Approfondimento lezione 8

Mara Bruzzi

Approfondimento 1

Il calore specifico dei solidi a basse temperature

Utilizziamo il concetto di gas di fononi all'equilibrio termico per spiegare l'andamento a basse temperature del calore specifico dei solidi (modello di Debye).

Per T o OK solo i modi a più bassa energia sono termicamente eccitati i.e. vanno considerati nel calcolo solo i modi acustici vicini al centro della prima zona di Brillouin (andamento lineare in k). Per tali modi, corrispondenti a lunghezze d'onda molto lunghe, il solido si comporta come un mezzo elastico: $\omega_i(k) = v_s k$ per tutti i modi, con v_s velocità del suono.

Nella prossima slide calcoliamo la degenerazione $g(\omega)$ per il gas di fononi in questo caso (fononi acustici con q piccolo).

Dalla degenerazione degli stati in funzione dell'energia ϵ per un gas di particelle libere passiamo alla degenerazione del momento p:

$$g(\varepsilon) = \frac{4\pi V}{h^3} \left(2m^3\right)^{1/2} \sqrt{\varepsilon} \qquad g(p)dp = g(\varepsilon)d\varepsilon \to g(p) = g(\varepsilon)\frac{d\varepsilon}{dp} = \frac{4\pi V}{h^3} p^2$$

avendo utilizzato:
$$\varepsilon = \frac{p^2}{2m}$$
 quindi alla degenerazione degli stati

in funzione della frequenza. Per i fotoni, avendo solo onde trasversali (elettromagnetiche) di velocità c:

avendo utilizzato:
$$p = \frac{hv}{c}$$

$$g(v) = g(p)\frac{dp}{dv} = \frac{4\pi V}{c^3}v^2$$

Per i fononi (acustici con q piccolo) ipotizzando una relazione lineare tra ω e q con v_t e v_i velocità trasversa e longitudinale :

per i due modi trasversi:
$$g(v) = \frac{8\pi V}{v_t^3} v^2$$
 per quello longitudinale: $g(v) = \frac{4\pi V}{v_l^3} v^2$

in totale:
$$g(v) = 4\pi V \left(\frac{1}{v_l^3} + \frac{2}{v_l^3}\right) v^2$$

La frequenza di cut-off

In un solido con struttura atomica che contiene N atomi il numero totale di modi indipendenti di vibrazione è pari a 3N. Questo limite si può imporre ponendo un limite alla frequenza vibrazionale ():

 v_0 = frequenza di cut-off

Per cui riscriviamo:

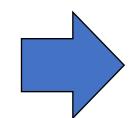
$$3N = \int_{0}^{v_0} g(v)dv = 4\pi V \left(\frac{1}{v_l^3} + \frac{2}{v_l^3}\right) \int_{0}^{v_0} v^2 dv$$

quindi sostituendo:
$$3N = 4\pi V \left(\frac{1}{v_i^3} + \frac{2}{v_i^3}\right) \frac{{v_0}^2}{3}$$

$$g(v) = 4\pi V \left(\frac{1}{v_l^3} + \frac{2}{v_l^3}\right) v^2 = \frac{9N}{v_0^3} v^2$$

Applico il modello del gas di fononi liberi nel materiale al calcolo del calore specifico del solido

$$dn = \frac{g(v)}{e^{\frac{hv}{KT}} - 1} dv = \frac{9N}{v_0^3} \frac{v^2}{e^{\frac{hv}{KT}} - 1} dv$$



$$dn = \frac{g(v)}{e^{\frac{hv}{KT}} - 1} dv = \frac{9N}{v_0^3} \frac{v^2}{e^{\frac{hv}{KT}} - 1} dv$$

$$E^{vib} = \int_0^{v_0} hv \, dn = \frac{9Nh}{v_0^3} \int_0^{v_0} \frac{v^3}{e^{\frac{hv}{KT}} - 1} dv$$

calore specifico molare:

$$c_{V} = \frac{1}{n} \left(\frac{\partial E^{vib}}{\partial T} \right)_{V} = \frac{9N_{A}h^{2}}{v_{0}^{3}KT^{2}} \int_{0}^{v_{0}} \frac{v^{4}e^{\frac{hv}{KT}}}{\left(e^{\frac{hv}{KT}} - 1\right)^{2}} dv$$

Ricordando che $kN_A = R$, riscrivendo l'integrale con variabile : e definendo un nuovo parametro (Temperatura di Debye):

otteniamo:

$$c_V = 9R \left(\frac{T}{\Theta_D}\right)^{3\Theta_D/T} \frac{x^4 e^x}{\left(e^x - 1\right)^2} dx$$

$$\Theta_D = \frac{h \, \nu_0}{K}$$

T basse: c_v varia come T^3

Riassumendo: per $T \rightarrow OK$, solo i modi a più bassa energia sono termicamente eccitati i.e. vanno considerati nel calcolo solo i modi acustici vicini al centro della prima zona di Brillouin (andamento lineare in k). Per tali modi, corrispondenti a lunghezze d'onda molto lunghe, il solido si comporta come un mezzo elastico: $\omega_i(k) = v_s k$ per tutti i modi, con v_s velocità del suono. Con tale andamento lineare, si ha:

$$c_V = 9R \left(\frac{T}{\Theta_D}\right)^{3\Theta_D/T} \frac{x^4 e^x}{\left(e^x - 1\right)^2} dx$$

$$c_V \propto \left(\frac{T}{\Theta_D}\right)^3$$

T elevate: Legge di Dulong-Petit

Per T elevate abbiamo:

$$KT \gg \hbar\omega$$

$$\begin{array}{lcl} c_V^{\mathrm{vib}}(T \to \infty) & = & \frac{\partial}{\partial T} \, \int_0^\infty d\omega \, g(\omega) \left[\frac{1}{e^{\frac{\bar{h}\omega}{k_B T}} - 1} \right] \bar{h}\omega \\ \\ & = & \frac{\partial}{\partial T} \, \int_0^\infty d\omega \, g(\omega) \left[\frac{1}{(1 + \frac{\bar{h}\omega}{k_B T} + \ldots) - 1} \right] \bar{h}\omega \\ \\ & = & \int_0^\infty d\omega \, g(\omega) \frac{\partial}{\partial T} (k_B T) \end{array} \qquad \text{non dipende da T}$$

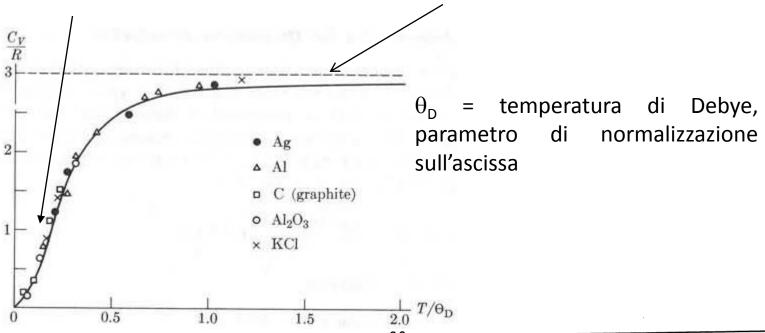
SI dimostra che il calore specifico è costante, ed il sur valore è quello previsto dalla trattazione classica: $c_v = 3 R$.

Andamento sperimentale del calore specifico dei materiali:

 $T << \Theta_D$ and amento T^3

 $T >> \Theta_D$

Legge di Dulong Petit



Aggiungendo il contributo Elettronico per T << $\Theta_{\rm D}$

$$C_V = AT^3 + \gamma T$$

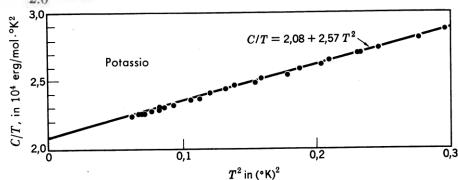


Figura 8 Valori sperimentali della capacità termica per il potassio, riportati come C/T in funzione di T^2 . I punti sono stati determinati con un criostato a smagnetizzazione adiabatica [Da W. H. Lien e N. E. Phillips, Phys. Rev. 133, A1370 (1964)].

APPROFONDIMENTO 2 – Contributo elettronico alla conducibilità termica

In presenza di un gradiente di T nel campione si instaura un flusso di calore W (dimensionalmente energia trasmessa attraverso l'area per unità di tempo) : $\underline{W} = -K \ \underline{\nabla} T$

con K = conducibilità termica. Alla conducibilità termica contribuiscono sia il reticolo che la carica elettrica di conduzione.

1. Contributo alla conducibilità elettrica dei portatori carichi

All'equilibrio nel materiale si instaura un campo elettrico (detto termoelettrico) che contrasta il flusso di portatori carichi liberi che trasportano energia termica. La teoria di Sommerfeld della conduzione dimostra che il contributo elettronico alla conducibilità termica è direttamente proporzionale al prodotto di conducibilità elettrica e temperatura, tramite un coefficiente detto «numero di Lorentz L»:

$$L = \frac{K}{\sigma T} = \frac{1}{3} \left(\frac{\pi K_B}{e} \right)^2 = 2.45 \times 10^{-8} \frac{W\Omega}{K^2}$$

Nel metallo con la più alta conducibilità, l'argento, K (273K) = 4.33 W/(cm K) mentre in Si K = 1.4 W/(cmK), circa 1/3 di quello di Ag, anche se la conducibilità elettrica del Si è parecchi ordini di grandezza più bassa di quella di Ag. Quindi anche nei semiconduttori si ha conducibilità termica apprezzabile ma questa è dovuta essenzialmente al trasporto energetico tramite le onde vibrazionali del reticolo.