic malfunctions of each component. An intrinsic
malfunction not only has an impact upstream in the process, that we have called
dysfunction or structural malfunction, but also downstream. The variation of the
input conditions in a component will affect its efficiency, to a greater or lesser extent
which in turn, will affect the next component. Not only are there dysfunctions
when there is an intrinsic malfunction; there are also induced malfunctions that can
decisively affect the behavior of a plant. In our example, 1% of variation in the
isentropic efficiency of the turbine causes an irreversibility increase of 25 kW in the
gas turbine, but this downstream effect on the total plant is 12 times greater. Only
25% of the additional resources consumption is due to the intrinsic malfunctions,
42% is due to induced malfunctions and 33% to structural malfunctions.

The type of malfunction is related to the behavior of the operating parameters
regarding the effect on the efficiency of the component of the system. If the param-
eters are local, it means that malfunctions are produced only on the component to
which the parameter is related. For example the efficiency or the pressure losses
on the combustor, shown in Table 4.6, the malfunctions are intrinsic, and thermoe-
conomic analysis based on malfunction cost could affect its fuel impact. But if the
parameters are global, they cannot be associated to a specific component, and gen-
erate malfunctions in several components of the plant. In general the malfunctions
are of both types: intrinsic and induced. Conventional thermoeconomic analysis
cannot assess with accuracy its fuel impact. Therefore thermoeconomic diagnosis
depends on the choice of the operation parameters and the aggregation level of the
productive structure. A suitable choice of the model that makes local most of the
operational parameters will enhance the thermoeconomic diagnosis procedures.
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Figure 5.6. Malfunction cost of operational parameters

5.4 Closure

This paper has presented the application of thermoeconomic diagnosis to enhance
energetic resources utilization and thermal power plant management.
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The fundamental feature consists of a detailed analysis of the equipment interac-
tions and its productive structure. Once reliable input data have been provided,
malfunction quantification and the causes can be determined by comparison of
the steady state obtained from a performance test and a reference state given by a
model simulator.

The thermoeconomic diagnosis methodology explained in this article is based on
the Structural Theory of Thermoeconomics and Symbolic Thermoeconomics. It
is possible to predict exactly the total additional fuel consumed when a plant
malfunctions or inefficiencies occur. The most important fact is not to predict the
extra fuel consumed, which can be also calculated by a simulator model of the plant,
but to explain component by component the additional fuel consumption and to
assess for each one its corresponding responsibility or malfunction cost. This
information cannot be obtained with a conventional simulator, but by applying
thermoeconomic analysis.

Diagnosing an energy system consists of comparing an actual state with a reference
one and locating the final causes of its deviation. This implies it is necessary to
identify how, where and how much of the additional consumed resources could
be saved. A conventional exergy analysis comparing the irreversibilities at the
components level is not at all adequate. This is because many irreversibilities
occurring in a system’s components are not due to an actual malfunction of that
component but to the influence of other components.

A fist variational analysis is then required by considering that during a malfunction
the other components only adapt their resources and their production to the new
situation without changing their efficiency. The key of this analysis is to calculate
the dysfunction DFi j i.e. the irreversibility increase on the i-th component generated
by a malfunction on the j-th component. Therefore the irreversibility increase of a
component will be its own malfunction plus all the dysfunction generated by the
rest of the components, and the cost of malfunction is the malfunction plus the
dysfunctions they generate in the rest of the components.

A second approach considers that the degradation in a component, intrinsic malfunc-
tion, can modify the efficiency of the other plant components, induced malfunction.
The way to solve is to build a malfunction matrix, by the help of a model simula-
tor or an additional external knowledge not provided by classic thermoeconomic
analysis. Then it is possible to identify the operating parameters that potentially
causes deviation, and calculate the intrinsic and induced malfunction, and then
their fuel impact.

An operation diagnosis methodology requires both a thermoeconomic analysis and
a model simulator, in order to identify and quantify the origin of the irreversibility
increase at the components level, and then to take the actions required to reduce
the resources consumption energy.

However, the thermoeconomic diagnosis technique presented in this article it is not
completed. Diagnosis is the art of discovering and understanding the real causes
of malfunction and quantifying their effects. This is a very complex task because
many different factors occur simultaneously. When the behavior of a component
is modified it can be provoked by several different situations that not necessarily
correspond with an intrinsic malfunction of the referred component. For instance,
partial load operation, ambient conditions, the fuel plant quality modifications
and the control system of the plant can provoke deviations of the behavior and the
efficiency of a component. Applying the technique presented in this paper a fuel
impact would be detected due to the efficiency deviation of the referred component,
but its malfunction is not intrinsic, i.e. this malfunction has been provoked by the
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control system or the different ambient conditions, or the different fuel quality
or the partial load. In other words, the problem of identifying and quantifying
the intrinsic malfunctions is not entirely solved yet. This is the cornerstone of
diagnosis. We now have understanding of the interactions between the different
plant components and how a malfunction affects the behavior of the different plant
components, but we have not entirely solved yet the problem of identifying the
real causes provoking the malfunctions. The Ph.D. Thesis developed by Verda
has solved this problem in the case of the control system of the plant. But further
research work is required.



Appendix A
Exergy Analysis Fundamentals

This appendix briefly surveys exergy principles and illustrate their us. To explore
the subject in greater depth, readers should refer to [3, 9] or [13],

A.1 Engineering thermodynamics principles

The exergy concept is developed using extensive balances of mass, energy and
entropy, together with property relations. Here, we will consider properties of
simple compressible substances exclusively. Engineering applications involving
exergy are generally analyzed on a control volume basis, see figure A.1. Accord-
ingly, the control volume formulation of the mass, energy and entropy balances
presented in this section play important roles. These are provided here in the form
of overall balances assuming one-dimensional flow.

Mass rate balance

For applications in which inward and outward flows occur, each through one or
more ports, the extensive property balance mass expression the conservation mass
principle takes the form

dm
dt

=
∑

i

ṁi −
∑

e

ṁe (A.1)

where dm/dt represents the time rate of change of mass contained within the control
volume, ṁi denotes the mass flow rate at an inlet port, and ṁe denotes the mass
flow rate at an exit port.

Energy rate balance

Energy is a fundamental concept of thermodynamics and one of the most significant
aspects of engineering analysis. Energy can be stored within systems in various
macroscopic forms: kinetic energy, gravitational potential energy, and internal
energy. Energy can also be transformed from one form to another and transferred
between systems. Energy can be transferred by work, by heat transfer, and flowing
matter. The total amount of energy is conserved in all transformations and transfers.
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Ẇcv
Q̇cv

e1

en

Figure A.1. Control volume at steady state

On a time-rate basis, the extensive property balance for the energy of a closed
system takes the form

d(U + KE + PE)
dt

= Q̇ − Ẇ, (A.2)

where U, KE, and PE denote, respectively, the internal energy, kinetic energy, and
gravitational potential energy. The terms Q̇ and Ẇ account, respectively, for the
net rates of energy transfer by head and work. In equation A.1, energy transfer
by heat to the system is considered positive and energy transfer by work from the
system is considered positive.

Energy can enter and exit control volumes by work, by heat transfer and by flow-
ing matter. Because work is always done on or by a control volume where matter
flows across the boundary, it is convenient to separate the work rate into two con-
tributions. One contribution is the work rate associated with the force of the fluid
pressure as mass is introduced at the inlet and removed at the exit. This is com-
monly referred to as flow work. The other contribution denoted as Ẇcv, includes
all other work effects, such as those associated with rotating shafts, displacement
of the boundary, and electrical effects. On a one-dimensional flow basis, the total
work rate associated with a control volume is

Ẇ = Ẇcv +
∑

e

ṁe pe ve −
∑

i

ṁi pi vi (A.3)

where pi and pe denote the pressures and vi and ve denote specific volumes at the
inlets and exists, respectively. Energy also enters and exits control volumes with
flowing streams of matter. The specific energy (energy per unit mass) is the sum
of the specific internal energy u, the specific kinetic energy V2/2, and the specific
gravitational potential energy gz. Thus, on a one-dimensional flow basis, the rate
at which energy enters with matter at inlet i is ṁi (ui + V2

i /2 + gzi).

Collecting results, the following form of the control volume energy rate balance
evolves:

d(U + KE + PE)
dt

= Q̇ − Ẇvc +
∑

i

ṁi

(
ui + pivi + V2

i /2 + gzi

)

−
∑

e

ṁi

(
ue + peve + V2

e /2 + gze

) (A.4)
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Introducing the specific enthalpy h (h = u + p v), the energy rate balance becomes

d(U + KE + PE)
dt

= Q̇ − Ẇvc +
∑

i

ṁi

(
hi + V2

i /2 + gzi

)

−
∑

e

ṁi

(
he + V2

e /2 + gze

) (A.5)

Entropy rate balance

An extensive property balance also can be written for entropy. The closed system
entropy balance reads

S2 − S1 =

∫ 2

1

(
δQ
T

)
b

+ Sg (A.6)

Because entropy is a property, the entropy change on the left side of equation (A.6)
can be evaluated independently of the details of the process, knowing only the end
states. However, the two terms on the right side depends explicitly on the nature
of the process and cannot be determined solely from knowledge of the end states.

The first term on the right side of equation (A.6) is associated with heat transfer
to or from the system during the process. This term can be interpreted as the
entropy transfer accompanying heat transfer. The direction of entropy transfer is
the same direction of heat transfer, and the same sign convention applies as for
heat transfer. The second term as the right side, Sg, accounts for entropy generated
within the system owing to irreversibilities. The term Sg is positive, the Second
Law of thermodynamics can be interpreted as specifying that entropy is generated
by irreversibilities and conserved only if in the limit as irreversibilities are reduced
to zero. Because Sg measures the effect of irreversibilities present within a system
during a process, this value depends on the nature of the process and not solely on
the end states, and thus is not a property. When irreversibilities are absent during
a process, no entropy is generated within the system and the process is said to be
reversible.

A rate form of the closed system entropy balance that is frequently convenient is

dS
dt

=
∑

j

Q̇ j

T j
+ Ṡg (A.7)

where dS/dt is the time rate of change of entropy of the system. The term Q̇ j/T j
represent the time rate of entropy transfer through the portion of the boundary
whose instantaneous temperature is T j. The term Ṡg accounts the time rate of
entropy generation due to irreversibilities within the system.

As for the case of energy, entropy can be transferred into or out a control volume
by streams of matter, This is the principal difference between the closed system
and control volume forms. Accordingly, for control volumes the counterpart of
equation (A.7) is

dS
dt

=
∑

j

Q̇ j

T j
+

∑

i

ṁi si −
∑

e

ṁe se + Ṡg (A.8)

where dS/dt represents the time rate of change of entropy within the control volume.
The terms ṁi si and ṁe se account, respectively, for rates of entropy transfer into
and out the control volume accompanying mass flow. Q̇ j represents the time rate
of heat transfer at the location on the boundary where instantaneous temperature
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is T j. Ṡg denotes the time rate of entropy generation due to irreversibilities within
the control volume.

When applying the entropy balance, in any of its forms, the objective is often to
evaluate the entropy generation term. However, the value of the entropy gener-
ation for a given process of a system usually does not have to much significance
by itself. The significance is normally determine through comparison: The en-
tropy generation within a given component might be compared with the entropy
generation values of the other components included in a system formed by these
components. By comparing entropy generation values, the components where
appreciable irreversibilities occur can be identified and rank-ordered, allowing at-
tention to be focused on the components that contribute most heavily to inefficient
operation of the overall system.

To evaluate the entropy transfer term of the balance requires information about
both the heat transfer and the temperature on the boundary where the heat trans-
fer occurs. The entropy transfer term is not always subject to direct evaluation,
however, because the required information is either unknown or not defined, such
as when the system passes through states sufficiently far from equilibrium. In prac-
tical applications, it is often convenient, therefore, to enlarge to include enough of
the immediate surroundings that the temperature on the boundary of the enlarged
system corresponds to the ambient temperature, T0. The entropy transfer rate is
then simply Q̇/T0. However, as the irreversibilities present would not be just those
for the system of interest but those for the enlarged system, the entropy generation
term would account for the effects of internal irreversibilities within the system and
external irreversibilities withing that portion of the surroundings included within
the enlarged system.

Steady-state rate balances

For control volumes at steady state, the identity of the matter within the control
volume changes continuously, but the total amount of mass remains constant. At
steady state, equation (A.1) reduces to:

∑

i

ṁi =
∑

e

ṁe (A.9)

As steady state, the energy rate balances given by (A.5) reduces to read

Ẇvc − Q̇ =
∑

i

ṁi

hi +
V2

i

2
+ gzi

 −
∑

e

ṁi

(
he +

V2
e

2
+ gze

)
(A.10)

and the equation (A.8) is written as

0 =
∑

j

Q̇ j

T j
+

∑

i

ṁi si −
∑

e

ṁe se + Ṡg (A.11)

When supplemented by appropriate property relations, the previous equations
allow control volumes at steady state to be analyzed.

A.2 Defining Exergy

An opportunity for doing work exists whenever two systems at different states
are placed in communication, for in principle, work can be developed as two
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are allowed to come into equilibrium. When one of the systems is a suitably
idealized system called an environment and the other is some system of interest,
exergy is the maximum theoretical useful work obtainable as the systems interact
to equilibrium, heat transfer occurring with the environment only. Alternatively,
exergy is the minimum theoretical useful work required to form a quantity of matter
from substances present in the environment and bring the matter to specified state.
As exergy is a measure of the departure of the state of the system from that of
environment, exergy is an attribute of the system and environment together. Once
the environment is specified, however, a value can be assigned to exergy in terms
of property values for the system only, so exergy can be regarded as an extensive
property of the system.

Exergy can be destroyed and generally is not conserved. A limiting case is when
exergy would be completely destroyed, as occurs when a system comes into equi-
librium with the environment spontaneously with no provision to obtain work.
The capability to develop work existing initially would be completely wasted in
the spontaneous process. Moreover, because no work need be done to effect such
a spontaneous change, it may be conclude that the value of exergy is at least zero
and therefore cannot be negative.

Environment and Dead state

Any system, whether a component in larger system such as a steam turbine in
a power plant or the power plant itself, operates within surroundings of some
kind. Distinguishing between the environment and the system’s surroundings is
important. The term surroundings refers to everything not included in the system.
The term environment applies to some portion of the surroundings, that the intensive
properties of each phase of which are uniform and do not change significantly as a
result of any process under consideration. The environment is regarded as free of
irreversibilities. All significant irreversibilities are located within the system and
its immediate surroundings.

Because the physical world is complicated, models with various levels of specificity
have been proposed for describing the environment. In the present discussion the
environment is modeled as a simple compressible system, large in extent, and
uniform in temperature, T0, and pressure, p0. In keeping with the idea that the
environment has to do with the actual physical world, the values for p0 and T0
uses throughout a particular analysis are normally taken as typical environmental
conditions, such as one atmosphere and 25oC.

The environment is regarded as composed of common substances existing in abun-
dance within the atmosphere, the oceans, and the crust of the Earth. The substances
are in their stable forms as they exists naturally, and developing work from inter-
actions – physical or chemical – between parts of the environment is not possible.
Although its intensive properties do not change, the environment can experience
changes in its extensive properties as a result of interactions with other systems.
Kinetic and potential energies are evaluated relative to coordinated in the environ-
ment all parts of which are considered to be at rest with respect to one another.
Accordingly, a change in the energy of the environment can be change in its internal
energy only.

When the pressure. temperature, chemical composition, velocity, or elevation of a
system is different from the environment, an opportunity to develop work exists.
As the system changes state toward that of the environment, the opportunity
diminishes, ceasing to exist when the system and the environment, at rest relative
to one another, are in equilibrium. This state of the system is called the dead state.
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At the dead state, the conditions of mechanical, thermal and chemical equilibrium
between the system and the environment are satisfied: the pressure, temperature,
and chemical potentials of the system are equal those the environment, respectively.
In addition, the system has zero velocity and zero elevation relative to coordinates
in the environment. Under these conditions, no possibility exists of spontaneous
change within the system or the environment, nor can they interact.

Another type of equilibrium between the system and the environment can be
identifies. This form of equilibrium is restricted, only the conditions of mechanical
and thermal equilibrium must be satisfied. This state of the system is called the
restricted dead state.

Exergy components

In the absence of nuclear, magnetic, electrical, and surface tension effects, the exergy
Esys can be divided into four components: physical exergy, EPH

sys , kinetic exergy, EK,
potential exergy, EP, and chemical exergy, ECH, that is

Esys = EPH
sys + EK + EP + ECH (A.12)

The sum of the kinetic, potential, and physical exergies is also referred to as thermo-
mechanical exergy. Although exergy is extensive property, it is often convenient to
work with it on a unit mass basis. The specific exergy, e is given by

esys = aPH
sys +

V2

2
+ g z + ECH (A.13)

In equation (A.13), V and z denote velocity and elevation relative to coordinates
in the environment. When evaluated relative to the environment, the kinetic and
potential energies of the system are, in principle, fully convertible to work as the
system is brought to rest relative to the environment, and so they correspond to
the kinetic and potential exergies, respectively.

Considering a system at rest relative to the environment (EK = EP = 0) the physical
exergy is the maximum theoretical useful work obtainable as the system pases
from the initial state, where the temperature is T and the pressure is p, to the
restricted dead state, where the temperature is T0 and pressure is p0. The chemical
exergy is the maximum theoretical work obtainable as the system pases from the
restricted dead state to the dead state, where it is in complete equilibrium with
the environment. The use of the term chemical here does not necessarily imply a
chemical reaction.

Physical exergy

The physical exergy of a closed system at a specified state is given by the expression

EPH
sys = (U −U0) + p0(V − V0) − T0(S − S0) (A.14)

where U, V, and S denote, respectively, the internal energy, volume, and entropy
of the system at the specific state, and U0, V0, and S0 denote the energy, volume,
and entropy of the system when is at the restricted dead state. On mass-unit basis,
the physical exergy is

ePH
sys = (u − u0) + p0(v − v0) + T0(s − s0) (A.15)
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Figure A.2. Combined system of closed system and environment

Equation (A.14) for the physical exergy can be derived by applying energy and
entropy balances to the combined system show in figure A.2, which consists of a
closed ystem and the environment. The system is at rest relative to the environment.
As the objective is to evaluate the maximun work that could be developed by
the combined system, the boundary of the combined system allows only energy
transfers by work across it, ensuring that the work developed is not affected by heat
transfer to or from the combined system. And although the volumes of the system
and environment may vary, the boundary of the combined system is located so
the total volume remains constant. The energy balance for the combined system
reduces to

∆Uc = −Wc

where Wc is the work developed by the combined system, and ∆Uc is the internal
energy change of the combined system: the sum of the internal energy changes of
the closed system and the environment. Accordingly, ∆Uc can be expressed as

∆Uc = (U0 −U) + ∆Ue

where ∆Ue denotes the internal energy change of the environment, that could be
related to changes in the entropy Se and volume Ve of the environment through the
equation

∆Ue = T0∆Se + p0∆Ve

Collecting the last three equations,

Wc = (U −U0) + p0(V − V0) − T0∆Se (A.16)

This equation gives the work developed by the combined system as the closed
system passes to the restricted dead state while interacting only with the environ-
ment. Since no heat transfer occurs across its boundary, the entropy balance for the
combined system reduces to give

∆Sc = Sg

where Sg accounts for entropy generation within the combined system as the closed
system comes into equilibrium with the environment. The entropy change of the
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combined system, ∆Sc, is the sum of the entropy changes for the closed system and
environment, respectively,

∆Sc = (S0 − S) + ∆Se

Combining the last to equation, and inserting the result into equation (A.16) gives

Wc = (U −U0) + p0(V − V0) − T0(S − S0) − T0Sg

The value of the underlined term is determined by two states of the closed system –
the initial state and the restricted state– and is independent of the process. However,
the value of Sg depens on the nature of process as the closed system passes to the
restricted dead state. In accordance with the second law this term cannot be
negative. Hence the maximum theoretical value for the work of the combined system
is obtained by setting Sg to zero, leaving

Wc,max = (U −U0) + p0(V − V0) − T0(S − S0)

By definition, the physical exergy, EP
sysH, is this maximum value, and equation

(A.14) is obtained as the appropriate expression for calculating the physical exergy
of a system.

A.2.1 Chemical Exergy

When evaluating chemical exergy – the exergy component associated with the
departure of the chemical composition of a system from that of the environment–
the substances composing the system must be referred to the properties of a suitably
selected set of environment substances. For there to be no possibility of developing
work from interactions, physical or chemical, between parts of the environment,
it is essential that these environmental reference substances be in equilibrium,
mutually and with the rest of the environment. The natural environment is not in
chemical equilibrium, however, and a compromise between physical reality and
requirements of thermodynamic theory is necessary. Such considerations have led
to alternative models for evaluating chemical exergy, and the term exergy reference
environment is frequently uses to distinguish thermodynamic concept from the
natural environment. The modeling of exergy reference environments is throughly
discussed in the literature. For simplicity, the present development features the
use of standard chemical exergies determined relative to a standard environment.

Standard chemical exergies are calculated on the basis that the environmental
temperature and pressure have standard values and the environment consists of
a set of reference substances with standard concentrations reflecting the chemical
makeup of the natural environment. The reference substances fall into three groups:
gaseous components of the atmosphere, solid substances from the lithosphere, and
ionic a nonionic substances from the oceans. Alternative standard exergy reference
environments that have gained acceptance for engineering evaluations are detailed
by [1] and [16].

The use of standard chemical exergies greatly facilitates the application of exergy
principles. The term standard is somewhat misleading, however, for no one spec-
ification of the environment suffices for all applications. Still, chemical exergies
calculated relative to alternative specifications of the environment generally agree
well. For a broad range of engineering application, the simplicity and ease use of
standard chemical exergies generally outweighs any slight lack of accuracy that
might result.

A common feature of standard exergy reference environments is a gas phase in-
tended to represent air, that includes N2, O2, CO2, H2O(g), and other gases. Each
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Gas i at

T0, p0

Gas i at

T0, xe

i
p0

Figure A.3. Device for evaluating the chemical exergy of a gas.

gas i present in the gas phase is at temperature T0 and partial pressure pe
i = xe

i p0,
where the superscript e is the mole fraction of gas i in the gas phase. Referring
to the device at steady state shown in A.3, the standard chemical exergy for a gas
included in the environmental gas phase can be evaluated as follows: Gas i enters
at temperature T0 and pressure p0, expands isothermally with heat transfer only
with the environment, and exists to the environment at temperature T0 and partial
pressure pe

i . The maximum theoretical work per mole of gas i would be devel-
oped when the expansion occurs without internal irreversibilities. Accordingly,
with energy and entropy balances together with the ideal gas equation of state, the
chemical exergy exergy per mole of i is

eCH
i = −RT0 ln

xe
i p0

p0

= −RT0 ln xe
i

(A.17)

The chemical exergy of a mixture of n gases, each of which is present in the
environmental gas phase, can be obtained similarity. We may think of a set on
n devices such as shown in A.3, one for the gas in the mixture. Gas i, whose mole
fraction in the gas mixture at T0, p0 is xi, enters at T0 and the partial pressure xip0.
As before, the gas exists to the environment at T0 and the partial pressure xe

i p0.
Paralleling the previous development, the work per mole of i is −RT0 ln(xe

i/xi).
Summing over all components, the chemical exergy per mole of mixture is

eCH
mixture = −RT0

∑

i

xi ln
xe

i

xi
.

This expresion can be written alternatively with equation (A.17) as

eCH
mixture =

∑

i

xie
CH
i + RT0

∑

i

xi ln xi. (A.18)

Equation (A.18) remains valid for mixtures containing gases, for example, gaseous
fuels, other than those assumed present in the reference environment and can be
extended to mixtures that not adhere to the ideal gas model.
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A.3 Exergy Balance

As for extensive properties mass, energy, and entropy, exergy balances can be
written in alternative forms suitable for particular applications of practical interest.

The change in total exergy ∆Esys of a closed system caused through transfers of
energy by work and head between the system and its surroundings is given by

∆Esys = Esys,2 − Esys,1 = Eq − Ew − I (A.19)

The exergy transfer Eq associated with heat transfer Q is

Eq =

∫ 2

1

(
1 − T0

Tb

)
δQ

where Tb is the temperature at which heat transfer crosses the system boundary.
The exergy transfer Ew associated with the transfer of energy by work W is given
by

Ew = W + p0(V2 − V1)

The last term I accounts for the time rate of exergy destruction due to irreversibilities
within the system and is related to the rate of entropy generation within the system
by

I = T0Ṡg

The counterpart of equation (A.19) applicable to control volumes include additional
terms that account for exergy transfers into or out of a control volume where streams
of mass enter and exits:

dEsys

dt
=

∑

j

(
1 − T0

T j

)
Q̇ j −

(
Ẇcv − p0

dV
dt

)

+
∑

i

ṁi ei −
∑

e

ṁe ee − İ.

(A.20)

In equation (A.20), the term dEsys/dt represents the time rate of change of the
exergy on the control volume. As in the control volume energy rate balance, Ẇcv
represents the time rate of energy transfer by work other than flow work. The term
ṁi ei accounts for the time rate of exergy transfer accompanying mass flow and
flow work at inlet i. Similarly, ṁe ee accounts for the time rate of exergy transfer
accompanying mass flow and flow work at exit e. The exergy transfer rate at control
volumes inlets and exists are denoted, respectively, as Ėi = ṁi ei and Ėe = ṁe ee.
Finally, İ accounts for the time rate of exergy destruction due to irreversibilities
within the control volume.

At steady state, equation (A.20) reduces to:

∑

j

(
1 − T0

T j

)
Q̇ j − Ẇcv +

∑

i

ṁi ei −
∑

e

ṁe ee = İ. (A.21)

To complete the introduction of the control volume exergy balance, an equation
for evaluating the terms ṁi ei and ṁe ee appearing in equations (A.20) and (A.21)
is considered next: When mass enters or exists a control volume, exergy transfers
accompanying mass flow and flow work occur, that is
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[
time rate of exergy transfer
accompanying mass flow

]
= ṁ esys (A.22)

On time-rate basis the flow work is ṁ(p v), and the accompanying exergy transfer
is given by [

time rate of exergy transfer
accompanying flow work

]
= ṁ(p v − p0 v) (A.23)

The sum of both contributions is the time rate of exergy transfer accompanying
mass flow and flow work, symbolized by Ė and it is also called flow exergy.

Ė = ṁ[esys + (p v − p0 v)] (A.24)

The sum in square brackets on the right is the specific flow exergy, that is,

e = esys + (p v − p0 v) (A.25)

Introducing equations (A.13) and (A.15), in equation (A.25) the equation for specific
flow exergy is obtained

e = h − h0 − T0(s − s0) +
V2

2
+ gz + eCH, (A.26)

where h0 and s0 denote the specific enthalpy and entropy, respectively, at the
restricted dead state. The underlined term can be identified as the physical com-
ponent of the exergy of a flow stream, written as

ePH = h − h0 − T0(s − s0). (A.27)





Appendix B
Review of Lineal Algebra

In this appendix we will review some aspects of linear algebra that been used in the
book. We will take special attention in notation aspects. Some numerical methods
for solving linear system of equation are introduced here.

B.1 Set Theory

A set is a well-defined collection of things. By well defined we mean that given any
object it is possible to determine whether or not it belong to the set. For example,
the set S = {x|x ≥ 0} defines the set of all nonnegative numbers. x = 2 is an element
of the set S and is written as 2 ∈ S.

The union of two sets P and Q defines another set R such that

R = P ∪Q = {x ∈ P or x ∈ Q} .

The intersection of two set P and Q defines another set R such that

R = P ∩Q = {x ∈ P and x ∈ Q} .

P is a subset of Q, written P ⊂ Q, if every element of P is in Q. The empty set, denoted
by Ø, is a set with no elements in it.

Disjoints sets have no elements in common, if P and Q are disjoints sets, then
P ∩Q = ∅.

B.2 Vectors

A vector is an ordered set of real numbers. For instance, a = (a1, a2, . . . , an) is
a vector of n elements or components. Let two vectors a = {a1, a2, . . . , an} and
b = {b1, b2, . . . , bn}, then the sum is defined as:

a + b = (a1 + b1, . . . , an + bn)

73
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The scalar product for any real number α is:

α a = (α a1, . . . , α an)

The vector 0 = (0, 0, . . . , 0) is called null vector. The vector u = (1, 1, . . . , 1) is called
unity vector.

The inner product of two vector, written a · b, is a real number given by:

a · b =

n∑

i=1

ai bi

B.3 Matrices

A matrix A of size n × m is a rectangular array (table) of numbers with m rows an
n columns, as for example:

A
(2x3)

=

[
1 2 3
4 5 6

]

In this example A is matrix of two rows and three columns. In general an n × m
matrix is written as

A
(n×m)

=
[
ai j

] j=1,...m

i=1,...,n

each element ai j of the matrix, is the element in the i-th row and j-th column of A

Here continue the appendix
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